ИНТЕРПРЕТАЦИЯ ЧИСЛЕННЫХ ДАННЫХ ДЛЯ ПЕРЕХОДА АНДЕРСОНА В ВЫСОКОЙ РАЗМЕРНОСТИ

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 28 апреля 2014 г.

Существование верхней критической размерности $d_{c2}=4$ для перехода Андерсона является строгим следствием теоремы Боголюбова о перенормируемости теории $\phi^4.$ Для размерностей $d\geq 4$ однопараметрический скейлинг не имеет места и все существующие численные данные должны быть переинтерпретированы. Они сводятся к результатам для d=4, 5, полученным из скейлинга в квазиодномерных системах, и результатам для d=4,5,6 из скейлинга для статистики уровней. Все эти данные оказываются совместимыми с теоретическими скейлинговыми зависимостями, полученными из самосогласованной теории Вольхардта – Вольфле. Дано критическое обсуждение широко распространенной точки зрения о том, что $d_{c2} = \infty$.

Статья для специального выпуска ЖЭТФ, посвященного 75-летию А. Ф. Андреева

DOI: 10.7868/S004445101412013X

1. ВВЕДЕНИЕ

Главным дефектом текущей литературы по переходу Андерсона является игнорирование существования верхней критической размерности $d_{c2} = 4$, которое является строгим следствием теоремы Боголюбова о перенормируемости теории ϕ^4 [1, 2]. Задача о переходе Андерсона математически точно сводится к одному из вариантов теории ϕ^4 [3–6]¹, которая неперенормируема для размерностей пространства d > 4. Поэтому параметр обрезания по импульсу Л, соответствующий атомному масштабу длины а, не может быть исключен из результатов. Это делает невозможным существование однопараметрического скейлинга [9], согласно которому корреляционный радиус ξ является единственным существенным масштабом длины. В силу последнего любая

1272

безразмерная величина Q, относящаяся к конечной системе размера *L*, записывается как функция отношения L/ξ ,

$$Q = F(L/\xi),\tag{1}$$

что является основой для всех численных алгоритмов. Изучая Q как функцию L и расстояния до перехода τ , можно определить критический индекс ν корреляционного радиуса ($\xi \sim |\tau|^{-\nu}$). Действительно, вычисляя зависимости от L для двух значений au и совмещая кривые путем изменения масштаба, можно определить отношение двух соответствующих корреляционных длин. Проводя эту процедуру для последовательности значений $\tau_0, \tau_1, \tau_2, \ldots,$ можно установить зависимость ξ от τ с точностью до постоянного коэффициента.

При d > 4 соотношение (1) является неверным и требуется использование более общей формы

$$Q = F(L/\xi, L/a).$$
⁽²⁾

При d = 4 ситуация не столь очевидна и требует дополнительного исследования; фактически существование логарифмических множителей типа $\ln(L/a)$ приводит к соотношению типа (2). Последнее соотношение может быть сведено к функции одного аргумента при надлежащем выборе скейлинговых переменных [10, 11].

^{*}E-mail: suslov@kapitza.ras.ru

 $^{^{1)} \ {\}rm A}$ именно, к задаче двух взаимодействующих нуль-компонентных полей [4, 5]. Аргументы о дефектности метода реплик [7, 8] в данном контексте несущественны, так как исследование перенормируемости может быть проведено на диаграммном уровне. Каждая диаграмма теории неупорядоченных систем может быть получена из соответствующей диаграммы для теории ϕ^4 простым переобозначением символов [3].

В настоящее время имеются следующие результаты для высоких размерностей: данные Маркоша для d = 4, d = 5 [12, 13], полученные из скейлинга в квазиодномерных системах; данные Жарекешева и Крамера для d = 4 [14], а также Гарсиа–Гарсиа и Куваса для d = 5, d = 6 [15], полученные из скейлинга для статистики уровней. Все эти результаты основаны на соотношении (1) и в силу сказанного требуют другой интерпретации.

Ниже (разд. 3, 4) эти результаты сопоставляются с модифицированным скейлингом для высоких размерностей, полученным ранее [10, 11] на основе самосогласованной теории локализации Вольхардта-Вольфле [17]. Последняя дает правильные значения верхней критической размерности $d_{c2} = 4$ и критического индекса $\nu = 1/2$ для $d > d_{c2}$, поэтому, как минимум, представляет интерес в качестве возможного сценария. Согласно некоторым аргументам [18, 19], теория Вольхардта-Вольфле предсказывает правильное критическое поведение, а большинство численных результатов может быть с ней согласовано [10, 11, 20, 21]. Результаты настоящей работы укладываются в ту же тенденцию: все упомянутые численные данные [13-15] могут быть согласованы с теоретическими скейлинговыми зависимостями. Как правило, «экспериментальные» точки лежат на квазилинейных участках скейлинговых кривых, что интерпретировалось в оригинальных работах как зависимость $L^{1/\nu}$ с $\nu \approx 1$. Истинное критическое поведение подразумевает $\nu = 1/2$, но соответствующие участки скейлинговых кривых оказываются труднодоступными для численных экспериментов ввиду их ограниченной точности.

Широко распространенная точка зрения, что $d_{c2} = \infty$ [22–27], обсуждается в следующем разделе.

2. СИГМА-МОДЕЛИ И d_{c2}

Гипотеза о том, что $d_{c2} = \infty$, основана на следующих аргументах:

а). В подходе, основанном на использовании сигма-моделей [16], нет указаний на существование особой размерности в интервале $2 < d < \infty$ [22].

б). Результаты $s = \infty$, $\nu = 1/2$ для $d = \infty$ [23, 24] (s — критический индекс проводимости) указывают на выполнение соотношения Вегнера $s = \nu(d-2)$ при $d = \infty$, и можно ожидать, что это соотношение (а следовательно, однопараметрический скейлинг [9]) справедливо при всех d.

Мы не подвергаем сомнению результаты $s = \infty$,

 $\nu = 1/2$ для бесконечномерной сигма-модели, но имеется вопрос о соответствии последней с исходной неупорядоченной системой. Для электронов в случайном потенциале вывод сигма-моделей является обоснованным лишь для размерностей пространства $d = 2 + \epsilon$, где $\epsilon \ll 1$; на качественном уровне его справедливости можно ожидать для $\epsilon \sim 1$, но не для $d \gg 1$. Распространение сигма-моделей на высокие размерности проводится с помощью искусственной конструкции, соответствующей системе слабосвязанных металлических гранул [22]. При этом в каждой грануле ограничиваются нулевой фурье-компонентой матричного поля *Q*, считая, что связь между гранулами приведет к его медленному изменению. Возможность того, что включение связи между гранулами приведет к индуцированию высших фурье-гармоник и фактическому разрушению сигма-модели, при этом не рассматривается. Но именно такая ситуация представляется наиболее вероятной с точки зрения пространственно-однородных систем $^{2)}$.

Поясним ситуацию на примере векторной сигма-модели. При описании ферромагнетика в терминах теории ϕ^4 магнитный момент **M** конечного блока может рассматриваться как гейзенберговский спин, но с существенной флуктуацией его модуля М. Пренебрежение такими продольными флуктуациями (строго обоснованное для $d = 2 + \epsilon$) как раз и соответствует сигма-модели. При d = 3 продольные флуктуации не имеют качественного значения и сигма-модель выглядит вполне применимой³⁾. Однако при приближении d к 4 происходит аномальное размягчение продольных флуктуаций, что и обеспечивает существование верхней критической размерности. Если же продольные флуктуации искусственно подавляются (как это имеет место в сигма-моделях), то это может приводить к устранению d_{c2} .

Фактически, говорить о сигма-модели хоть в каком-нибудь смысле можно лишь при условии, что

²⁾ На наш взгляд, это почти очевидно. Если поле Q меняется действительно медленно, то при объединении нескольких гранул в один блок приблизительное постоянство Q сохраняется в пределах блока, что означает справедливость в нем вигнер-дайсоновской статистики [28]. В действительности, при связи между блоками, соответствующей переходу Андерсона, гибридизация блочных состояний является не полной (т.е. с равными весами, как в металлической фазе), а частичной (что характерно для критической области). Поэтому уже при объединении двух гранул в один блок статистика составной системы будет существенно отличаться от вигнер-дайсоновской.

³⁾ Фактически можно показать (см. [29, Sec. 3.1]), что эквивалентность сигма-модели и теории ϕ^4 в смысле критического поведения имеет место для d < 4.

Рис.1. *а*) О сигма-модели можно говорить лишь в случае, когда функция распределения P(M) модуля M имеет максимум при ненулевом M. Такой максимум возникает в результате среднеполевого перехода в конечной системе в духе теории Ландау. δ) Температура T_L , при которой возникает сигма-модель, и точка перехода T_{sm} по сигма-модельному сценарию как функции размерности пространства d. Сплошная и штриховая линии показывают соответственно реальный и фиктивный фазовый переходы

функция распределения P(M) модуля **М** имеет максимум при конечном M (рис. 1*a*). Возникновение такого максимума при понижении температуры происходит в результате среднеполевого фазового перехода в конечной системе в духе теории Ландау; однако, соответствующая температура T_L не является реальной критической точкой, так как поперечные флуктуации M разрушают дальний порядок. Дальнодействующие корреляции для поперечных флуктуаций возникают при более низкой температуре T_{sm}. Таким образом, при понижении температуры сначала (в точке T_L) возникает сигма-модель, а затем (в точке T_{sm}) происходит фазовый переход по «сигмамодельному сценарию». Ситуацию при изменении d можно представлять себе так, что зависимости $T_L(d)$ и $T_{sm}(d)$ пересекаются в точке d_{c2} (рис. 16). Поэтому при $d > d_{c2}$ фазовый переход происходит в той же точке T_L , в которой возникает сигма-модель, т.е. происходит «по сценарию Ландау».

Таким образом, при $d > d_{c2}$ «сигмамодельный» переход (в точке T_{sm}) не имеет места, если свойства сигма-модели увязываются со свойствами реальной системы. Если же сигма-модель вводится искусственно, то такой переход (как теоретическая конструкция) может существовать и соответствовать аналитическому продолжению с низших размерностей. На наш взгляд, именно такая ситуация имеет место в случае перехода Андерсона: результаты $s = \infty$, $\nu = 1/2$ для $d = \infty$ соответствуют формальной сигма-модели, а не исходной неупорядоченной системе⁴⁾. Заметим, что прямой анализ решетки Бете (без использования сигма-модели) дает результаты $s = 1, \nu = 1/2$ [30, 31], в соответствии с результатами теории Вольхардта-Вольфле.

Обсудим еще работу [27], где утверждение о том, что $d_{c2} = \infty$, получено на основе модификации самосогласованной теории. Эта работа исходит из неверной посылки, что зависимость от L для коэффициента диффузии в критической точке, $D_L \sim L^{2-d}$, означает существование зависимости $D(q) \sim q^{d-2}$ от волнового вектора. В действительности, зависимость от L связана не только с пространственной, но и с временной дисперсией, и по заданной функции $D(\omega, q)$ определяется соотношением

$$D_L \sim D\left(D_L/L^2, L^{-1}\right). \tag{3}$$

Принимая степенную зависимость от ω и q, легко убедиться, что комбинация

$$D(\omega, q) \sim \omega^{\eta/d} q^{d-2-\eta} \tag{4}$$

обеспечивает правильную зависимость $D_L \sim L^{2-d}$ при любом значении индекса η [32]. Если повторить

⁴⁾ Согласно [19], неустойчивость бесконечномерной сигма-модели относительно малых возмущений общего вида следует из необычного результата $\epsilon(0,0) \sim \xi$ [23] для диэлектрической проницаемости $\epsilon(\omega,q)$; его отличие от естественного результата $\epsilon(0,0) \sim \xi^2$ указывает на существование особой размерности. Заметим также, что для задачи о плотности состояний физический смысл верхней критической размерности $d_{c2} = 4$ удается полностью прояснить [6].

конструкцию работы [27] с использованием произвольного η , то легко убедиться, что соотношение Вегнера $s = \nu(d-2)$ выполняется (для $d < d_{c2}$) лишь при $\eta = d-2$, т.е. при отсутствии пространственной дисперсии⁵). При выборе $\eta = 0$, сделанном в работе [27], соотношение Вегнера является нарушенным, что обесценивает главный аргумент этой работы (согласие с численным счетом), так как все численные результаты основаны на однопараметрическом скейлинге.

3. КВАЗИОДНОМЕРНЫЕ СИСТЕМЫ

Один из распространенных численных алгоритмов основан на рассмотрении вспомогательных квазиодномерных систем [34]. При этом в качестве скейлингового параметра используется величина [10, 12]

$$z_1 = L/\xi_{1D},\tag{5}$$

где ξ_{1D} — корреляционный радиус квазиодномерной системы. В численных экспериментах ξ_{1D} оценивается через минимальный показатель Ляпунова [34, 35], а для z_1 постулируется скейлинговое соотношение типа (1). В высоких размерностях такое соотношение несправедливо и следует использовать модифицированный скейлинг, предложенный в работе [10]. Теоретическая скейлинговая функция y(x) задается соотношением

$$\pm x^2 = \frac{1}{y} - y^2, \tag{6}$$

где переменные у и х определяются как

$$y = \frac{L}{\xi_{1D}} \left(\frac{L}{a}\right)^{(d-4)/3}, \quad x = \frac{L}{\xi} \left(\frac{L}{a}\right)^{(d-4)/3}$$
(7)

при *d* > 4 и

$$y = \frac{L}{\xi_{1D}} \left[\ln\left(\frac{L}{a}\right) \right]^{1/3}, \quad x = \frac{L}{\xi} \frac{\left[\ln(\xi/a)\right]^{1/2}}{\left[\ln(L/a)\right]^{1/6}} \tag{8}$$

при d = 4. Зависимость y(x) состоит из двух ветвей и представлена на рис. 2. Из соотношений (6)–(8) ясно, что возможны обычные скейлинговые построения, если величину y рассматривать как функцию «модифицированной длины» $\mu(L) = L^{(d-1)/3}$ (d > 4) или $\mu(L) = L[\ln(L/a)]^{-1/6}$ (d = 4).

На рис. 3a приведены численные данные Маркоша для d = 4, извлеченные из рис. 61 работы [12]

Рис.2. Скейлинговая функция y(x) для высоких размерностей при использовании вспомогательных квазиодномерных систем

и представленные в виде зависимости $z_1 (\ln L)^{1/3}$ от $\mu(L)$. Выход на константу реализуется при амплитуде беспорядка W = 33, что несколько изменяет оценку критической точки по сравнению с $W_c = 34.3$ в [12]. Понимая $y - y_c$ как y(W, L) - y(33, L), нетрудно убедиться, что все численные данные могут быть уложены на теоретическую скейлинговую кривую путем изменения масштаба вдоль горизонтальной оси (рис. 36), если общий масштаб вдоль оси y выбран надлежащим образом.

На рис. 4*a* представлены данные Маркоша при d = 5, извлеченные из рис. 61 работы [12] и рис. 4,5 работы [13], в виде функции $z_1L^{1/3}$ от $L^{4/3}$. Изменение способа обработки привело к сдвигу критической точки от значения $W_c = 57.3$ [12] до $W_c = 53$, что приблизило ее к оценке $W_c = 51.4$ работы [15], полученной из статистики уровней (см. разд. 4). Понимая $y - y_c$ как y(W, L) - y(53, L), нетрудно уложить все численные данные на теоретическую скейлинговую кривую (рис. 4δ).

В обоих случаях основной массив численных данных располагается на квазилинейных участках $y \sim x$ скейлинговых кривых, что соответствует зависимостям $z_1 \sim L(\ln L)^{1/3}$ при d = 4 и $z_1 \sim L$ при d = 5, которые интерпретировались в работе [12] как $z_1 \sim L^{1/\nu}$ с $\nu \approx 1$. Фактически же численные данные совместимы с предсказаниями теории Вольхардта–Вольфле, согласно которой $\nu = 1/2$; соответствующая зависимость $y - y_c \sim x^2$ справедлива лишь при малых отклонениях от критической точки, сравнимых с разбросом экспериментальных данных.

⁵⁾ Отсутствие пространственной дисперсии $D(\omega, q)$ получено в [19] в результате детального анализа. Аргументы, связывающие индекс η с мультифрактальностью волновых функций [32], являются дефектными [33].

Рис. 3. Численные данные Маркоша для d = 4 (квазиодномерные системы), извлеченные из рис. 61 работы [12] (здесь и далее цифры у горизонтальной оси указывают соответствующее значение L) (a) и их сопоставление с теоретической скейлинговой кривой (δ)

Рис.4. Численные данные Маркоша для d = 5 (квазиодномерные системы), извлеченные из рис. 61 работы [12] и рис. 4, 5 работы [13] (*a*) и их сопоставление с теоретической скейлинговой кривой (δ)

В заключение раздела обсудим технический момент, связанный с выбором процедуры скейлинговых построений. Последние могут проводиться в прямом или логарифмическом масштабе, что при строгом скейлинге совершенно безразлично. В реальной ситуации логарифмический скейлинг может не обеспечивать достаточно гладкого совмещения двух «кусочков» измеряемой зависимости, так как он жестко сохраняет общее начало отсчета по переменной *L*. При скейлинге в обычных координатах более гладкое совмещение «кусочков» обеспечивается небольшими сдвигами вдоль горизонтальной оси. При точном скейлинге такие сдвиги должны отсутствовать, но практически они возникают из-за поправок к скейлингу. Например, поправки к соотношению (1) при малых τ имеют следующую структуру [10]:

$$y - y_c = \tau \left\{ A_0 L^{1/\nu} + A_1 L^{\omega_1} + A_2 L^{\omega_2} + \dots \right\} + \left\{ B_1 L^{-\alpha_1} + B_2 L^{-\alpha_2} + \dots \right\}, \quad (9)$$

где $1/\nu > \omega_1 > \omega_2 > \ldots$, $\alpha_1 < \alpha_2 < \ldots$ При принятой интерпретации $y - y_c$ как $y(W, L) - y(W_c, L)$ вторая скобка исключается из рассмотрения. В первой скобке член $L^{1/\nu}$ доминирует при больших L, тогда как при малых L более существенны остальные члены: это эффективно изменяет начало отсчета L. При использовании вместо L переменной L/ξ , такой сдвиг оказывается зависящим от τ . Если численные данные достаточно обширны для совмещения «кусочков» из соображений гладкости, то такая процедура позволяет учесть наиболее существенные поправки к скейлингу. По этой причине мы проводим построения в прямых, а не логарифмических координатах.

4. СТАТИСТИКА УРОВНЕЙ

При анализе скейлинга для статистики уровней [11] основной интерес представляет комбинация

$$y = \sigma^2 / \sigma_P^2, \tag{10}$$

где σ — среднеквадратичная флуктуация числа уровней N в интервале $E = s\Delta$, если Δ — среднее расстояние между уровнями в конечной системе, а σ_P — значение σ для пуассоновской статистики. Эта величина тесно связана с параметром A в асимптотике функции распределения P(s):

$$P(s) \sim \exp(-As), \quad A = \sigma_P^2 / \sigma^2$$
 (11)

для расстояния $\omega = s\Delta$ между ближайшими уровнями в пределе больших *s*. Согласно [11], величина (10) является функцией переменной *x*, которая определяется как

$$x = s^{-1/4} \frac{L}{\xi} \left(\frac{L}{a}\right)^{(d-4)/4}, \quad d > 4,$$
 (12)

$$x = s^{-1/4} \frac{L}{\xi} \frac{\left[\ln(\xi/a)\right]^{1/2}}{\left[\ln(L/a)\right]^{1/4}}, \quad d = 4.$$
(13)

Зависимость y(x) в параметрической форме задается уравнениями

$$y = \frac{\sigma^2}{\sigma_P^2} = k_1 u \ln \frac{1 + k_1 + k_1 u}{k_1 + k_1 u},$$

$$\pm x^2 = \frac{(1+u)^{1/2} - B(u-u_0)}{(u-u_0)^{1/2}},$$
 (14)

где бегущая переменная u меняется от u_0 до бесконечности; параметры B и k_1 выбираются согласно процедуре, описанной в работе [11]; параметр u_0 учитывает конечность s и исчезает при $s \to \infty$. Форма уравнений (14) одинакова для всех размерностей $d \ge 4$, однако выбор параметров зависит от d.

Рис.5. Примеры скейлинговых зависимостей y(x)для статистики уровней в высоких размерностях: $a - s \gg 1$ ($u_0 = 0$), $\delta - s \sim 1$ ($u_0 = 22.3$). Выбор параметров $k_1 = 0.0652$, B = 0.230 соответствует численным данным для d = 4 [11]

На практике в качестве скейлинговой переменной используется величина [14]

$$J_0 = \frac{1}{2} \langle s^2 \rangle = \frac{1}{2} \int_0^\infty s^2 P(s) \, ds \tag{15}$$

или величина η [15], которая через нее выражается:

$$\eta = \frac{J_0 - J_{0W}}{J_{0P} - J_{0W}} = \frac{J_0 - 0.643}{0.357},$$
 (16)

где индексы W и P отмечают значения J_0 для вигнер-дайсоновской и пуассоновской статистик, $J_{0W} = 0.643, J_{0P} = 1.$

Величины J_0 и η являются функциями переменной (10) при некотором $s \sim 1$ [11], поэтому их отклонения от критических значений пропорциональны друг другу:

$$J_0 - J_{0c} \sim \eta - \eta_c \sim y - y_c.$$
 (17)

Рис.6. Численные данные Жарекешева и Крамера для d = 4 (статистика уровней), извлеченные из рис. 4 работы [14] (*a*) и их сопоставление с теоретической скейлинговой кривой (рис. 5*b*) (*b*)

Примеры зависимостей y(x) при $s \to \infty$ (a) и $s \sim \sim 1$ (б) представлены на рис. 5; они соответствуют критическому значению $A_c = 1.4$ параметра A в (11), характерному для d = 4 [14]. Параметр u_0 на рис. 5б выбран так, чтобы обеспечить приблизительную симметрию двух ветвей зависимости, которая имеет место согласно численным данным Жарекешева и Крамера [14] (рис. 6a). Нетрудно видеть (рис. 6б), что эти данные хорошо укладываются на теоретическую зависимость.

Критическое значение y_c (рис. 5*a*) при увеличении *d* приближается к единице. Действительно, исходя из критических значений $A_c = 1.4$ (d = 4) [14], $A_c = 1.17$ (d = 5) [15], $A_c = 1.13$ (d = 6) [15] и следуя процедуре работы [11], можно установить, что $y_c = 0.714$ (d = 4), $y_c = 0.858$ (d = 5), $y_c = 0.885$ (d = 6). Эта тенденция согласуется с теоремой [5, 36], что для решетки Бете (соответствующей $d = \infty$) статистика уровней является пуассоновской даже в металлической фазе.

С учетом этого для высоких размерностей можно получить универсальную скейлинговую функцию. Предполагая $1 - y \ll 1$, можно разложить по $1/k_1 u$ первое уравнение (14) и линеаризовать вблизи критического значения u_c правую часть второго уравнения (14); тогда

$$y - y_c = \operatorname{const} F(x), \quad F(x) = \frac{\pm x^2}{1 \pm x^2},$$
 (18)

где надлежащим образом изменен общий масштаб по оси x; знаки «+» и «-» соответствуют верхней

Рис.7. Универсальная скейлинговая зависимость для статистики уровней, соответствующая высоким размерностям

и нижней ветвям. Функция F(x) представлена на рис. 7: сингулярность при x = 1 фиктивна и лежит за пределами применимости (18). В силу (17), отклонения J_0 и η от критических значений описываются той же функцией.

На рис. 8*a* и рис. 9*a* представлены численные данные Гарсиа–Гарсиа и Куваса [15] для d = 5 и d = 6 как функции «модифицированной длины» $\mu(L) = L^{d/4}$; они прекрасно согласуются с универсальной функцией F(x) (см. рис. 86 и рис. 96).

При d = 5 и d = 6 (в отличие от d = 4) поправки на конечность *s* несущественны. Действительно,

Рис.8. Численные данные Гарсиа – Гарсиа и Куваса для d = 5 (статистика уровней), извлеченные из рис. 1 работы [15] (*a*) и их сопоставление с универсальной скейлинговой зависимостью (δ)

Рис.9. Численные данные Гарсиа – Гарсиа и Куваса для d = 6 (статистика уровней), извлеченные из рис. 1 работы [15] (*a*) и их сопоставление с универсальной скейлинговой кривой (*б*)

согласно [14] для величины J_0 при d = 4 нижняя ветвь соответствует интервалу (0.64, 0.79), а верхняя — интервалу (0.79, 1.00). Согласно [15], эти интервалы равны (0.64, 0.92) и (0.92, 1.00) для d = 5 и (0.64, 0.95), (0.95, 1.00) для d = 6. Если выбором u_0 обеспечить такое же соотношение для интервалов (y_m, y_c) и ($y_c, 1$) на рис. 56, то имеем $1 - y_c \approx y_c - y_m$ для d = 4 и $1 - y_c \ll y_c - y_m$ для d = 5, 6. В последнем случае отличие y_m от нуля фактически не проявляется в пределах применимости результата (18).

При
 d>4уравнения (14) определяют скейлинг вида

$$y = \frac{\sigma^2}{\sigma_P^2} = F\left(\frac{L^{d/4}}{\xi a^{(d-4)/4}}\right),$$
 (19)

что при больших ξ дает

$$y = \tilde{F}\left(\tau \frac{L^{d/4\nu}}{a^{(d-4)/4\nu}}\right) = y_c + C\tau L^{d/4\nu} + \dots, \quad (20)$$

т. е. производная y'_{τ} при $\tau = 0$ имеет поведение $L^{d/4\nu}$ вместо $L^{1/\nu}$ при использовании соотношения (1). Поэтому значения $\nu = 0.84$ (d = 5), $\nu = 0.78$ (d = 6), полученные в [15] в рамках соотношения (1), превращаются в $\nu = 0.67$ (d = 5), $\nu = 0.52$ (d = 6) при использовании (19). Таким образом, результаты работы [15] для d = 5, 6 становятся близкими к $\nu = 1/2$ просто в результате перехода к правильному скейлинговому соотношению. Ситуация же при d = 4 — такая же, как в разд. 3, т.е. основной массив данных лежит на квазилинейных участках $y \sim x \sim L(\ln L)^{-1/4}$ скейлинговых кривых, что интерпретировалось в работах [14, 15] как $L^{1/\nu}$ с $\nu \approx 1$. Такое положение усугубляется используемой схемой обработки, при которой производная по $\tau = W - W_c$ определяется путем разложения по $W-W_c$ и подгонки полиномом конечной степени. В такой процедуре результат определяется экспериментальными точками, далекими от W_c , и линейность по x сохраняется даже в случае, когда близкие к W_c данные обнаруживают существенную нелинейность.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе предложена другая интерпретация всех существующих численных данных для перехода Андерсона в высокой размерности: результатов для d = 4, 5, полученных из скейлинга в квазиодномерных системах, и результатов для d = 4, 5, 6 из скейлинга для статистики уровней. Другая интерпретация необходима ввиду несправедливости для высоких размерностей однопараметрического скейлинга [9], которая следует из неперенормируемости теории. Все упомянутые численные данные оказываются совместимыми с теоретическими скейлинговыми зависимостями, полученными из самосогласованной теории Вольхардта-Вольфле. Это укладывается в ту же тенденцию, что обнаружена в предыдущих работах [10, 11, 20, 21]: на уровне первичных данных теория Вольхардта-Вольфле оказывается вполне удовлетворительной, а противоположные утверждения оригинальных работ связаны с неоднозначностью процедуры обработки. Это дает новые аргументы в пользу точки зрения [18, 19] о том, что теория Вольхардта-Вольфле предсказывает точные значения критических индексов.

ЛИТЕРАТУРА

- 1. Н. Н. Боголюбов, Д. В. Ширков, Введение в теорию квантованных полей, Наука, Москва (1976).
- E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in: *Phase Transitions and Critical Phenomena*, ed. by C. Domb and M. S. Green, Academic, New York (1976), Vol. VI.

- **3**. Ш. Ма, Современная теория критических явлений, Мир, Москва (1980).
- A. Nitzan, K. F. Freed, and M. N. Cohen, Phys. Rev. B 15, 4476 (1977).
- 5. М. В. Садовский, УФН 133, 223 (1981).
- **6**. И. М. Суслов, УФН **168**, 503 (1998).
- J. J. M. Verbaarschot and M. R. Zirnbauer, J. Phys. A 18, 1093 (1985).
- 8. M. R. Zirnbauer, arXiv:cond-mat/9903338.
- E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).
- 10. И. М. Суслов, ЖЭТФ 141, 122 (2012).
- **11**. И. М. Суслов, ЖЭТФ **145**, вып. 5 (2014); arXiv:1402.2382.
- 12. P. Markos, Acta Physica Slovaca 56, 561 (2006); arXiv:cond-mat/0609580.
- 13. P. Markos, ЖЭТФ 142, 1226 (2012).
- 14. I. Kh. Zharekeshev and B. Kramer, Ann. Phys. (Leipzig) 7, 442 (1998).
- 15. A. M. Garcia-Garcia and E. Cuevas, Phys. Rev. B 75, 174203 (2007).
- 16. F. Wegner, Z. Phys. B 35, 207 (1979); L. Schäfer and F. Wegner, Z. Phys. B 38, 113 (1980); S. Hikami, Phys. Rev. B 24, 2671 (1981); К. Б. Ефетов, А. И. Ларкин, Д. Е. Хмельницкий, ЖЭТФ 79, 1120 (1980); K. B. Efetov, Adv. Phys. 32, 53 (1983).
- 17. D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982); D. Vollhardt and P. Wölfle, in *Modern Problems in Condensed Matter Sciences*, ed. by V. M. Agranovich and A. A. Maradudin, Vol. 32, North-Holland, Amsterdam (1992).
- 18. H. Kunz and R. Souillard, J. de Phys. Lett. 44, L506 (1983).
- **19**. И. М. Суслов, ЖЭТФ **108**, 1686 (1995).
- **20**. И. М. Суслов, ЖЭТФ **142**, 1020 (2012).
- **21**. И. М. Суслов, ЖЭТФ **142**, 1230 (2012).
- 22. К. Б. Ефетов, ЖЭТФ 88, 1032 (1985).
- **23**. К. Б. Ефетов, ЖЭТФ **93**, 1125 (1987); **94**, 357 (1988).
- M. R. Zirnbauer, Phys. Rev. B 34, 6394 (1986); Nucl. Phys. B 265, 375 (1986).

- 25. A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. Lett. 72, 526 (1994).
- 26. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
- 27. A. M. Garcia-Garcia, Phys. Rev. Lett. 100, 076404 (2008).
- 28. К. Б. Ефетов, ЖЭТФ 83, 833 (1982).
- 29. M. Moshe and J. Zinn-Justin, Phys. Rep. 385, 69 (2003).
- 30. B. Shapiro, Phys. Rev. Lett. 50, 747 (1983).

- 31. H. Kunz and R. Souillard, J. de Phys. Lett. 44, L411 (1983).
- 32. J. T. Chalker, Physica A 167, 253 (1990); T. Brandes,
 B. Huckestein, and L. Schweitzer, Ann. Phys. 5, 633 (1996).
- 33. I. M. Suslov, arXiv:cond-mat/0612654.
- 34. J. L. Pichard and G. Sarma, J. Phys. C: Sol. State Phys. 14, L127 (1981).
- 35. A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).
- M. Aizenman and S. Warzel, Math. Phys. Anal. Geom. 9, 291 (2006).