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We investigate spontaneously generated waves around the interfaces between two different media in a system
where the domain scales are limited. These two media are carefully selected such that there exists a theoretical
interface wave with the frequency and wave number that can be predicted according to the control parameters.
We present the rules of how the frequency and wave number vary with reducing the scales of media domains. We
find that the frequency decreases with reducing the scale of antiwave (AW) media, but increases with reducing
the scale of normal wave (NW) media in both one-dimensional and two-dimensional systems. The wave number
always decreases with reducing scales of either NW or AW media. The least scale to generate the theoretical
wave is the predicted wavelength. These special phenomena around the interfaces may be applied to detect the

limited scale of a system.
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1. INTRODUCTION

The formation, propagation, and interaction of non-
linear oscillation around the interface between different
media have long been interesting topics. The results
have attracted much attention in recent decades in the
area of reaction—diffusion systems, optics, ultrasonic,
biological systems, and so on. Numerous characteris-
tic features and complex phenomena have been inves-
tigated [1-12]. Together with the normal wave (NW)
with positive phase velocity, the recently found anti-
wave (AW) with negative phase velocity provides even
more interesting dynamical behaviors and pattern for-
mations [8-12].

The method for generating an antiwave in a homo-
geneous oscillatory medium has no essential difference
from that for normal waves. A proper initial condi-
tion or an external pacing can both produce the desired
wave. Researches have mentioned that the control pa-
rameters of media determine the kind or kinds of wave
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that can be produced in it. Pacing can generate NW
in NW media, AW in AW media, and different pacings
can generate either NW or AW in N-AW media due
to the dispersion relation determined by the control
parameters [13,14]. One interesting phenomenon that
involves both an NW and an AW is the generation of an
interface-selected wave (ISW), first noted in [15]. When
a system is constructed by two linked domains of one
NW medium and one AW medium, and the dispersion
relations of these two media have an intersection point,
the ISW can be generated spontaneously from the in-
terface of the two media. The ISW has the frequency
and the wave number that can be theoretically calcu-
lated by the dispersion relations of two media. Once
an ISW is generated, it eventually occupies the whole
two-medium system.

Intuitively, the ISW is the result of an interplay of
two different media at the interface. The geometrical
shape and scale of each medium should have no effect
on the dynamical behavior. Also, a system on which
a theoretical experiment carried out is normally large
enough to avoid the effect of a boundary, if the system
can be considered a continuous medium, not a series of
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discrete grids. But by reducing the scale properly, it
might become possible to observe the detailed behav-
ior occurring exactly on the interface and reveal the
generation process of interface waves.

We first study the interface waves by reducing the
scales of media in a one-dimensional (1D) two-medium
system. It is surprising that the frequency and wave
number of the generated ISW both vary continuously
with the scale of the media. Analyzing the results, we
find that there is a necessary condition for the gener-
ated wave to be the theoretically predicted one, i.e.,
have the same frequency and wave number. That is,
the length scale of each participant medium should be
at least equal to half the predicted wavelength. Once
the condition is fulfilled, the frequency and wave num-
ber of the survivor wave are equal to the predicted ones.
Otherwise, the two-medium system can still enter a ho-
mogeneous dynamics, but with a different oscillating
frequency and wave number, which are related to the
geometrical scale of the system. Numerical studies in a
two-dimensional (2D) patched system yield similar re-
sults. The variation is the same. However, irrespective
of how large each participant domain is, the generated
frequency can never reach the theoretical value.

This paper is organized as follows. In Sec. 2, we ex-
plain the selected model and our motivation. In Sec. 3,
we present series of results for 1D and 2D two-medium
oscillatory systems. The alterations of frequency and
wave number are specified in different situations. Sec-
tion 4 contains a discussion and analysis of the phe-
nomena. Section 5 is our conclusion.

2. MOTIVATION

We construct our system using the complex Ginz-
burg-Landau equation, which is the commonly used
model describing extended systems in the vicinity of
a Hopf bifurcation from a homogeneous stationary
state [16-19]:

%—f =A—-(1+ia)|APA+ (1+iB)VZA. (1)
For a general reaction—diffusion system, the dynam-
ics of oscillations with the amplitude and phase are
scaled to one complex order parameter A. When time
is scaled by the characteristic reaction time, space by
the characteristic diffusion length, and the modulus of
the amplitude by the radius of the limit cycle, the re-
maining two control parameters a and 3 govern the
universal dynamics around the bifurcation [19].

If the frequency w of the external pacing is close to
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the natural frequency wg = « of the media, the disper-
sion relation

w=wy+ Lk =a+ (f - a)k?
determines the characteristics of generated waves in
the following way under the conditions of a 1:1 pacing-
reaction region and wwgy > 0 [14]:

AWs — for wo f1 = a(f — a) <0, (2a)
NWs — for wof1 = a(f —a) > 0. (2b)

We have |w| < |wp| for AWs and |w| > |wg| for NWs.
For two media whose dispersion relation lines have an
intersection at one’s AW region and one’s NW region,
ISW trains emerge at the interface of these two me-
dia. This means that the ISW trains are always nor-
mal waves in the NW domain and antiwaves in the AW
domain. Because the frequencies used in this paper are
always positive, the wave numbers for different waves
then have different signs. For simplicity and conve-
nience, we focus on the absolute value and the square
of the wave number in different regions.

Theoretically, the control parameters of two media
determine the frequency and wave number of the gen-
erated ISW as

a2ff — ayf

ay —ar + f1 =B

Q2 —
ay—ar + f1 =P
In previous studies, the results are perfectly well consis-
tent with the theoretical values in 1D systems [15, 20].
But there are some inconsistent situations in 2D sys-
tems, for example, in the patching system where one
medium is surrounded by another. In that case, the
frequency is always slightly different from the theoret-
ical value [20-23]. This has not yet been given a clear
explanation.

If the structure of media can alter the dynamical
behavior, what happens when the geometrical scale is
changed? If the ISW is generated exactly on the inter-
face, the geometrical scale should have no effect on the
properties of the waves. However, from another stand-
point, if the generation of an ISW requires a range of
the medium, a very small system may not be able to
produce ISWs. Studies in this paper aim to answer
these questions. By reducing the geometrical scale of a
two-medium system in several ways and by comparing
the results in 1D and 2D systems, we reveal the exact
dynamics occurring around the interface.

In the next section, we first present our experimen-
tal results for a 1D two-medium system. The results
for a 2D patched two-medium system are then shown.

wy = (3a)

ki =

(3b)
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3. RESULTS OF MANIPULATING THE
SCALES OF MEDIA IN A TWO-MEDIUM
SYSTEM

3.1. Reducing one medium in a 1D
two-medium system

We construct a one-dimensional two-medium sys-
tem as follows:

04,
—— = A —(14iay)| AP A + (1440 ZA
5 1—(14ion )| A1 | A1 +(14i61) V= Aq, (4a)
OSxSLla
0A,
—= = Ay—(1+icw)|As|> Ao+ (1+i ZA
5 o—(1+ias)|A2|* Ao+ (14i82) V7 As, (4b)
Ly <a<Li+Ly+1,
0A 0A
Ay = Ay, S (4c)

on on
The system is divided into two domains. We let the
left domain M; be an AW media of length Lq, and the
right domain Ms be an NW media of length L,. Equa-
tion (4c) is the continuity condition, where I means the
value on the interface and dA;()/dn is the gradient to
the normal direction. No-flux boundary conditions are
used on all outer boundaries, such that the inner dy-
namics is not affected. We then set A(0) = A(1) and
A(Ll + L2 + 1) = A(L1 + Lg)7 and [1,L1 + LQ] is the
area that we calculated. The system is integrated us-
ing second order Runge-Kutta (RK2) method and the
standard three-point approximation for the Laplace op-
erator.

We carefully choose the control parameters such
that the interface select waves can be generated. For
the AW media M;, oy 0.4 and [ —-1.0
(a1 (81 — a1) < 0). For the NW media M, as = 0.2
and B2 = 2.0 (aa(f2 —as) > 0). According to Egs. (3a)
and (3b), the frequency and wave number of the ISW
can be theoretically predicted as wy = 0.3125 and k% =
= 0.0625, whence |k7| = 0.25. As shown in Fig. 1a,
the dispersion relation curves of these two media have
an intersection point with the coordinates w; = 0.3125
and k7 = 0.0625. That implies that if these two me-
dia are connected together, the ISWs emerge from the
interface spontaneously, with the frequency and wave
number equal to the coordinates of the intersection
point. In Fig. 1b, we show a spatiotemporal pattern
of the two-medium system in which the AW media M;
and the NW media M, occupy half the system each.
The system is integrated with the RK2 method and
the standard three-point approximation for the Laplace
operator. The space and time steps are Ax = 0.5 and

k2 a t b
0.5 750
0.4
0.3 o;=0.3125 500
. k}=0.0625
0.21 250
0.1
AN | | | e ——
0 020406 08 100 50 100 150 200
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Fig.1. o) Dispersion relation curves of an AW medium
(dashed curve) with the control parameters a; = 0.4
and 31 = —1.0, and an NW medium (solid curve) with
the control parameters az = 0.2 and 32 = 2.0. b) Spa-
tiotemporal pattern of a 1D two-medium system. The
left domain of the length L1 = 100 and the right do-
main of the length L = 100 are respectively filled with
AW and NW media, whose dispersion curves are both
presented in Fig. o

At = 0.005. The outer boundaries are set with the no-
flux boundary condition, while the interface between
different media is set with the continuity condition.
All the following patterns utilize the same parameters,
integration method, boundary condition, and discrete
steps. It is obvious that from the very beginning of evo-
lution, ISWs are generated from the interface and prop-
agate gradually into both domains with different speeds
and different, directions of the phase velocity. As pre-
dicted, eventually, the ISWs occupy the whole system.
The interface becomes transparent in the final pattern.
The frequency and wave number are w; = 0.3125, and
|kr| = 0.25, which are equal to the theoretical predic-
tions in Fig. la.

If the dynamics of ISWs is determined by grids right
on the interface, the characteristics do not change irre-
spective of how large the media domains are. However,
by reducing the geometrical scales of the domains, we
do alter the characteristics of ISWs. The systems in
Fig. 2 are of the same size as in Fig. 1b. The AW do-
main in Fig. 2a is reduced to Ly = 2, while the NW
domain is enlarged to Lo = 198. The AW domain in
Fig. 2b is enlarged to Ly = 198, while the NW domain
is reduced to Ly = 2. The systems are finally entirely
occupied by ISWs. But the ultimate patterns are differ-
ent from each other in both the horizontal spatial axis
and the vertical time axis. In Fig. 2a, the frequency
and wave number values are changed to w = 0.2860
and |k| = 0.2185. In Fig. 2b, they are w = 0.3758
and |k| = 0.1318. The respective relative errors in fre-
quency compared to wy in Fig. 24 and 2b are 8.5%
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Fig.2. Ultimate spatiotemporal patterns of a 1D two-
medium system of the same total length L = 200 as
in Fig. 1. The control parameters are also the same
as Fig. 1. a) The left AW medium domain has the
length Ly = 2, while the right NW medium domain
has the length Ly = 198. The frequency decreases
to w = 0.2860, and the wave number decreases to
|k| = 0.2185. b) The left AW medium has the length
L, = 198, and the right NW medium has the length
Lo = 2. The frequency increases to w = 0.3758, but
the wave number decreases to |k| = 0.1318

and 20 %. The relative errors in wave number com-
pared to |kr| are 13% and 47%. These changes are
purely caused by the geometrical scale reduction of one
medium in the system, because the control parameters
and boundary conditions are the same. This indicates
that the emergence of ISWs may not rely only on the
interface grids. A range of both media around the in-
terface produces the wave. Changing the AW and NW
media leads to different results. With w = 0.2860 in
the dispersion relation for M, (the larger domain in
Fig. 2a), we obtain

W — Q9
B2 — an
which is exactly the practical value of the wave number.

With w = 0.3758 in the dispersion relation for M; (the
larger domain in Fig. 2b), the wave number becomes

k| = = 0.2185,

W — Q1

pf1— o

which is quite close to the real value. This is logical
because the main part of the system can determine the
characteristics of the generated ISWs.

k| = =0.1315,
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To reveal the range of media required for general
evolution of ISWs, we gradually increase the geomet-
rical scale of each domain of the different media from
the minimum limit. When the domain of one medium
is increased, the domain of the other is decreased, such
that total geometrical size of the system is kept con-
stant. By measuring the frequency and wave number
of the ultimate patterns, we find different phenomena in
changing the domains of different media. The results
are shown in Fig. 3. The open circles represent the
results in the system with a relatively smaller length
scale of the NW medium and a larger length scale of
the AW medium. The solid circles represent the results
in the system with a relatively small AW media and a
larger NW media. We let L denote the length of the
smaller domain in the system. While increasing the AW
medium length from L; = Ly = 1to Ly = Ly = 30, the
domain of the NW medium is decreased from L, = 199
to Ly = 170. The circles in Fig. 3 illustrate that along
with increasing the length scale of the AW medium,
both the frequency and the wave number increase con-
tinuously. However, when we increase the domain scale
of the NW media instead, the frequency turns out to
decrease as shown by the solid points in Fig. 3a, while
the wave number value keeps increasing as shown in
Fig. 3b. Similarly, around the length Ly = 12.5, both
the frequency and the wave number approach constant
values, which are equal to the theoretical ISW values.
Interestingly, the length is equal to half the wavelength
of the theoretical ISW for A\; = 2x/k; ~ 25. This
means that in a two-medium system with one medium
smaller than half the wavelength of the theoretical ISW,
the generated ISW is not the theoretical predicted one.
The exact frequency value is then close to the natural
frequency of the medium that occupies the larger do-
main. The frequency determines the wave number. For
simplicity and convenience, the wave numbers we show
in Fig. 3b are the absolute values, not the exact ones,
because the signs for the antiwave and the normal wave
are different.

3.2. Reducing both parts in a 1D two-medium
system

In the above study, the total length scale of the sys-
tem is kept constant, which is much larger than the
wavelength of theoretical ISWs. According to the pre-
vious results, we are sure that by changing the system
scale, the generated ISWs can be altered. We then keep
the domain scales of two media to be equal, and grad-
ually increase them from the minimum limit L = 1 to
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Fig.3. The frequencies and wave numbers calculated from the ultimate pattern of the two-medium system. L is the
length of the smaller domain in the system. For open circles, the smaller domain is an NW medium; and for solid circles,
the smaller domain is an AW medium. a) In systems with the smaller AW medium, the frequency increases with increasing
the AW domain length. However, in systems with the smaller NW medium, the frequency decreases. When the length is
increased to A;/2, the frequencies reach the value w;. b) In systems with the smaller AW medium and NW medium, the
wave number always increases with increasing the length, and reaches the value |k| after the length increases to A7 /2
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Fig.4. Frequencies measured in a system of two do-
mains of equal size L but different media, L1 = L»
= L. The control parameters are the same as in Fig. 1.
As the geometrical scale of the system increases, the
frequency of the generated ISWs decreases. When the
total length reaches A;, meaning the length of each
domain reaches \7/2, the frequency equals wr

twice the theoretical ISW wavelength L = 2A\; = 50.
We note that L = L; = L, is half the length of the
whole system. We see from Fig. 4 that as the length
of the system increases to Aj, the frequency value ap-
proaches wy. For a smaller system, the frequency is
larger. This is consistent with the previous result, be-
cause each domain then has the length A;/2. Along
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0 25 50 75 10000 10
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Fig.5. Spatiotemporal pattern of a two-medium sys-

tem with each domain of equal size. L; = Ly = 50 (a),

5 (b). In both systems, the interface-generated waves

propagate gradually into two domains, and eventually

occupy the whole system. But in the smaller system,
the frequency is larger than in the other one

with increasing the system length, the frequency de-
creases.

In Fig. 5, we present two spatiotemporal pattern
examples: one with I = 50 and the other with L = 5.
The respective output frequencies are w = 0.3125 and
w = 0.3232. It is clear that in a small system, the inter-
face can still generate a wave with the same frequency
in two different media. Although it is different from
the theoretical prediction, the generated wave can still
occupy the whole system. In extreme cases, the system
is smaller than the wave length. It is then impossi-
ble to measure the wavelength and the wave number
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precisely. In fact, the wave number has no significant
physical meaning because the system with few grids
cannot be considered a continuous medium.

3.3. Reducing the center domain of a 2D
two-medium system

The study of a 2D two-medium system with two
parallel domains yields the same results as in 1D sys-
tem. This confirms the effect of changing the geomet-
rical scale of the system.

However, in 2D two-medium systems, there do ex-
ist different structures, for example, one medium can
be surrounded by the other. This is what we called a
patched system. The patch is typically used to con-
trol the patched medium, so as to obtain the desired
pattern. For the patched system containing both NW
and AW media, a perfect target wave can be generated,
which propagates in the whole system as previous re-
searches have mentioned. But the generated frequen-
cies and wave numbers are not exactly equal to the
theoretical prediction [20].

We then change the size of the patch. Similar
changes of the frequency related to the size of the patch
are observed. In previous studies, we have found that
the generated wave eventually evolves into a perfect
target wave, irrespective of whether the patch is round
or square. We therefore take the round patch as a gen-
eral example.

The patched 2D two-medium system is constructed
as follows:

8141 . 2 . 2
— = A, (1 A IPA 1 A
T 1—(I+ia ) [ AP A +(1+i61) V7 Ay, (50)
0<r <R,
0A,
—= = As—(1+ias)|As|> Ao+ (14i ZA
5 o—(1+ias)|A2|* Ao+ (14i82) V7 As, (5b)
r> R,
0A 0A
Ay = Ay, SLEE s 1G4 (5¢)

on on ’
where r is the distance from grids to the center point of
the system. The main system is square with the length
L x L, the round inner patch medium with a radius
R is denoted by M, and the outer medium is denoted
by M. Continuity condition (5¢) is the same as in 1D
systems. We apply the same time and space step and
the same numerical method and boundary conditions
as in 1D systems.

Firstly, the AW medium is placed outside, and the
NW medium is placed inside as a patch. For the solid
points shown in Fig. 6, the radius of NW patch is in-
creased from R = 5 to R = 95, while the system re-
mains 200 x 200. As the radius increases, the frequency
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Fig.6. The alteration of frequencies with changing

the radius of a round patch in a 2D two-medium sys-
tem. The patched system consists of an AW medium
and an NW medium, whose parameters are the same
as in Fig. 1. For the solid circles, the patch is the
NW medium. The frequency decreases from 0.3774 to
0.3173 as the patch radius increases from 5 to 95. For
the open circles, the patch is the AW medium. The
frequency increases from 0.2558 to 0.3094. In both
cases, the frequencies are approaching the theoretical
value

decreases. When the radius approaches A;/2, meaning
that the diameter approaches A7, the frequency reaches
w = 0.3250. It is very close to the theoretical w; with
a relative error of 4.0%. But with R = 5, the fre-
quency is w = 0.3774, and the relative error becomes
21 %. The change of frequency in the patching 2D sys-
tem is much more obvious than in the parallel 2D two-
medium system, or the 1D two-medium system. With
a larger patch, the frequency approaches the theoreti-
cal wr. But it cannot reach the exact value, even if the
total size of the system is increased. It is tested in a
system with twice the total size and the patch of the
same size, where the frequency remains the same. We
note that when the radius is larger than R = 50, the
range of the NW patch is actually larger than the out-
side AW media. Yet the frequency is still in the upper
zone.

If we exchange the media of the inside patch and the
outside domain, the changing tendency of the frequency
becomes opposite to the above rule. As shown in Fig. 6
with open circles, it is then smaller than the theoretical
prediction, and increases as the domain of the inside
AW patch increases, just as for the 1D two-medium
system.
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4. DISCUSSION

In both 1D and 2D two-medium systems with rel-
atively altered length scales, we find the frequency and
wave number being not consistent with the theoretical
predictions.

If and only if every part of the system is equal to or
larger than half the wavelength of the theoretical ISW
can the generated wave train have the same frequency
and wave number as the predicted values. This implies
that the least scale to generate the predicted ISW is
the theoretical wavelength, and every medium should
occupy a half of the system. If the total size is fixed,
either one being smaller than half the wavelength, the
absolute value of the produced wave number decreases
with reducing the geometrical scale, for both the NW
and AW media. But the frequency decreases with re-
ducing the AW medium and increases with reducing
the NW medium. As a result, the frequency is always
larger than w; when AW medium occupies the larger
domain; and it is smaller than w; if the NW medium
occupies the larger domain. The alterations of the wave
number and frequency indicate that the generation of
an ISW involves not only the interface but also the dy-
namics of a certain domain around the interface. The
exact frequency and wave number are then related to
the limited size of the media.

In each case that we studied, the systems always
approach the same vibration frequency. This confirms
that linked media with different control parameters
tend to find a wave with a particular frequency that
can propagate in both domains. The competition oc-
curs around the interface. The dynamics of every grid
is influenced by the grids next to it. When grids of
the NW medium and the AW medium are linked, they
approach a frequency between the larger natural fre-
quency of the AW medium and the smaller one of the
NW medium. The range of area that affects the inter-
play result is the wavelength scale.

We have confirmed that all the discrete time and
space steps applied have a good fit in our numerical
programs. The number of grids increases from small
to large to simulate the behaviors of a bi-domain os-
cillatory system. The free boundary condition assures
that the dynamics of oscillations is not affected by the
limited area. And the continuity condition is used be-
tween the media. In the cases of an extremely small
system, the dynamics exhibited is an interplay of a few
grids. Then the system can be considered not a contin-
uous medium, but a series of scattered grids. Although
the wave number has no essential physical meaning,
the frequency still reflects the cooperation mechanism
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of the different media.

We choose the complex Ginzburg-Landau equation
to construct our numerical experimental system be-
cause it may be the most generally applied nonlinear
equation to demonstrate the oscillatory dynamics in
physics. Reaction—diffusion systems, superconductiv-
ity, fluid dynamics, and many other physical phenom-
ena at different scales can be mapped to the complex
Ginzburg-Landau equation [1,16-19]. The results that
we obtain may be tested and applied to realistic sys-
tems. There might be more complicated phenomena in
unscaled systems. That requires further numerical and
experimental research.

The geometrical magnitude of a medium is of great
importance especially in biological systems. Because
the biological tissue may not be as large as we expected,
the limited size may have a great effect on the behav-
ior of signal transportation. The varied frequencies and
wave numbers are related to the structure of the sys-
tem. Our results may be helpful in understanding wave
propagation in systems with a limited scale, such as the
superficial soft tissue interfaces.

5. CONCLUSION

We find up—down mirror images of varied frequen-
cies in changing the scales of NW and AW media in
both 1D and 2D two-medium systems, and an increas-
ing rule of wave numbers in all cases. The least scale of
the domain to produce the theoretical ISW is the pre-
dicted wavelength. If the length scale of every part of
a 1D system is equal to or larger than the wavelength,
the generated wave has the theoretical frequency and
the wave number. Reducing the NW medium causes
an increase in frequency, but reducing the AW medium
causes a decrease in frequency. For a system contain-
ing NW and AW media with the same scale, if the total
scale is smaller than the wavelength, the frequency is
larger than the theoretical one. And the frequency in-
creases basically as the scale decreases.

All the above results show that the generation of
an interface wave involves a certain range of media
around the interface rather than the grids right on it.
The interplay of different media with different scales
yields various patterns. A crucial condition to predict
them is the relation between the wavelength and the
system scale.
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