СКЕЙЛИНГ ДЛЯ СТАТИСТИКИ УРОВНЕЙ ИЗ САМОСОГЛАСОВАННОЙ ТЕОРИИ ЛОКАЛИЗАЦИИ

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 30 декабря 2013 г.

Исходя из самосогласованной теории локализации Вольхардта – Вольфле выводятся соотношения конечно-размерного скейлинга для различных параметров, характеризующих статистику уровней. Результаты сопоставляются с обширным численным материалом для размерностей пространства d = 2, 3, 4. На уровне первичных данных результаты численных экспериментов вполне совместимы с самосогласованной теорией, а противоположные утверждения оригинальных работ связаны с неоднозначностью интерпретации и наличием малых параметров типа числа Гинзбурга.

DOI: 10.7868/S0044451014060081

1. ВВЕДЕНИЕ

Настоящая работа продолжает серию публикаций [1-3] по теоретическому анализу численных алгоритмов, используемых при исследовании перехода Андерсона. Мотивацией такого исследования является противоречие между численными данными (см. обзор [4]) и самосогласованной теорией Вольхардта-Вольфле [5, 6], которая воспроизводит основные теоретические результаты и, согласно некоторым аргументам [7, 8], является точной. В частности, численные результаты несовместимы с существованием верхней критической размерности $d_{c2} = 4$, которое является строгим следствием теоремы Боголюбова [9] о перенормируемости теории φ^4 [1]. Поскольку численное моделирование проводилось независимо разными группами [4, 10–17], наличие тривиальных ошибок можно считать исключенным; однако используемые алгоритмы являются эмпирическими и не основаны на твердом теоретическом фундаменте.

Предметом настоящего исследования является скейлинг для статистики уровней [10], который в настоящее время является одним из наиболее распространенных алгоритмов [11–15]. Его относительная простота связана с тем, что он основан на исследовании спектра матричных гамильтонианов и не тре-

Рис.1. Распределение P(s) для расстояния между ближайшими уровнями для вигнер-дайсоновской, пуассоновской и критической статистик. Распределения $P_W(s)$ и $P_P(s)$ пересекаются в точках s = 0.473 и s = 2.002

бует вычисления собственных функций или проводимости.

Функцию распределения $P(\omega)$ для расстояния ω между ближайшими уровнями удобно записывать в терминах переменной

$$s = \omega/\Delta, \quad \Delta = 1/\nu_F L^d,$$
 (1)

где $\Delta = \langle \omega \rangle$ — среднее расстояние между уровнями в конечной системе, имеющей форму *d*-мерного куба

^{*}E-mail: suslov@kapitza.ras.ru

со стороной L, ν_F — плотность состояний на уровне Ферми. Актуальными являются три базовых распределения [10]: вигнер-дайсоновское $P_W(s)$; пуассоновское $P_P(s)$ и критическое $P_c(s)$ (рис. 1):

$$P_W(s) = \frac{\pi}{2} s \exp\left(-\frac{\pi}{4}s^2\right),\tag{2}$$

$$P_P(s) = e^{-s},\tag{3}$$

$$P_c(s) = \begin{cases} \sim s, \quad s \ll 1, \\ \sim e^{-s/2\kappa}, \quad s \gg 1, \end{cases}$$
(4)

которые соответственно реализуются в металлической фазе, в локализованном состоянии и в критической области. Если система находится в критической точке, то распределение уровней совпадает с $P_c(s)$ независимо от ее размера L. При отклонении от критической точки распределение P(s) плавно эволюционирует с ростом L, выходя в пределе на $P_W(s)$ или $P_P(s)$. Для количественного контроля такой эволюции можно рассмотреть интеграл по области больших s,

$$I(s_0) = \int_{s_0}^{\infty} P(s) \, ds,$$
 (5)

и ввести скейлинговый параметр

$$\alpha(s_0) = \frac{I(s_0) - I_W(s_0)}{I_P(s_0) - I_W(s_0)},\tag{6}$$

который меняется от нуля до единицы при переходе от металла к диэлектрику. Если постулировать скейлинговое соотношение

$$\alpha = F\left(L/\xi\right),\tag{7}$$

то эволюция α при изменении *L* позволяет исследовать критическое поведение корреляционного радиуса ξ [10].

Аналогично можно рассмотреть интеграл по области малых s,

$$\tilde{I}(s_0) = \int_{0}^{s_0} P(s) \, ds,$$
(8)

и определить скейлинговый параметр $\tilde{\alpha}(s_0)$ аналогично (6), который, ввиду соотношения $\tilde{I}(s_0) = 1 - I(s_0)$, формально совпадает с $\alpha(s_0)$. Однако практически в определении (5) обычно используют выделенное значение $s_0 = 2.002$, при котором пересекаются все три распределения (см. рис. 1), тогда

как в определении (8) принимают $s_0 = 0.473$, что соответствует второй точке пересечения зависимостей $P_W(s)$ и $P_P(s)$.

Еще одним вариантом скейлингового параметра является коэффициент *А* в зависимости

$$I(s) = e^{-As},\tag{9}$$

который стремится к постоянному пределу при $s \rightarrow \infty$; для него можно также постулировать скейлинговое соотношение типа (7). Более сложные варианты скейлинговых параметров использовались при анализе двумерного [13] и четырехмерного [14] случаев (см. разд. 7, 8).

Основные вопросы связаны со скейлинговыми соотношениями типа (7): они не имеют места для произвольных величин, заведомо несправедливы в высших размерностях и могут существенно искажаться из-за поправок к скейлингу. Ниже показано, что самосогласованная теория локализации [5, 6] позволяет установить соотношения типа (7) для всех перечисленных параметров, а полученные скейлинговые функции могут быть сопоставлены с обширным численным материалом [10–15]. При этом, как и в работах [1–3], выясняется, что первичные численные данные вполне совместимы с теорией Вольхардта-Вольфле, а противоположные утверждения соответствующих авторов связаны с неоднозначностью интерпретации и наличием малых параметров типа числа Гинзбурга.

2. КВАЗИГАУССОВСКАЯ КОНЦЕПЦИЯ

Вычисление функции распределения P(s) практически невозможно ни в одной из реалистичных моделей, что делает теоретический анализ алгоритма весьма проблематичным. Такой анализ становится, однако, возможным, если сознательно пойти на некоторые огрубления. Таким огрублением является квазигауссовская концепция, предложенная в работе [18].

Пусть N — число уровней в интервале шириной *E* вблизи уровня Ферми ϵ_F (рис. 2); в дальнейшем принимаем $\epsilon_F = 0$. Если флуктуации N малы, то естественно ожидать, что их распределение будет гауссовским,

$$P(N) \sim \exp\left\{-\frac{(N-\langle N \rangle)^2}{2\sigma^2}\right\},$$
 (10)

где σ^2 зависит от $\langle N \rangle$. Вероятность того, что в интервале E нет ни одного уровня, определяется формулой (10) с N = 0. В терминах введенных выше

величин это означает, что $\omega = s\Delta$ может принимать любое значение, большее E; это соответствует интегралу (5) с $s_0 = E/\Delta$. С учетом зависимости σ^2 от $\langle N \rangle = E/\Delta = s_0$ имеем

$$I(s_0) \sim \exp\left(-\frac{s_0^2}{2\sigma^2(s_0)}\right). \tag{11}$$

Поскольку интегрирование P(s) не меняет основной экспоненциальной зависимости, для воспроизведения выражений (2)–(4) нужно положить

$$\sigma_W^2(s) = 2/\pi, \quad \sigma_P^2(s) = s/2, \quad \sigma_c^2(s) = \kappa s.$$
 (12)

Прямое вычисление среднеквадратичной флуктуации

$$\sigma_0^2 = \langle N^2 \rangle - \langle N \rangle^2 \tag{13}$$

дает

$$(\sigma_0^2)_W = (2/\pi^2) \ln s, \quad (\sigma_0^2)_P = s, (\sigma_0^2)_c = \kappa_0 s,$$
 (14)

где первое выражение — результат Дайсона [19], второе — известный результат для пуассоновского распределения [20], третье получено в работе [18] из скейлинговых соображений [21] и подтверждено численно [11]. Заметим, что [11, 14]

$$\kappa_0 = 0.28 \pm 0.03, \quad \kappa = 0.26 \pm 0.01 \quad (d=3),$$

$$\kappa_0 = 0.45 - 0.50, \quad \kappa \approx 0.36 \quad (d=4),$$
(15)

т.е. κ и κ_0 близки, но не тождественны. Сравнение выражений (12) и (14) показывает порядковое совпадение величин σ^2 и σ_0^2 за исключением вигнер-дайсоновского случая, где они различаются логарифмическим фактором. Последнее расхождение не удивительно. Распространенность гауссовского распределения обусловлена существованием центральной предельной теоремы; из вывода последней

ясно [22], что гауссовская форма справедлива лишь вблизи максимума распределения, тогда как его хвосты остаются неуниверсальными. Проведенное рассуждение справедливо в некотором интервале значений s, достаточно больших для реализации экспоненциальных асимптотик в выражениях (2)-(4), но достаточно малых для грубой справедливости гауссовского распределения (10) в окрестности N = 0; при любых разумных ограничениях на s имеем $\ln s \sim 1$ и порядковое совпадение σ^2 и σ_0^2 действительно имеет место. Последние две величины меняются в широких пределах и их различие на медленно меняющуюся функцию малосущественно — в рамках принимаемой схемы огрубления ее можно заменить на константу. Таким образом, эволюция распределения P(s) в основном определяется величиной σ_0^2 , которая допускает теоретическое исследование (разд. 3).

Подстановка соотношения (11) в (6) показывает, что при больших s_0 можно пренебречь величиной $I_W(s_0)$, так что

$$\alpha(s_0) = \exp\left\{-\frac{s_0^2}{2\sigma^2} + \frac{s_0^2}{2\sigma_P^2}\right\} = \\ = \exp\left\{-s_0\frac{\sigma_P^2 - \sigma^2}{\sigma^2}\right\}, \quad (16)$$

и параметр $\alpha(s_0)$ отличен от нуля лишь при $\sigma_P^2 - \sigma^2 \ll \sigma_P^2$ и практически исчезает в вигнер-дайсоновской области $\sigma^2 \sim \sigma_W^2$. Сопоставление выражений (11) и (9) показывает, что

$$A = \frac{s}{2\sigma^2} = \frac{\sigma_P^2}{\sigma^2},\tag{17}$$

так что скейлинговые параметры $\alpha(s_0)$ и A определяются одной комбинацией σ^2/σ_P^2 ; то же справедливо и для более сложных параметров (см. разд. 7, 8).

3. ДИАГРАММНЫЙ АНАЛИЗ

Вычисление σ_0^2 в рамках диаграммной техники впервые рассматривалось Альтшулером и Шкловским [23]. Имея в виду дальнейшие обобщения, обсудим более подробно принцип отбора диаграмм.

Число уровней N в интервале E выражается через точную плотность состояний $\nu(\epsilon)$ конечной системы:

$$N = L^{d} \int_{-E/2}^{E/2} \nu(\epsilon) d\epsilon, \quad \nu(\epsilon) = L^{-d} \sum_{n} \delta(\epsilon - \epsilon_{n}), \quad (18)$$

тогда как его среднеквадратичная флуктуация

$$\sigma_0^2 = L^{2d} \int_{-E/2}^{E/2} d\epsilon_1 \int_{-E/2}^{E/2} d\epsilon_2 K(\epsilon_1, \epsilon_2)$$
(19)

определяется коррелятором

$$K(\epsilon_1, \epsilon_2) = \langle \nu(\epsilon_1)\nu(\epsilon_2) \rangle - \langle \nu(\epsilon_1) \rangle \langle \nu(\epsilon_2) \rangle.$$
 (20)

В литературе обычно рассматривается величина $R(\omega)$, определяющая вероятность нахождения на расстоянии ω двух любых уровней (а не ближайших, как в случае $P(\omega)$); она просто связана с $K(\epsilon_1, \epsilon_2)$:

$$R(\omega) = \frac{\langle \nu(E+\omega)\nu(E) \rangle}{\langle \nu \rangle^2} = \frac{K(E+\omega,E)}{\langle \nu \rangle^2} + 1 \quad (21)$$

(считаем, что $\langle \nu(\epsilon) \rangle \equiv \nu_F$ не зависит от ϵ) и выражается через двухчастичные функции Грина:

$$R(\omega) = \frac{\Delta}{2\pi^2 \nu_F} \operatorname{Re} \frac{1}{L^{2d}} \sum_{\mathbf{k},\mathbf{q}} \left[\Phi_{\mathbf{kk}}^{RA}(\mathbf{q}) - \Phi_{\mathbf{kk}}^{RR}(\mathbf{q}) \right].$$
(22)

Здесь $\Phi_{\mathbf{k}\mathbf{k}'}^{RA}(\mathbf{q})$ — фурье-образ величины

$$\Phi^{RA}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = \left\langle G^R_{E+\omega}(\mathbf{r}_1, \mathbf{r}_2) G^A_E(\mathbf{r}_3, \mathbf{r}_4) \right\rangle \quad (23)$$

с учетом введенных на рис. 3 трехимпульсных обозначений, а $\Phi_{\mathbf{kk}'}^{RR}(\mathbf{q})$ определяется аналогично. Вводя вершинные функции $\Gamma_{\mathbf{kk}'}^{RA}(\mathbf{q})$ и $\Gamma_{\mathbf{kk}'}^{RR}(\mathbf{q})$ (рис. 3), получим

$$R(\omega) = 1 + \frac{\Delta}{2\pi^2 \nu_F} \operatorname{Re} \frac{1}{L^{2d}} \times \\ \times \sum_{\mathbf{k},\mathbf{q}} P_{\mathbf{k}}(\mathbf{q}) \Gamma_{\mathbf{kk}}^{RA}(\mathbf{q}) P_{\mathbf{k}}(\mathbf{q}), \quad (24)$$

где $P_{\mathbf{k}}(\mathbf{q}) = G_{\mathbf{k}+\mathbf{q}/2}^R G_{\mathbf{k}-\mathbf{q}/2}^A$ и учтено, что вершина $\Gamma_{\mathbf{kk}'}^{RR}(\mathbf{q})$ не дает вклада из-за отсутствия диффузионных полюсов (см. ниже). Существенный момент связан с наличием в (24) множителя $\Delta = 1/\nu_F L^d$ перед суммой по импульсам. Если вершина $\Gamma_{\mathbf{kk}'}^{RA}(\mathbf{q})$ регулярна, то переход от суммирования к интегрированию по обычному правилу

$$\frac{1}{L^d}\sum_{\mathbf{k}} \ldots \to \int \frac{d^d k}{(2\pi)^d} \ldots$$

дает в (24) конечное выражение, умноженное на Δ , что исчезает в термодинамическом пределе. В действительности вершина $\Gamma_{\mathbf{kk}'}^{RA}(\mathbf{q})$ содержит сингулярные вклады, связанные с диффузионными полюсами, — так называемые диффузионны и купероны (рис. $4a, \delta$), которые при определенных значениях импульсов дают особенности $1/\omega$. Фиксация импульса на одном значении (вместо суммирования) дает множитель $L^{-d} \propto \Delta$; если, зафиксировав n-1 импульсов, удается обратить в нуль импульсные члены в n диффузионных знаменателях, то это дает в (24) вклад $\Delta^n/\omega^n = 1/s^n$, который в терминах переменной s остается конечным в термодинамическом пределе. Простейшая диаграмма, обладающая таким свойством — двухкуперонная¹⁾ (рис. 4e):

$$\Gamma_{\mathbf{k}\mathbf{k}'}^{CC}(\mathbf{q}) \sim \frac{1}{L^d} \sum_{\mathbf{k}_1} \frac{1}{-i\omega + D_0(\mathbf{k} + \mathbf{k}_1)^2} \times P_{\mathbf{k}_1}(\mathbf{q}) \frac{1}{-i\omega + D_0(\mathbf{k}_1 + \mathbf{k}')^2} \quad (25)$$

 $(D_0 - \kappa$ лассический коэффициент диффузии). Поскольку в (24) входит вершина с $\mathbf{k} = \mathbf{k}'$, фиксация импульса \mathbf{k}_1 на значении $-\mathbf{k}$ обращает в нуль импульсную часть двух диффузионных знаменателей и дает в R(s) вклад порядка $1/s^2$; учитывая, что такой же вклад дает диаграмма, получаемая из двухкуперонной разворотом нижней *G*-линии²), имеем

$$R(s) = 1 - \frac{1}{\pi^2 s^2}, \quad s = \frac{\omega}{\Delta}, \tag{26}$$

что является началом разложения по 1/s. Вклад $1/s^{2n}$ дают, в частности, лестничные диаграммы, содержащие 2n куперонов (рис. 4e). Суммирование всех подобных вкладов должно приводить к воспроизведению результата Ефетова [25] ($x = \pi s$)

$$R(x) = 1 - \frac{\sin^2 x}{x^2} + \frac{\sin x - x \cos x}{x^2} \int_{1}^{\infty} \frac{\sin xt}{t} dt = = \begin{cases} \frac{\pi}{6}x, & x \ll 1, \\ 1 - \frac{1}{x^2} + \frac{1 + \cos^2 x}{x^4}, & x \gg 1, \end{cases}$$
(27)

который соответствует вигнер-дайсоновскому распределению. Любопытно, что суммирование куперонной лестницы (рис. 4*6*) приводит к результату

$$R(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{dt}{\sqrt{1 + t^2}\sqrt{1 + t^2 + 4x^{-2}}}$$
(28)

который неплохо аппроксимирует (27) (рис. 5). При его улучшении наибольшую трудность представляет воспроизведение слабых осцилляций, практически незаметных на рис. 5; последние имеют непертурбативный характер и могут быть получены лишь

¹⁾ Впервые рассматривалась Булаевским и Садовским [24], а затем использовалась в [23].

²⁾ Множитель 2, связанный с возможностью разворота нижней *G*-линии, учитывается далее при суммировании куперонной лестницы.

Рис. 3. Связь функции $\Phi^{RA}_{{f k}{f k'}}({f q})$ с полной вершиной $\Gamma^{RA}_{{f k}{f k'}}({f q})$ и неприводимой четыреххвосткой $U^{RA}_{{f k}{f k'}}({f q})$

2

Рис.4. Определения диффузона (a), куперона (б) и куперонная лестница (в)

Рис. 5. Сопоставление точного результата Ефетова (сплошная линия) с вкладом куперонной лестницы (штриховая линия)

при учете факториальной расходимости ряда и его надлежащего суммирования [26, 27].

Аналог результата (26) для $K(\epsilon_1, \epsilon_2)$ имеет вид [23]

$$K(\epsilon_1, \epsilon_2) = \frac{1}{\pi^2 L^{2d}} \operatorname{Re}\left(\frac{1}{-i\omega + \gamma}\right)^2, \qquad (29)$$
$$\omega = \epsilon_1 - \epsilon_2,$$

где добавлено затухание γ , связанное с неупругими процессами или открытостью системы³⁾. Подстановка в (19) приводит к результату⁴⁾ [23]

$$\sigma_0^2 = \frac{1}{\pi^2} \ln \frac{E^2 + \gamma^2}{\gamma^2},$$
 (30)

который при $\gamma \sim \Delta$ совпадает с дайсоновским (см. (14)). Причина последнего состоит в следующем. Если искусственно ввести достаточно большое затухание γ , то двухкуперонный вклад (29) является главным членом разложения по Δ/γ и результат

³⁾ Если мнимые добавки $\pm i0$ в определении G^R и G^A заменить на $\pm i\gamma/2$, то происходит замена $-i\omega \rightarrow -i\omega + \gamma$ во всех диффузионных знаменателях [2].

⁴⁾ На первый взгляд, результат (30) выглядит странным: выражение (29) локализовано при $|\omega| \leq \gamma$ и должно давать вклад $1/\gamma$ при интегрировании по ω , приводящий к E/γ в результате второго интегрирования в (19). В действительности интеграл по ω в бесконечных пределах равен нулю и оказывается конечным лишь из-за ограничения интервала интегрирования — это дает вклады $1/\epsilon_1$ и $1/(E - \epsilon_1)$, переходящие в логарифмы при интегрировании по ϵ_1 .

(30) является правильным. Дайсоновское выражение (14) относится к закрытым системам и предполагает $\gamma = 0$. Однако условия применимости (29) позволяют уменьшать γ только до величины порядка Δ ; к счастью, при $\gamma \leq \Delta$ зависимость от γ практически отсутствует⁵⁾ и результат (30) сшивается с дайсоновским. Аналогичная аргументация используется для более сложной ситуации (разд. 4).

Если не ограничиваться в (25) членом с $\mathbf{k}_1 = -\mathbf{k}$, а учесть в сумме по \mathbf{k}_1 вклад импульсов, близких к $-\mathbf{k}$, то вместо (29) получим [23]

$$K(\epsilon_1, \epsilon_2) = \frac{1}{\pi^2 L^{2d}} \operatorname{Re} \sum_{\mathbf{q}} \left(\frac{1}{-i\omega + \gamma + D_0 q^2} \right)^2. \quad (31)$$

Ограничение членом $\mathbf{q} = 0$ оправдано при $E \ll \mathcal{O}_0/L^2$, тогда как в обратном предельном случае можно перейти от суммирования к интегрированию и при $E \gg \gamma$ получить [23]

$$\sigma_0^2 = \frac{1}{\pi^2} \sum_{\mathbf{q}} \ln\left[1 + \frac{E^2}{(\gamma + D_0 q^2)^2}\right] = a_d \left(\frac{L}{L_E}\right)^d,$$

$$a_d = \frac{K_d}{\pi d \sin(\pi d/4)},$$
(32)

где $L_E = \sqrt{D_0/E}$ — длина диффузии за время 1/E, $K_d = \left[2^{d-1}\pi^{d/2}\Gamma(d/2)\right]^{-1}$ — площадь единичной сферы в *d*-мерном пространстве, деленная на $(2\pi)^d$.

4. ИСПОЛЬЗОВАНИЕ САМОСОГЛАСОВАННОЙ ТЕОРИИ

Следующий шаг сделан Кучинским и Садовским [28]. Результаты (30), (32) справедливы в глубине металлической фазы, и можно попытаться расширить область их применимости, если в духе самосогласованной теории локализации [5, 6] заменить D_0 в (31) на полный коэффициент диффузии $D(\omega, q)$ [28]. Такой подход может быть мотивирован следующим образом. Неприводимая вершина U^{RA} (см. рис. 3) содержит диффузионный полюс⁶)

$$U_{\mathbf{k}\mathbf{k}'}^{RA}(\mathbf{q}) = U_{\mathbf{k}\mathbf{k}'}^{reg}(\mathbf{q}) + \frac{F(\mathbf{k},\mathbf{k}',\mathbf{q})}{-i\omega + D(\omega)(\mathbf{k}+\mathbf{k}')^2} \qquad (33)$$

с наблюдаемым коэффициентом диффузии $D(\omega)$. Аналогом двухкуперонной диаграммы (см. рис. 4 ϵ) является диаграмма с двумя блоками U (см. рис. 3) — она является главной в металлической фазе и при определенных условиях сохраняет доминирование за ее пределами⁷⁾. В окрестности полюса можно положить $\mathbf{k}' = -\mathbf{k}$ в функции $F(\mathbf{k}, \mathbf{k}', \mathbf{q})$ и после интегрирования по \mathbf{k}, \mathbf{q} в (24) ее роль сводится к появлению в (31) дополнительного множителя k_{σ} ; он является медленной функцией расстояния до перехода, которую мы, в соответствии с принятой схемой огрубления (разд. 2), заменяем на константу:

$$K(\epsilon_1, \epsilon_2) = \frac{k_\sigma \nu_F^2}{\pi^2} \operatorname{Re} \sum_{\mathbf{q}} \left[\frac{\Delta}{-i\omega + D(\omega)q^2} \right]^2. \quad (34)$$

Как показано в работе [2], в конечной закрытой системе коэффициент диффузии имеет локализационный характер:

$$D(\omega) = (-i\omega)\xi_{0D}^2, \qquad (35)$$

где ξ_{0D} — корреляционный радиус конечной системы, рассматриваемой как квазинульмерная. Неупругое затухание γ вводится заменой $-i\omega \rightarrow -i\omega + \gamma$, которая делается как в $D(\omega)$, так и в члене $-i\omega$ [2]. Тогда

$$K(\epsilon_1, \epsilon_2) = \frac{k_\sigma \nu_F^2}{\pi^2} \operatorname{Re} \frac{\Delta^2}{\left(-i\omega + \gamma\right)^2} F\left(\frac{\xi_{0D}}{L}\right), \quad (36)$$

где функция F(x) определяется как

$$F(x) = \sum_{\mathbf{s}} \left[\frac{1}{1 + (2\pi x \mathbf{s})^2} \right]^2$$
(37)

и имеет асимптотики

$$F(x) = \begin{cases} 1 + O(1/x^4), & x \gg 1, \\ \tilde{c}_d/x^d, & x \ll 1 \end{cases}$$
(38)

(здесь **s** = (s_1, \ldots, s_d) — вектор с целочисленными компонентами $s_i = 0, \pm 1, \pm 2 \ldots$ и $\tilde{c}_d = \pi K_d (1 - d/2)/2 \sin(\pi d/2))$. Подстановка (36) в (19) дает вместо (30)

$$\sigma_0^2 = \frac{k_\sigma}{\pi^2} \ln \frac{E^2 + \gamma^2}{\gamma^2} F\left(\frac{\xi_{0D}}{L}\right). \tag{39}$$

 $^{^{5)}}$ Это ясно из того, что значение R(s) при s=0 получается из (26) при $s\sim 1.$

⁶⁾ Возможность пренебрежения пространственной дисперсией коэффициента диффузии обоснована в [8].

⁷⁾ Диаграммы с нечетным числом блоков U содержат дополнительную малость по параметру E/γ_e , где γ_e — упругое затухание, имеющее порядок ширины зоны в критической области. В терминах блоков U все диаграммы являются лестничными: в этом смысле куперонная лестница (рис. 46) соответствует суммированию наиболее сингулярных вкладов. Диаграмма с двумя блоками U является первой диаграммой в этой последовательности, тогда как высшие диаграммы обсуждаются ниже.

Используемое приближение должно обеспечивать правильное описание в области $\omega \sim \gamma$, которая имеет существенное значение при интегрировании по ϵ_1 , ϵ_2 в (19) (см. примечание 4) и в которой (36) есть главный член разложения по Δ/γ . Пример лестничных диаграмм (рис. 4*6*) показывает, что существуют вклады

$$\left[\frac{\Delta^2}{\gamma^2} F\left(\frac{\xi_{0D}}{L}\right)\right]^n \tag{40}$$

со всеми n, так что минимальное значение γ , при котором справедливо выражение (36), определяется условием

$$\frac{\gamma_{min}^2}{\Delta^2} \sim F\left(\frac{\xi_{0D}}{L}\right),\tag{41}$$

и введенное неупругое затухание нельзя сделать меньше этой величины. Поскольку при $\gamma \lesssim \gamma_{min}$ зависимость от γ практически отсутствует (см. ниже), значение $K(\epsilon_1, \epsilon_2)$ в (36) при $\gamma = 0$ можно оценить, полагая $\gamma \sim \gamma_{min}$. При переходе к (39) оказывается существенной зависимость ξ_{0D} от ω (см. разд. 5), интегрирование которой в (19) эффективно добавляет к γ^2 величину порядка E^2 ; поэтому следует полагать

$$\gamma^2 = k_1 E^2 + k_2 \gamma_{min}^2, \tag{42}$$

где константы k_1 и k_2 обсуждаются ниже. Таким образом,

$$\sigma_0^2 = \frac{k_\sigma}{\pi^2} F\left(\frac{\xi_{0D}}{L}\right) \ln \frac{s^2 + k_1 s^2 + k_2 F(\xi_{0D}/L)}{k_1 s^2 + k_2 F(\xi_{0D}/L)}.$$
 (43)

При движении в глубь локализованной фазы $F(\xi_{0D}/L) \rightarrow \infty$ и σ_0^2 выходит на константу, для которой выбором $k_2 = k_\sigma s/\pi^2$ можно обеспечить пуассоновское значение $\sigma_P^2 = s$; в результате

$$\frac{\sigma_0^2}{\sigma_P^2} = u \ln \frac{1+k_1+u}{k_1+u},$$

$$u = \frac{k_\sigma}{\pi^2 s} F\left(\frac{1}{z}\right), \quad z = \frac{L}{\xi_{0D}}.$$
(44)

Величина ξ_{0D}/L является функцией ξ/L [2], что обосновывает существование скейлинга для σ_0^2/σ_P^2 .

Обсудим смысл соотношения (42) и зависимость от γ при $\gamma \leq \gamma_{min}$. Физическая интерпретация результата (32) состоит в том, что система разбивается на квазинезависимые блоки размера L_E [23]; нетривиальные свойства σ_0^2 формируются на масштабе L_E , тогда как на бо́льших масштабах дисперсии складываются как для независимых случайных величин. Открытость каждого блока приводит к диффузионному затуханию $D/L_E^2 = E$ его состояний, к которому добавляется неупругое затухание γ . Их сложение происходит по закону квадратов, так как технически связано с оценкой $\operatorname{Re}(-i\omega + \gamma) \sim (\omega^2 + \gamma^2)^{1/2}$ при $\omega \sim E$ (см. разд. 5). Неупругое затухание γ является несущественным на фоне диффузионного при условии $\gamma \leq E$. Ниже показано (разд. 5), что $\gamma_{min} \sim E$ в критической области и $\gamma_{min} \ll E$ в металлической области, чем обеспечена независимость от γ при $\gamma \leq \gamma_{min}$ для этих областей. В локализованном режиме масштаб L_E сводится к ξ и выполняется соотношение $E \ll \Delta_{\xi}$, где Δ_{ξ} — расстояние между уровнями в блоке размера ξ . При этом условии вероятность p_n нахождения nуровней в интервале E для такого блока легко оценивается:

$$p_0 \approx 1 - \frac{E}{\Delta_{\xi}}, \quad p_1 = \frac{E}{\Delta_{\xi}}, \quad p_{n \ge 2} \approx 0,$$

так что $\langle N \rangle \approx E/\Delta_{\xi}$, $\langle N^2 \rangle \approx E/\Delta_{\xi}$ и величина σ_0^2 близка к пуассоновскому значению независимо от реальной статистики уровней. Затухание γ можно рассматривать как результат случайного процесса, приводящего к разбросу положения каждого уровня вблизи его среднего значения; тогда независимость от статистики означает независимость от γ . Таким образом, слабая зависимость от γ при $\gamma \lesssim \gamma_{min}$ имеет место во всех случаях.

5. СКЕЙЛИНГ ДЛЯ ДИНАМИЧЕСКОЙ ПРОВОДИМОСТИ И ЗАВИСИМОСТЬ ОТ ω

В предыдущем разделе неявно предполагалось, что величина ω достаточно мала. В общем случае это не выполняется и зависимость от ω требует до-полнительного анализа.

В закрытой конечной системе коэффициент диффузии имеет локализационное поведение (35). При переходе к открытым системам происходит замена $-i\omega \rightarrow -i\omega + \gamma$ и возникает статический коэффициент диффузии $\gamma \xi_{0D}^2$, приводящий к конечному кондактансу g_L . В работе [2] получены скейлинговые соотношения для g_L и ξ_{0D} :

$$g_L = H_T\left(\frac{L}{\xi_{0D}}\right), \quad \pm c_d\left(\frac{L}{\xi}\right)^{d-2} = H\left(\frac{L}{\xi_{0D}}\right), \quad (45)$$

где $c_d = \pi K_d/|2\sin(\pi d/2)|$ и функци
и $H(z), \; H_T(z)$ имеют асимптотики

$$H(z) = \begin{cases} 1/z^2, & z \ll 1, \\ -c_d z^{d-2}, & z \gg 1, \end{cases}$$

$$H_T(z) = \begin{cases} 1/z^2, & z \ll 1, \\ \sim e^{-z}, & z \gg 1. \end{cases}$$
(46)

Для затухания γ_0 , возникающего за счет открытости системы, справедливо соотношение

$$\frac{\gamma_0}{\Delta} = z^2 H_T(z), \quad z = \frac{L}{\xi_{0D}}, \tag{47}$$

так что величина γ_0/Δ равна единице в металлической фазе, несколько меньше единицы в критической области и экспоненциально убывает в глубь локализованной фазы. Неупругое затухание γ , которое приходится вводить для применимости формул, обычно оказывается значительно больше, и на его фоне затухание γ_0 несущественно. Эти соотношения справедливы в пределе нулевой частоты и требуют пересмотра при конечных частотах.

Уравнение самосогласования теории Вольхардта-Вольфле будем писать в виде [1]

$$\frac{\mathcal{E}^2}{W^2} = \frac{D(\omega)}{D_{min}} + \Lambda^{2-d} \int_0^{\Lambda} \frac{d^d q}{(2\pi)^d} \frac{1}{[-i\omega/D(\omega)] + q^2}, \quad (48)$$

где \mathcal{E} — энергия порядка ширины зоны, W — амплитуда случайного потенциала, Λ — параметр обрезания по импульсу, D_{min} — характерный масштаб коэффициента диффузии, соответствующий моттовской минимальной проводимости σ_{min} , пределы интегрирования указаны для модуля q.

При конечных L уравнение (48) принимает следующий вид в открытой и закрытой системах [2]:

$$\frac{\mathcal{E}^2}{W^2} = \frac{-i\omega\xi_{0D}^2}{D_{min}} + \Lambda^{2-d} \frac{1}{L^d} \sum_{\mathbf{q}}^{(c)} \frac{1}{q^2 + m^2}, \qquad (49)$$
$$m^{-1} = \xi_{0D},$$

$$\frac{\mathcal{E}^2}{W^2} = \frac{D_L(\omega)}{D_{min}} + \Lambda^{2-d} \frac{1}{L^d} \sum_{\mathbf{q}}^{(o)} \frac{1}{q^2 + m^2}.$$
 (50)

Значки (c) и (o) отмечают разрешенные значения импульсов, характерные для закрытых и открытых систем: главным моментом является наличие члена с $\mathbf{q} = 0$ в первом случае и его отсутствие во втором [2]. Первое уравнение определяет ξ_{0D} , а разность двух уравнений — коэффициент диффузии $D_L(\omega)$. Переходя к безразмерному кондактансу $g_L(\omega) = h\nu_F D_L(\omega) L^{d-2}$, и проводя описанные в работе [2] преобразования, получим

$$g_{L} = \frac{p}{z^{2}} + H_{T}(z),$$

$$\pm c_{d} \left(\frac{L}{\xi}\right)^{d-2} = \frac{p}{z^{2}} + H(z),$$

$$p = \frac{-i\omega + \gamma}{\Delta}, \quad z = \frac{L}{\xi_{0D}},$$
(51)

где добавлено неупругое затухание γ . Теперь величина ξ_{0D} зависит от ω и ее модуль (при $\gamma = 0$) обычно обозначается L_{ω} . Исключая p, получим скейлинг для динамической проводимости,

$$g_L(\omega) = F\left(L/\xi, L/L_\omega\right),\,$$

обсуждавшийся Шапиро и Абрахамсом [29, 30]. Уравнения (51) переходят в (45) при условии $|-i\omega + \gamma| \ll \Delta$, тогда как более актуальным является противоположный случай.

При $|p| \gg 1$ основной интерес представляет область больших z, где для H(z) справедлива вторая асимптотика (46), а величина $H_T(z)$ экспоненциально мала:

$$g_L = \frac{p}{z^2}, \quad \pm c_d \left(\frac{L}{\xi}\right)^{d-2} = \frac{p}{z^2} - c_d z^{d-2}.$$
 (52)

Локализованный режим имеет место пр
и $z \gg |p|^{1/d},$ когда

$$\xi_{0D}(\omega) = \xi_{0D}(0), \quad g_L(\omega) = \frac{-i\omega + \gamma}{\Delta} g_L(0), \quad (53)$$

и частотная зависимость ξ_{0D} отсутствует, поэтому переход от (36) к (39) в разд. 4 является обоснованным; величины $\xi_{0D}(0)$ и $g_L(0)$ определяются уравнением (52) с p = 1. В области $z \ll |p|^{1/d}$ реализуется металлический режим:

$$\xi_{0D}(\omega) = \left(\frac{-i\omega + \gamma}{\Delta}\right)^{-1/2} \xi_{0D}(0), \qquad (54)$$
$$g_L(\omega) = g_L(0),$$

в котором коэффициент диффузии D не зависит от частоты и правильным является вычисление Альтшулера-Шкловского, приводящее к (32) с заменой D_0 на D. В критической точке зависимость от ω имеют обе величины,

$$\xi_{0D}(\omega) \sim (-i\omega + \gamma)^{-1/d},$$

$$g_L(\omega) \sim (-i\omega + \gamma)^{(d-2)/d},$$
(55)

так что ни (39), ни (32) не являются правильными.

Подставляя выражения (53)–(55) в (36) и используя для F(x) вторую асимптотику (38), можно все три результата записать в единой форме:

$$K(\epsilon_1, \epsilon_2) = \frac{k_{\sigma} \tilde{c}_d}{\pi^2 L^{2d}} \operatorname{Re} \frac{1}{\left(-i\omega + \gamma\right)^2} \times \left(\frac{-i\omega + \gamma}{\Delta}\right)^{\beta} \left[\frac{L}{\xi_{0D}(0)}\right]^d, \quad (56)$$

где показатель β принимает значения 0, 1 и d/2 соответственно в диэлектрической фазе, в критической точке и в металлическом состоянии. Выражение (56) можно рассматривать как интерполяционную формулу, описывающую всю область параметров, если принять, что β медленно меняется при изменении расстояния до перехода. Подставляя (56) в (19) и интегрируя, имеем

$$\sigma_0^2 = \frac{2k_\sigma \tilde{c}_d}{\pi^2} \operatorname{Re} \frac{(\gamma + iE)^\beta - \gamma^\beta}{\beta(1 - \beta)\Delta^\beta} \left[\frac{L}{\xi_{0D}(0)}\right]^d.$$
(57)

При $E \gtrsim \gamma$ главным является член $\text{Re}(\gamma + iE)^{\beta} \sim (\gamma^2 + E^2)^{\beta/2}$, и по порядку величины тот же результат получается из выражения⁸⁾

$$K(\epsilon_1, \epsilon_2) = \frac{k_{\sigma} \tilde{c}_d}{\pi^2 L^{2d}} \operatorname{Re} \frac{1}{\left(-i\omega + \gamma\right)^2} \times \left(\frac{\gamma^2 + E^2}{\Delta^2}\right)^{\beta/2} \left[\frac{L}{\xi_{0D}(0)}\right]^d.$$
(58)

Поэтому формально можно пользоваться выражением (36) с ξ_{0D} , не зависящим от ω , если в (52) заменить $-i\omega + \gamma$ на величину порядка ($\gamma^2 + E^2$)^{1/2}; поскольку $\gamma \sim \gamma_{min}$, то это и обосновывает представление (42) для эффективного затухания.

В результате второе уравнение (52) принимает вид

$$\pm c_d \left(\frac{L}{\xi}\right)^{d-2} = \frac{s(k_1+u)^{1/2}}{z^2} - c_d z^{d-2}, \quad z = \frac{L}{\xi_{0D}}$$
(59)

и вместе с (44) определяет зависимость σ_0^2 от L/ξ в параметрической форме. В критической области $u \sim 1$ и, следовательно, $\gamma_{min} \sim E$.

6. ТРЕХМЕРНЫЙ СЛУЧАЙ

6.1. Скейлинг для σ_0^2

При больших *s* актуальны большие *z*, что позволяет использовать для F(1/z) вторую асимптотику (38). Делая замену $u \to k_1 u$ и исключая *z*, приведем выражения (44), (59) к виду

$$\begin{aligned} \frac{\sigma_0^2}{\sigma_P^2} &= k_1 u \ln \frac{1 + k_1 + k_1 u}{k_1 + k_1 u}, \\ \pm \left(\frac{L}{s^{1/d}\xi}\right)^{d-2} &= \frac{(1+u)^{1/2} - Bu}{u^{2/d}}, \end{aligned}$$
(60)

где мы изменили общий масштаб ξ , чтобы иметь единичный коэффициент в левой части второго уравнения; параметр $B=\pi^2 c_d k_1^{1/2}/k_\sigma \tilde{c}_d$. Уравнения (60) справедливы для размерностей 2 < d < 4и в параметрической форме определяют скейлинг

$$\frac{\sigma_0^2}{\sigma_P^2} = F_\sigma \left(\frac{L}{s^{1/d}\xi}\right),\tag{61}$$

согласно которому величины L/ξ и *s* входят лишь в определенной комбинации. Именно такой скейлинг обнаружен в численных экспериментах [11].

Параметры k_1 и k_{σ} можно выбрать так, чтобы воспроизвести правильные результаты в металлической фазе и в критической точке. Замечая, что масштаб L_E совпадает с ξ_{0D} при p = s, имеем $\xi_{0D} =$ $= k_1^{-1/4} L_E$ из уравнения (59) в области малых z; тогда (44) дает

$$\sigma_0^2 = \frac{k_\sigma \tilde{c}_d}{\pi^2} k_1^{d/4} \ln \frac{1+k_1}{k_1} \left(\frac{L}{L_E}\right)^d, \qquad (62)$$

что нужно отождествить с результатом (32) Альтшулера-Шкловского: это дает связь k_1 и k_{σ} . В критической точке, определяемой условием $Bu_c =$ $= (1 + u_c)^{1/2}$, первое уравнение (60) должно давать $\sigma_0^2/\sigma_P^2 = \kappa_0$. Рассматривая все параметры как функции k_1 , имеем

$$k_{\sigma} = A_d \left[k_1^{d/4} \ln \frac{1+k_1}{k_1} \right]^{-1}, \quad B = \frac{2\pi^2 k_1^{1/2}}{(d-2)k_{\sigma}},$$
$$u_c = \frac{1+(1+4B^2)^{1/2}}{2B^2},$$
$$\kappa_0 = k_1 u_c \ln \frac{1/k_1+1+u_c}{1+u_c},$$
(63)

где

$$A_d = \frac{4\cos(\pi d/4)}{d(1-d/2)},\tag{64}$$

что позволяет изменением k_1 подобрать правильное значение κ_0 . Актуальный выбор параметров для трехмерного случая соответствует значению $\kappa_0 =$ = 0.28 [11]:

$$k_1 = 0.0346, \quad k_\sigma = 6.92, \\ B = 0.531, \quad u_c = 4.36.$$
(65)

Вычисленная зависимость $y = F_{\sigma}(x)$ представлена на рис. 6*a*, а ее сопоставление с численными результатами работы [11] дано на рис. 6*б*.

6.2. Скейлинг для σ^2 и A

В разд. 2 мы установили, что величины σ^2 и σ_0^2 совпадают по порядку величины. Скейлинговые

⁸⁾ Условие $E \gtrsim \gamma$ нарушается в локализованной фазе, но в этом случае зависимость от величины p отсутствует и используемое для нее приближение не имеет значения.

Рис. 6. Теоретическая зависимость $y = \sigma_0^2/\sigma_P^2$ от $x = L/\xi s^{1/d}$ (a) и ее сопоставление с численными результатами работы [11] (b), где использовалось обозначение $L_0 = Ls^{-1/3}$

уравнения (60) для них одинаковы, но различаются выбором параметров. Поскольку для σ^2 пуассоновское значение равно s/2 (см. (12)), нужно выбрать $k_2 = 2k_{\sigma}s/\pi^2$, что в два раза уменьшает параметр *В*. Принимая для σ^2 такое же поведение в металлической фазе, как для σ_0^2 , вместо (63) получим

$$k_{\sigma} = A_d \left[k_1^{d/4} \ln \frac{1+k_1}{k_1} \right]^{-1}, \quad B = \frac{\pi^2 k_1^{1/2}}{(d-2)k_{\sigma}},$$
$$u_c = \frac{1+(1+4B^2)^{1/2}}{2B^2},$$
$$\kappa = \frac{1}{2} k_1 u_c \ln \frac{1/k_1+1+u_c}{1+u_c},$$
(66)

что позволяет выбрать k_1 по критическому значению $A_c = 1/2\kappa = 1.9$ [12] скейлинговой переменной A (см. (17)), после чего для остальных параметров имеем

$$k_1 = 0.0366, \quad k_\sigma = 6.74, B = 0.280, \quad u_c = 13.67.$$
(67)

Ввиду соотношения (17), параметр A является величиной, обратной к σ^2/σ_P^2 , и его скейлинг тривиальным образом определяется уравнениями (60). Его сопоставление с данными Жарекешева и Крамера [12] представлено на рис. 7.

6.3. Скейлинг для $\alpha(s_0)$

Скейлинговый параметр $\alpha(s_0)$ также определяется комбинацией σ^2/σ_P^2 , что ясно из выражения (16).

Рис.7. Численные данные Жарекешева и Крамера [12] (символы) для скейлингового параметра $A = \sigma_P^2/\sigma^2$ и их сопоставление с теоретической зависимостью (сплошные линии)

Последнее справедливо при $s_0 \gg 1$, и его экстраполяция к значениям порядка единицы не может быть надежной; поэтому в качестве s_0 надо выбирать некоторое эффективное значение s_{eff} .

Далее нужно иметь в виду, что при конечных s величина σ^2/σ_P^2 не стремится к нулю в металлической фазе. Конечность s можно учесть, если принять для функции F(x) в (37) интерполяционную формулу

$$F(1/x) = 1 + \tilde{c}_d x^d,$$

обеспечивающую правильные асимптотики (38); ее подстановка в (44) и (59) приведет к изменению второго уравнения (60):

$$\pm \left(\frac{L}{s^{1/d}\xi}\right)^{d-2} = \frac{(1+u)^{1/2} - B(u-u_0)}{(u-u_0)^{2/d}},\qquad(60')$$

где $u_0 \sim 1/s$. Тогда в металлической фазе $u \to u_0$ при $L \to \infty$ и отношение σ^2/σ_P^2 стремится к постоянному значению. Если параметры для σ^2 выбраны в соответствии с разд. 6.2, то выбором s_{eff} и u_0 можно обеспечить правильные значения α в критической точке и металлической области.

Скейлинг для $\alpha(s_0)$ изучался при $s_0 = 2$ в работе [10] и при $s_0 = 0.473$ в работе [11]. Эти результаты согласуются с теоретической зависимостью при выборе $s_{eff} = 2.22$, $u_0 = 8.67$ в первом случае (любопытно, что значение s_{eff} близко к s_0) и $s_{eff} = 2.99$, $u_0 = 10.2$ во втором (рис. 8). Небольшой сдвиг вдоль горизонтальной оси на рис. 8a соответствует добавлению к L положительной величины L_0 , что объясняется поправками к скейлингу (см. разд. 6.4). Заметим, что конечность u_0 практически не влияет на результаты за пределами металлической области.

6.4. Критическое поведение и поправки к скейлингу

Простейший способ извлекать критическое поведение из скейлинговых соотношений типа (7) основан на том, чтобы переписать их в виде (τ — расстояние до перехода)

$$\alpha = F\left(\frac{L^{1/\nu}}{\xi^{1/\nu}}\right) = F\left(\tau L^{1/\nu}\right) =$$
$$= \alpha_c + C\tau L^{1/\nu} + \dots \quad (68)$$

и регулярным образом разложить по τ , что возможно ввиду отсутствия фазового перехода в конечных системах. Тогда производная по τ ведет себя как $L^{1/\nu}$ и непосредственно определяет критический индекс ν корреляционного радиуса ξ .

Такая процедура безусловно правильна, если соотношение (7) является точным. Однако точным оно не является ввиду существования поправок к скейлингу. Для рассмотрения последних вернемся к предложенному в работе [2] разбиению для суммы

6 ЖЭТФ, вып.6

по **q** в (49):

$$\frac{1}{L^{d}} \frac{1}{m^{2}} + \frac{1}{L^{d}} \sum_{\substack{\mathbf{q}\neq 0\\|\mathbf{q}|<\Lambda}} \left(\frac{1}{m^{2}+q^{2}} - \frac{1}{q^{2}}\right) + \frac{1}{L^{d}} \sum_{\substack{\mathbf{q}\neq 0\\|\mathbf{q}|<\Lambda}} \frac{1}{q^{2}} \equiv I_{1}(m) + I_{2}(m) + I_{3}(0), \quad (69)$$

где мы выделили член с $\mathbf{q} = 0$, а к оставшейся сумме добавили и вычли такую же сумму с m = 0. Во втором члене $I_2(m)$ можно положить $\mathbf{q} = 2\pi \mathbf{s}/L$, после чего он представляется в виде

$$I_2(m) = L^{2-d} H_0(mL) + O(m^2 \Lambda^{d-4}), \qquad (70)$$

где первый член соответствует пределу $\Lambda \to \infty$ $(H_0(z)$ — некоторая функция), а второй определяет поправку, связанную с конечностью Λ . Третий член в (69) может быть оценен путем перехода от суммирования к интегрированию с ограничением $|q| \gtrsim 1/L$:

$$I_3(0) = \Lambda^{d-2} \left[b_0 + b_1 \left(\frac{a}{L} \right)^{d-2} \right].$$
 (71)

Тогда, полагая $\tau = \mathcal{E}^2/W^2 - b_0 \Lambda^{d-2}$, для отклонения $y = \xi_{0D}/L$ от критического значения получим

$$\frac{\xi_{0D}}{L} - y_c = C \left(\frac{L}{a}\right)^{d-2} \times \left[\tau + O\left(\frac{a^2}{\xi_{0D}^2}\right)\right] + O\left(\frac{a}{L}\right). \quad (72)$$

Дифференцируя по τ и исключая $(\xi_{0D})'_{\tau}$ из правой части итерационным образом, имеем

$$\left(\frac{\xi_{0D}}{L}\right)_{\tau}' = C_0 L^{d-2} + C_1 L^{2d-6}.$$
 (73)

В трехмерном случае главная поправка к скейлингу сводится к константе, так что при малых τ

$$\frac{\xi_{0D}}{L} - y_c = C_0 \tau \left(L + L_0 \right) \tag{74}$$

с точностью до членов, исчезающих при $L \to \infty$. Поскольку все скейлинговые параметры являются регулярными функциями ξ_{0D}/L , их отклонения от критических значений ведут себя таким же образом.

Результат (74) получен в работе [1] для другого скейлингового параметра, а его универсальность мотивировалась соображениями, основанными на вильсоновской ренормгруппе. Поскольку результаты для L, меньших некоторого значения L_{min} ,

Рис. 8. Сопоставление зависимости $\alpha(s_0)$ от L/ξ с результатами работ [10] (*a*) и [11] (*b*). Использовались значения $s_{eff} = 2.22, u_0 = 8.67$ в первом случае и $s_{eff} = 2.99, u_0 = 10.2$ во втором

Рис.9. Обработка по закону $L + L_0$ (крупные штрихи) для численных данных, основанных на исследовании статистики уровней. *a*) Данные из работы [12]; точки — средние значения производной скейлингового параметра A, определенные по рис. 4 в [12] в интервале 16 < W < 17. Статистическая ошибка, связанная с каждой точкой, может оцениваться очень консервативно (см. таблицу в [31]) ввиду нерегулярности кривых, приведенных на указанном рисунке; неопределенность, допускаемая самими авторами, соответствует зазору между зависимостями $L^{0.80}$ и $L^{0.65}$, определяющими верхнюю и нижнюю границы результата для критического индекса, $\nu = 1.40 \pm 0.15$. *б*) Данные, полученные в работе [15]; точки соответствуют производной скейлингового параметра α , определенной по наклону сплошных кривых на вставке к рис. 3 в [15], а их неопределенность соответствует вариации угла наклона в пределах размера экспериментальных точек

всегда выпадают из скейлинговой картины и правомерно отбрасываются исследователями, зависимость $L+L_0$ с $L_0 > 0$ может интерпретироваться как $L^{1/\nu}$ с $\nu > 1$. Такая неоднозначность обработки продемонстрирована в работах [1, 3] на множестве примеров. Результаты, относящиеся к статистике уровней, иллюстрируются на рис. 9.

7. ДВУМЕРНЫЙ СЛУЧАЙ

Согласно работе [2], в двумерном случае происходит замена степенной функции во втором уравнении (51) на логарифмическую,

$$-c_2 \ln\left(\frac{L}{\xi}\right) = \frac{p}{z^2} + H(z), \quad c_2 = \frac{1}{2\pi},$$
 (75)

где для больших p можно ограничиться асимптотикой $H(z) = -c_2 \ln z$. Полагая, как и выше, $p = [k_1s^2 + k_2F(1/z)]^{1/2}$, выбирая $k_2 = 2k_\sigma s/\pi^2$ в соответствии с пуассоновским условием для σ^2 (см. разд. 6.2) и исключая z, вместо второго уравнения (60) имеем

$$-\ln\left(\frac{L}{s^{1/2}\xi}\right) = B\frac{\sqrt{1+u}}{u-u_0} - \ln\sqrt{u-u_0},$$
 (76)

где $u_0 \sim 1/s$ учитывает конечность *s* (аналогично разд. 6.3),

$$B = \frac{k_{\sigma}}{\pi^2 k_1^{1/2}} = \left[\pi k_1 \ln \frac{1+k_1}{k_1}\right]^{-1}$$
(77)

и использована связь k_{σ} с k_1 , определяемая соответствием с результатом (32). Параметр k_1 остается свободным и может использоваться в качестве подгоночного. Нетрудно видеть, что при больших *s* по-прежнему справедлив скейлинг (61).

В двумерном случае использовался более сложный скейлинговый параметр [13]

$$\gamma(s_0) = \frac{1}{\mathcal{N}} \int_0^{s_0} \left[\tilde{I}(s) - \tilde{I}_P(s) \right] ds =$$
$$= \frac{1}{\mathcal{N}} \int_{s_0}^{\infty} \left[I(s) - I_P(s) \right] ds, \quad (78)$$

где нормировочный множитель \mathcal{N} выбирается из условия $\gamma(s_0) = 1$ при $I(s) = I_W(s)$. Второе соотношение следует из первого ввиду того, что I(s) = $= 1 - \tilde{I}(s)$, и из нормированности I(s):

$$\int_{0}^{\infty} I(s) \, ds = \int_{0}^{\infty} sP(s) \, ds = \langle s \rangle = 1.$$
 (79)

При больших s_0 второй интеграл в (78) можно оценить, полагая $I(s) \sim \exp\{-s\sigma_P^2/\sigma^2\}$ (см. (11)) и считая отношение σ_P^2/σ^2 почти постоянным:

$$\gamma(s_0) = 1 - \sigma^2 / \sigma_P^2 \exp\left\{-s_0 \frac{\sigma_P^2 - \sigma^2}{\sigma^2}\right\},\qquad(80)$$

так что $\gamma(s_0)$ определяется величиной σ^2/σ_P^2 .

В работе [13] при больших значениях L/ξ эмпирически установлено соотношение

$$\gamma(s_0) \sim 1 - \sigma^2 / \sigma_P^2 \sim \xi / L, \tag{81}$$

которое не имеет места в настоящей теории: из (76) и (60) ясно, что $\gamma(s_0) \sim 1/u, u \sim (L/\xi)^2$ и вместо (81) реализуется поведение $(\xi/L)^2$. Однако практически

Рис.10. Численные данные работы [13] для зависимости $\gamma(s_0)$ от L/ξ в двумерном случае и ее сопоставление с теоретической зависимостью при $k_1 = 0.002$ и $u_0 = 44$; в обоих случаях использовалось значение $s_0 = 1.25$. Тонкая прямая линия соответствует закону (81)

такой закон возникает при экспоненциально больших значениях L/ξ , а численные данные вполне удовлетворительно подгоняются при выборе $k_1 = 0.002$ (рис. 10) (малое значение k_1 не удивительно, так как оно оказывалось малым и в трехмерном случае). Причина этого в том, что при малых k_1 актуальны большие значения u и $x = L/\xi s^{1/2}$, для которых правая и левая части выражения (76) меняются медленно и могут быть линеаризованы вблизи некоторых точек u_c и x_c . Произвольность выбора общего масштаба ξ позволяет компенсировать нулевой член в линейной зависимости и обеспечить пропорциональность величин u и L/ξ в достаточно широкой области. Таким образом, зависимость (81) действительно справедлива как промежуточная асимптотика.

8. ВЫСШИЕ РАЗМЕРНОСТИ

8.1. Размерности *d* > 4

При d > 4 для величины $I_2(m)$ в (69) имеем

$$I_2(m) = -c_d m^2 \Lambda^{d-4}, \quad c_d = K_d/(d-4)$$
 (82)

и вместо второго уравнения (52) получим

$$\pm c_d \left(\frac{L}{\xi}\right)^2 \left(\frac{L}{a}\right)^{d-4} = \frac{p}{z^2} - c_d z^2 \left(\frac{L}{a}\right)^{d-4}.$$
 (83)

6*

Удобно ввести переменные

$$y = \frac{L}{\xi_{0D}} \left(\frac{L}{a}\right)^{(d-4)/4}, \quad x = \frac{L}{\xi} \left(\frac{L}{a}\right)^{(d-4)/4}, \quad (84)$$

в которых уравнение (83) принимает вид

$$\pm c_d x^2 = \frac{p}{y^2} - c_d y^2.$$
 (85)

Полагая по-прежнему $p^2 = k_1 s^2 + k_2 F(1/z)$ и выбирая $k_2 = 2k_\sigma s/\pi^2$ из пуассоновского значения для величины σ^2 (см. разд. 6.2), имеем

$$\pm c_d x^2 = \frac{sk_1^{1/2}(1+u)^{1/2}}{y^2} - c_d y^2,$$

$$u = \frac{2k_\sigma}{\pi^2 k_1 s} F\left(\frac{\xi_{0D}}{L}\right),$$
(86)

где функция F(x) по-прежнему определяется формулой (37), но имеет другое поведение в актуальной области малых x:

$$F\left(\frac{\xi_{0D}}{L}\right) = c_d \left(\frac{L}{\xi_{0D}}\right)^4 \left(\frac{L}{a}\right)^{d-4} = c_d y^4.$$
(87)

Используя (87) и исключая y, вместо (60) окончательно имеем

$$\frac{\sigma_0^2}{\sigma_P^2} = k_1 u \ln \frac{1 + k_1 + k_1 u}{k_1 + k_1 u},
\pm \frac{x^2}{s^{1/2}} = \frac{(1+u)^{1/2} - Bu}{u^{1/2}},$$
(88)

где $B = \pi^2 k_1^{1/2} / 2k_\sigma$. В металлической фазе уравнения (88) дают

$$\sigma^2 = \frac{k_1 k_\sigma c_d}{\pi^2} \left(\frac{L}{L_E}\right)^4 \left(\frac{L}{a}\right)^{d-4} \ln \frac{1+k_1}{k_1}, \qquad (89)$$

что нужно отождествить с результатом для режима Альтшулера–Шкловского

$$\sigma^2 = \frac{c_d}{\pi^2} \left(\frac{L}{L_E}\right)^4 \left(\frac{L}{a}\right)^{d-4},\tag{90}$$

который следует из выражения (31), но имеет форму, отличную от (32). Для выбора параметров получаем соотношения

$$k_{\sigma} = \left[k_1 \ln \frac{1+k_1}{k_1}\right]^{-1}, \quad B = \frac{\pi^2 k_1^{1/2}}{2k_{\sigma}}$$
(91)

и т. д., совпадающие с (66) для d = 4.

Уравнения (88) определяют в параметрической форме скейлинговую зависимость

$$\frac{\sigma^2}{\sigma_P^2} = F_\sigma\left(\frac{x}{s^{1/4}}\right), \quad x = \frac{L}{\xi}\left(\frac{L}{a}\right)^{(d-4)/4}, \tag{92}$$

которая отлична от (61) и содержит атомный масштаб a. Зависимость от $x \propto L^{d/4}$ вместо L сводится к изменению масштаба в логарифмических координатах, поэтому скейлинговые кривые строятся в точности так же, как в трехмерном случае; однако их интерпретация должна быть другой и соответствовать соотношению (92).

Заметим, что в высших размерностях общая форма скейлинговой зависимости имеет вид

$$\frac{\sigma^2}{\sigma_P^2} = F\left(\frac{L}{\xi}, \frac{L}{a}\right),$$

так как атомный масштаб а не может быть исключен из результатов ввиду неперенормируемости теории [26]. В критической точке аргумент L/ξ обращается в нуль, но зависимость от L/a в общем случае сохраняется. По этой причине скейлинговые параметры стандартных алгоритмов обычно не остаются постоянными в критической точке [1, 2]. Отсутствие такой зависимости для величины σ^2/σ_P^2 (очевидное из (92)) является нетривиальным результатом теории и согласуется с существованием стационарного распределения уровней, установленного в численных экспериментах [14]. Заметим, что в [18] существование «спектральной жесткости» к₀ связывалось с постоянством кондактанса g_L в критической точке; при d > 4 спектральная жесткость сохраняется, несмотря на то, что постоянство g_L уже не имеет места [2].

8.2. Четырехмерный случай

В четырехмерном случае для величины $I_2(m)$ имеем

$$I_2(m) = -c_4 m^2 \ln \frac{\Lambda}{m} + O\left(\frac{m^4}{\Lambda^2}\right), \quad c_4 = K_4 \quad (93)$$

и вместо (83) получим уравнение

$$\pm c_4 \left(\frac{L}{\xi}\right)^2 \ln \frac{\xi}{a} = \frac{p}{z^2} - c_4 z^2 \ln \frac{\xi_{0D}}{a}, \quad z = \frac{L}{\xi_{0D}}, \quad (94)$$

которое в переменных

$$y = \frac{L}{\xi_{0D}} \left(\ln \frac{L}{a} \right)^{1/4}, \quad x = \frac{L}{\xi} \frac{\left[\ln(\xi/a) \right]^{1/2}}{\left[\ln(L/a) \right]^{1/4}}, \tag{95}$$

примет вид, совпадающий с (83). Аналогично предыдущему получим (86), где функция F(x) при малых x ведет себя как

$$F\left(\frac{\xi_{0D}}{L}\right) = c_4 \left(\frac{L}{\xi_{0D}}\right)^4 \ln\left(\frac{\xi_{0D}}{a}\right) \approx c_4 y^4, \qquad (96)$$

1044

поскольку в критической области $L \sim \xi_{0D} \gg a$. В результате придем к уравнениям (88) с другим определением x и скейлингу

$$\frac{\sigma^2}{\sigma_P^2} = F_\sigma \left(\frac{x}{s^{1/4}}\right), \quad x = \frac{L}{\xi} \frac{\left[\ln(\xi/a)\right]^{1/2}}{\left[\ln(L/a)\right]^{1/4}}.$$
 (97)

Возможны обычные скейлинговые построения, если величину σ^2/σ_P^2 рассматривать как функцию модифицированной длины $\mu(L) = L[\ln(L/a)]^{-1/4}$.

В металлической фазе уравнения (88) дают

$$\sigma^2 = \frac{k_1 k_\sigma c_4}{\pi^2} \ln \frac{1 + k_1}{k_1} \left(\frac{L}{L_E}\right)^4 \ln \left(\frac{L_E}{a}\right), \qquad (98)$$

тогда как в режиме Альтшулера-Шкловского

$$\sigma^2 = \frac{c_4}{\pi^2} \left(\frac{L}{L_E}\right)^4 \ln\left(\frac{L_E}{a}\right), \qquad (99)$$

поэтому для выбора параметров получим прежние соотношения (91). Актуальный выбор параметров соответствует значению $A_c = 1/2\kappa = 1.4$ [14]:

$$k_1 = 0.0652, \quad k_\sigma = 5.49, B = 0.230, \quad u_c = 19.9.$$
(100)

Главная поправка к скейлингу определяется членом $O(m^4/\Lambda^2)$ в (93), с учетом которого второе уравнение (88) при s = 1 дает

$$b(u - u_c) = \frac{(L/a)^2 [\tau + c_4 a^4 / 2\xi_{0D}^4]}{[\ln(\xi_{0D}/a)]^{1/2}},$$
 (101)

где мы линеаризовали правую часть уравнения (88) вблизи критической точки. Находя производную u'_{τ} итерационным способом, для малых τ получим

$$u = u_c + \frac{\tau}{b} \left[\frac{(L/a)^2}{[\ln(L/a)]^{1/2}} + \frac{G}{[\ln(L/a)]^2} \right], \quad (102)$$

где

$$G = \frac{\pi^2 k_1}{4bk_{\sigma}} = 4k_{\sigma}^{1/2} = 9.35.$$
(103)

В четырехмерном случае в качестве скейлингового параметра использовалась величина [14]

$$J_0 = \frac{1}{2} \langle s^2 \rangle = \frac{1}{2} \int_0^\infty s^2 P(s) \, ds = \int_0^\infty s I(s) \, ds.$$
(104)

Ее можно оценить, полагая $I(s) \sim \exp(-sA)$ с почти постоянной величиной A и учитывая нормированность I(s) на единицу (см. (79)):

$$J_0 \approx \left. \frac{\sigma^2}{\sigma_P^2} \right|_{s \sim 1}.\tag{105}$$

Рис.11. Вычисленная зависимость $y = \sigma^2/\sigma_P^2$ от x. Отчетливо виден линейный участок в интервале 0.2 < x < 1

Разумеется, такая оценка является довольно грубой, так как интеграл набирается от области $s \sim 1$, где предположение о постоянстве A неудовлетворительно. Более правильно считать, что J_0 является регулярной функцией σ^2/σ_P^2 (при некотором $s \sim 1$), так что их отклонения от критических значений пропорциональны друг другу:

$$J_0 - J_{0c} = \operatorname{const}\left(\frac{\sigma^2}{\sigma_P^2} - 2\kappa\right).$$
(106)

Вычисленная зависимость $y = \sigma^2 / \sigma_P^2$ от x приведена на рис. 11. При учете конечности *s* величина у в металлической фазе приобретет значение порядка единицы, и две ветви зависимости окажутся приблизительно симметричными. С этой точки зрения поведение верхней ветви является более характерным. Для нее на рис. 11 можно выделить три области: 1) область x < 0.2, где $y - y_c \sim x^2$, соответствующая критическому поведению; 2) область 0.2 < x < 1, где зависимость почти линейна; 3) область насыщения x > 1. Первая область соответствует очень малым значениям $y - y_c$, которые практически недостижимы для численных экспериментов ввиду их ограниченной точности⁹⁾. Поэтому наблюдаемые зависимости (рис. 12) близки к линейному закону $y - y_c = c_1 + c_2 x$, а малость c_1 позволяет их интерпретировать как $L^{1/\nu}$ с $\nu \approx 1$ [14]. Соотношение c_1 и c_2 отличается от такового в теоретической зависимости (см. рис. 11), что может быть связано с поправками к скейлингу. Последние (см. выражение (102)) приводят к тому, что к главной зависимости $(L/a)^2$ добавляется медленно меняющаяся (по-

⁹⁾ Узкая критическая область обычно связана с существованием малых параметров типа числа Гинзбурга.

Рис. 12. Численные данные для J_0 , извлеченные из рис. 4 работы [14], как функция модифицированной длины $\mu(L) = L(\ln L)^{-1/4}$ и их обработка по линейному закону. Пунктиром показана теоретическая зависимость, масштаб которой выбран из соответствия с наклоном линейной зависимости для W = 36; для достижения согласия требуется постоянный сдвиг вверх на величину порядка значения $J_0 - J_{0c}$ при L = 4

чти постоянная) функция, которая становится существенной при $L/a \approx 3$. Примерно такой постоянный сдвиг требуется для восстановления правильного соотношения c_1 и c_2 (рис. 12).

9. ЗАКЛЮЧЕНИЕ

Предполагая справедливость самосогласованной теории локализации Вольхардта – Вольфле, мы вывели соотношения конечно-размерного скейлинга для различных параметров, характеризующих статистику уровней. Сопоставление с обширным численным материалом показывает, что на уровне первичных данных результаты численных экспериментов вполне совместимы с самосогласованной теорией, а противоположные утверждения оригинальных работ связаны с неоднозначностью интерпретации и наличием малых параметров типа числа Гинзбурга.

Небольшие расхождения, имеющиеся на некоторых рисунках, могут быть связаны с разными причинами.

 Построение скейлинговых кривых связано с некоторым произволом (см. обсуждение в работе [1]). Вся скейлинговая кривая никогда не возникает в одном эксперименте, а «измеряется по кусочкам». Нетрудно видеть (см. рис. 6–8, 10), что качество подгонки можно существенно улучшить, если подгонять не всю кривую, а ее отдельные части.

 Наличие поправок к скейлингу (см. разд. 6.4, 8.2) приводит к систематическим искажениям эмпирических скейлинговых кривых.

3) Введенные в настоящей работе параметры k_1 , k_2 , k_σ в действительности являются медленно меняющимися функциями, и их замена на константы является необходимым огрублением в связи с отсутствием информации об этих функциях.

4) В некоторых случаях результаты, полученные при $s_0 \gg 1$, экстраполируются в область $s_0 \sim 1$.

Таким образом, причины 1 и 2 имеют общий характер, а 3 и 4 специфичны для данной работы.

В целом мы считаем возможным говорить о выполнении некоторой «программы-минимум», состоящей в ликвидации неправдоподобно больших (и нарушающих общие принципы) расхождений между самосогласованной теорией и численным экспериментом. Что касается «программы-максимум» проверки утверждения о том, что теория Вольхардта-Вольфле дает точное критическое поведение [7, 8], то это требует более тщательного анализа имеющихся небольших отклонений и проверки того, являются ли они значимыми. Такой анализ желательно проводить на основе первичных данных, а не для эмпирических скейлинговых кривых. Заметим, что в работах [1-3] и настоящей работе успешно описано около 20 зависимостей, относящихся к разным величинам и размерностям пространства от 2 до 5.

ЛИТЕРАТУРА

- 1. И. М. Суслов, ЖЭТФ 141, 122 (2012).
- 2. И. М. Суслов, ЖЭТФ 142, 1020 (2012).
- **3**. И. М. Суслов, ЖЭТФ **142**, 1230 (2012).
- 4. P. Markos, Acta Phys. Slov. 56, 561 (2006); arXiv:cond-mat/0609580.
- D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980).
- D. Vollhardt and P. Wölfle, Phys. Rev. Lett. 48, 699 (1982).
- H. Kunz and R. Souillard, J. de Phys. Lett. 44, L506 (1983).
- 8. И. М. Суслов, ЖЭТФ **108**, 1686 (1995).
- 9. Н. Н. Боголюбов, Д. В. Ширков, *Введение в теорию* квантованных полей, Наука, Москва (1976).

- B. I. Shklovskii, B. Shapiro, B. R. Sears et al., Phys. Rev. B 47, 11487 (1993).
- 11. I. Kh. Zharekeshev and B. Kramer, NATO ASI Series E 291, 93 (1995); И. Х. Жарекешев, Вестник Евразийского НУ 77, 41 (2010).
- I. Kh. Zharekeshev and B. Kramer, Phys. Rev. Lett. 79, 717 (1997).
- 13. I. Kh. Zharekeshev, M. Batsch, and B. Kramer, Europhys. Lett. 34, 587 (1996).
- 14. I. Kh. Zharekeshev and B. Kramer, Ann. Phys. (Leipzig) 7, 442 (1998).
- 15. F. Milde, R. A. Romer, and M. Schreiber, Phys. Rev. B 61, 6028 (2000).
- A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981); Z. Phys. 53, 1 (1983).
- K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).
- **18**. Б. Л. Альтшулер, И. Х. Жарекешев, С. А. Коточигова, Б. И. Шкловский, ЖЭТФ **94**, 343 (1988).
- 19. F. J. Dyson, J. Math. Phys. 3, 140, 157, 166 (1962).

- **20**. Г. Корн, Т. Корн, *Справочник по математике*, Наука, Москва (1977).
- 21. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).
- 22. В. П. Чистяков, *Курс теории вероятностей*, Наука, Москва (1982).
- 23. Б. Л. Альтшулер, Б. И. Шкловский, ЖЭТФ 91, 220 (1986).
- 24. Л. Н. Булаевский, М. В. Садовский, Письма в ЖЭТФ 43, 99 (1986).
- **25**. Л. Б. Ефетов, ЖЭТФ **83**, 833 (1982).
- 26. И. М. Суслов, УФН 168, 503 (1998).
- **27**. И. М. Суслов, ЖЭТФ **127**, 1350 (2005).
- 28. Э. З. Кучинский, М. В. Садовский, ЖЭТФ 98, 634 (1990).
- 29. B. Shapiro and E. Abrahams, Phys. Rev. B 24, 4889 (1981).
- 30. B. Shapiro, Phys. Rev. B 25, 4266 (1982).
- 31. I. M. Suslov, arXiv:cond-mat/0105325.