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BISTABILITY IN A HYPERCHAOTIC SYSTEMWITH A LINE EQUILIBRIUMChunbiao Li a*, J. C. Sprott b**, Wesley Thio ***aShool of Information Siene and Engineering, Southeast University210096, Nanjing, ChinabDepartment of Physis, University of Wisonsin-Madison53706, Madison, WI, USADepartment of Eletrial and Computer Engineering, The Ohio State University43210, Columbus, OH, USAReeived Otober 26, 2013A hyperhaoti system with an in�nite line of equilibrium points is desribed. A riterion is proposed forquantifying the hyperhaos, and the position in the three-dimensional parameter spae where the hyperhaosis largest is determined. In the viinity of this point, di�erent dynamis are observed inluding periodiity,quasi-periodiity, haos, and hyperhaos. Under some onditions, the system has a unique bistable behavior,haraterized by a symmetri pair of oexisting limit yles that undergo period doubling, forming a symmetripair of strange attrators that merge into a single symmetri haoti attrator that then beomes hyperhaoti.The system was implemented as an eletroni iruit whose behavior on�rms the numerial preditions.DOI: 10.7868/S00444510140301971. INTRODUCTIONEquilibrium points are some of the most funda-mental properties of dynamial systems, and theyplay an important role in the bifurations that our.Frequently, systems have more than one equilibriumpoint [1�5℄, and if these equilibria are stable, they havebasins of attration whose boundaries an be very om-pliated. Under ertain onditions, there an be a on-tinuum of equilibrium points, for example, spread alonga �nite or even in�nite line with di�erent points on theline having di�erent stability properties [6, 7℄. Suh lineequilibria an our in haoti systems where the lineis surrounded by a strange attrator and in�uenes itsdynamis. However, the ase where a line equilibrium*E-mail: hunbiaolee�gmail.om; Also at Engineering Teh-nology Researh and Development Center of Jiangsu CirulationModernization Sensor Network, Jiangsu Institute of Commere,Nanjing 210007, China; Department of Physis, University ofWisonsin-Madison, Madison, WI 53706, USA**E-mail: sprott�physis.wis.edu***E-mail: wesley.thio�gmail.om

ours in a hyperhaoti system in largely unexplored.Furthermore, the phenomenon of multistability is animportant feature in nature and is found to our, forexample, in low levels of quanta [8℄ and in the Tay-lor�Green dynamo [9℄.Hyperhaos was �rst desribed by Rössler [10℄ in afour-dimensional system with two unstable equilibriumpoints. Other hyperhaoti systems have no equilib-ria [11, 12℄, one equilibrium [13℄, or �ve equilibriumpoints [14℄. It is thus natural to ask whether there arehyperhaoti systems with in�nitely many equilibriumpoints. In [15℄, hyperhaos was reently found in a four-dimensional memristive system with a line of equilibria,whih ontains one ubi and three quadrati nonlin-earities. In this paper, we provide a new example ofsuh a system that exhibits hyperhaos over a large re-gion of parameter spae in the presene of an in�niteline of equilibrium points. Signi�antly, this systemhas only quadrati nonlinearities and a relatively largeregion of bistability, where a oexisting symmetri pairof limit yles turns into strange attrators that thenmerge into one symmetri strange attrator before itbeomes hyperhaoti or a symmetri pair of strangeattrators merge or remerge between two hyperhaotiregions.565
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−0.15Fig. 1. Hyperhaoti attrator observed from system (2) with a = 5, b = 0:28, and  = 0:05 for the initial onditions(0; 0; 0:8; 0:02) (a) xy plane, (b) zu plane2. HYPERCHAOTIC FLOW WITH A LINEEQUILIBRIUM2.1. Dynamial analysis and basi propertiesSystems with several quadrati terms are mostlikely to have an in�nite line of equilibrium points. Asimilar three-dimensional �ow with six terms and a sin-gle linearity as reported in [7℄,_x = y � xz � yz;_y = axz;_z = y2 � bz2; (1)whih has haos for some parameters, suh as a = 4and b = 0:3. System (1) has two equilibrium points at(0;�pb; 1) and an in�nite line of equilibrium points at(x; 0; 0). Correspondingly, by introduing an additionaldimension with linear feedbak in the above system, afour-dimensional system with a line of equilibria is ob-tained, _x = y � xz � yz + u;_y = axz;_z = y2 � bz2;_u = �y: (2)

The orresponding Jaobian matrix isJ = 0BBBB� �z 1� z �x� y 1az 0 ax 00 2y �2bz 00 � 0 0 1CCCCA : (3)When a; b; ; z 6= 0, system (2) has the full rank beausethe determinant of the Jaobian matrix is 2abz2, whihmeans that system (2) is a truly four-dimensional sys-tem. If any of a; b; ; z are zero, then the system reduesto one whose dimension is less than four.The rate of hypervolume ontration is given by theLie derivative,rV = � _x�x + � _y�y + � _z�z + � _u�u = �(2b+ 1)z: (4)Hene, system (2) is dissipative with solutions that on-trat as time goes to in�nity onto an attrator of zeromeasure in the four-dimensional state spae wheneverthe time average of z is positive and b > �0:5.The system has only the real line equilibrium(x; 0; 0; 0) if the parameters a; b;  are not zero, and theorresponding eigenvalues are (0; 0; 0; 0), whih showsthat the equilibrium is nonhyperboli and the systemlies on a bifuration point and is nonlinearly unstable.For the initial onditions (y0; z0) = (0; 0), the dynamisbeome one-dimensional, given by _x = u0, and there-fore the orbit is unbounded for u0 6= 0.566
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а b

Fig. 8. Hyperhaoti attrator of system (2) with a = 5, b = 0:28, and  = 0:05 observed by osillosope: (a) xy plane,(b ) zu plane, to ompare with the predition in Fig. 14. CIRCUIT IMPLEMENTATIONA iruit that models this hyperhaoti system wasonstruted to on�rm the numerial preditions. Theiruit equations are given by_x = 1R2C1 y � 110R1C1xz �� 110R3C1 yz + 1R4C1 u;_y = 110R5C2 xz;_z = 110R6C3 y2 � 110R7C3 z2;_u = � 1R8C4 y: (5)
Resistors R5, R7, and R8 are made variable to hangethe parameters a; b, and  suh that the dynami re-gions in Fig. 3 ould be tested. The iruit shematiis given in Fig. 7, and the resulting osillosope traesare shown in Fig. 8.The system gives the maximum hyperhaos at a == 5, b = 0:28, and  = 0:05, whih orresponds to theiruit values C1 = C2 = C3 = C4 = 1 nF,R1 = R3 = R6 = 40 k
; R2 = R4 = 400 k
;R5 = 8 k
; R7 = 150 k
; R8 = 8 M
;R9 = R10 = R11 = R12 = R13 = R14 = 100 k
:The multipliers are AD633JN, and the operational am-pli�ers are TL084. The iruit is powered by �9 volts.

The preditions in Fig. 3 were on�rmed in thispratial implementation when a varies between 1 to10, and b between 0 to 1, with  = 0:05. In iruit val-ues, this orresponds to R5 varying from 40 k
 to 4 k
and R7 from 400 k
 to 40 k
, with R8 = 8 M
. AsR7 inreases, the parameter b dereases, and the sys-tem goes through a limit yle, torus, and haos beforereahing hyperhaos as predited. As a varies from 2:2to 2:89 (R5 = 18181 
 to 13840 
), oexisting strangeattrators our as expeted. In the pratial imple-mentation, these varying values were implemented byreplaing the orrespondent resistor with a potentiome-ter. 5. CONCLUSIONA four-dimensional system with an in�nite lineof equilibrium points is found to have hyperhaotisolutions and a relatively large region of bistabilityin the parameter spae where a symmetri pair ofstrange attrators oexists, then eventually mergeand evolve into a symmetri hyperhaoti attrator atsome partiular parameter ombinations. The resultsof a physial iruit agree with the numerial analysis.This work was supported by the Jiangsu OverseasResearh & Training Program for University Promi-nent Young and Middle-aged Teahers and Presidents,the 4th 333 High-level Personnel Training Projet(Su Talent [2011℄ � 15) of Jiangsu Provine, the Na-tional Siene Foundation for Postdotoral General571
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