ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ФОТОННОЙ ЗАПРЕЩЕННОЙ ЗОНЫ И ПАРАМЕТРА ОРИЕНТАЦИОННОГО ПОРЯДКА ХОЛЕСТЕРИЧЕСКОГО ФОТОННОГО КРИСТАЛЛА

П. В. Долганов^а^{*}, С. О. Гордеев^{а,b}, В. К. Долганов^а

^а Институт физики твердого тела Российской академии наук 143432, Черноголовка, Московская обл., Россия

^b Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

Поступила в редакцию 11 февраля 2014 г.

Проведены измерения спектров отражения холестерического фотонного кристалла. Экспериментальные спектры описываются теоретическим выражением, следующим из аналитического решения уравнений Максвелла. Определена ширина фотонной запрещенной зоны $\Delta \nu$. Ширина фотонной запрещенной зоны скачкообразно изменяется при изменении положения дифракционной полосы. Температурная зависимость относительной ширины запрещенной зоны $\Delta \nu / \nu_0$ и параметра порядка фотонного кристалла описываются теорией Ландау фазовых переходов.

DOI: 10.7868/S0044451014060056

Холестерические фотонные кристаллы представляют собой уникальный класс фотонных кристаллов, сочетающий периодическое структурное упорядочение и возможность его перестройки с изменением в широких пределах фотонных характеристик: положения и ширины фотонной зоны, интенсивности дифракции. Холестерическая фаза — разновидность нематического жидкого кристалла с оптически активными молекулами. Периодическая структура образована поворотом молекул вокруг винтовой оси z, ориентированной нормально к направлению директора жидкого кристалла [1,2]. В образованном таким образом одномерном фотонном кристалле период структуры порядка длины волны света. Холестерические жидкие кристаллы исследуются достаточно давно, задолго до появления термина «фотонные» кристаллы. Повышенный интерес к изучению жидкокристаллических фотонных кристаллов и актуальность этих исследований в последнее время связаны с использованием общих подходов к изучению различного типа фотонных кристаллов, реальностью их практического применения. Спектральные характеристики холестерических фотонных кристаллов во многом аналогичны

характеристикам других типов фотонных периодических структур. Однако имеется и ряд качественных различий, связанных, в частности, со спиральной структурой холестерических фотонных кристаллов.

Несмотря на многолетнюю историю исследований жидкокристаллических фотонных кристаллов, целый ряд вопросов их строения и оптических характеристик остается до конца не выясненным. В первую очередь это относится к связи макроскопических характеристик фотонного кристалла с макроскопическими и микроскопическими свойствами жидкокристаллической структуры, возможностью описания температурной трансформации фотонных характеристик на общефизическом языке фазовых переходов. В настоящей работе проведены измерения спектров дифракции совершенных образцов холестерического фотонного кристалла. Определены ширины запрещенной фотонной зоны $\Delta \nu$, ее температурная зависимость. Относительная ширина фотонной зоны $\Delta \nu / \nu_0$, где ν_0 — спектральное положение фотонной зоны, - пропорциональна параметру ориентационного порядка. Показано, что температурная зависимость $\Delta \nu / \nu_0$ описывается теорией Ландау фазовых переходов. Определены параметры теории Ландау, обсуждаются особенности перехода фотонной структуры в неупорядоченную.

^{*}E-mail: pauldol@issp.ac.ru

Рис. 1. Экспериментальный спектр отражения холестерического фотонного кристалла (сплошная кривая) и теоретический спектр (штриховая кривая). Спектр рассчитан по формуле (1) при значениях параметров $\delta = 0.0447$, $\nu_0 = 20217.51$ см⁻¹, n = 1.6. Толщина образца 5.8 мкм. Две вертикальные линии показывают границы запрещенной фотонной зоны; T = 32.8 °C

Измерения спектров дифракции проведены на холестерическом жидком кристалле на основе ВИХ-16 (Вильнюсский университет, Литва). Вещество в изотропной фазе помещалось в оптическую ячейку с нанесенным на внутреннюю поверхность ориентантом (пленка полиимида), натертым в одном направлении для получения планарной ориентации молекул у поверхности кюветы. Ячейка помещалась в термостатированное устройство с точностью поддержания температуры менее 0.1 °C. При измерениях температурных зависимостей дифракции образец выдерживался при постоянной температуре в течение времени достаточного для установления равновесной структуры, когда не происходили изменения формы и спектрального положения дифракционных полос. Измерение дифракции проводилось в геометрии «назад» с участка образца размером около 0.01 мм² с использованием микроскопа Olympus BX51 и спектрометра Avaspec-2048.

На рис. 1 сплошной кривой показан спектр отражения холестерического фотонного кристалла. Спектр состоит из интенсивной дифракционной полосы и боковых биений (маятниковых осцилляций). Наличие явно выраженных маятниковых осцилляций говорит о высоком совершенстве образца. Теория оптической дифракции на периодической структуре холестерического фотонного кристалла развивалась, в частности, в работах Дрехера, Майера и Заупе [3], Белякова и Дмитриенко [4, 5]. При распространении света вдоль оси спирали спектр дифракции описывается выражением [4–6]

$$R = \frac{\delta^2 \sin^2 \beta L}{4(\beta/\kappa)^2 + \delta^2 \sin^2 \beta L},$$
(1)

где $\kappa = \omega n/c, \ \beta = \kappa \sqrt{1 + (\tau/2\kappa)^2 - ((\tau/\kappa)^2 + \delta^2)^{1/2}},$ $\tau = 2n\omega_0/c, \ \delta = (n_1^2 - n_2^2)/(n_1^2 + n_2^2), \ n_1$ и n_2 показатели преломления параллельно и перпендикулярно направлению локального директора, $n^2 =$ $=(n_1^2+n_2^2)/2, \omega_0$ — центр дифракционной полосы. Сопоставление экспериментальных спектров с теорией проводилось с использованием уравнения (1) с подгоночными параметрами δ , ω_0 , n. Результат подгонки приведен на рис. 1 штриховой линией. Как видно на рис. 1, расчетный спектр хорошо согласуется с экспериментальным в области как дифракционной полосы, так и маятниковых колебаний. Из результатов подгонки определены границы фотонной запрещенной зоны $\nu_{1,2} = \nu_0/(1 \pm \delta)^{1/2}$, где $\nu = 1/\lambda$, а $\nu_0 = 1/\lambda_0$ — положение центра дифракционной полосы, и ее спектральная ширина $\Delta \nu = \nu_2 - \nu_1$. Вертикальные линии на рис. 1 показывают границы фотонной зоны.

При увеличении температуры происходят коротковолновое смещение дифракционной полосы (рис. 26) и уменьшение ее полуширины $\Delta \nu_B$ (светлые символы на рис. 3а). Коротковолновое смещение, как правило, связывают с уменьшением упругой константы кручения K_{22} [1]. В ячейке с жесткими граничными условиями изменение положения фотонной зоны имеет ступенчатый вид (рис. 26). Скачки соответствуют изменению числа полувитков спирали в образце на единицу. Нематический директор у одной из поверхностей изменяет свое направление на противоположное, оставаясь параллельным направлению ориентации, задаваемой поверхностью. На рис. 2а показана относительная ширина фотонной запрещенной зоны $\Delta \nu / \nu_0$, полученная в результате сопоставления экспериментальных данных по форме дифракционной дполосы с формулой (1) и из соотношения $\nu_{1,2} = \nu_0 / (1 \pm \delta)^{1/2}$. С хорошим приближением $\Delta \nu / \nu_0 = \delta$, т. е. $\Delta \nu / \nu_0 = \Delta n / n$. Темными символами на рис. За приведена абсолютная величина ширины фотонной запрещенной зоны $\Delta \nu$. Полуширина дифракционной полосы больше ширины фотонной запрещенной зоны (рис. 1, рис. 3а), что связано с конечной толщиной образца. Полуширина полосы $\Delta \nu_B$ уменьшается с температурой, при этом скачки в положении дифракци-

Рис.2. Температурная зависимость относительной ширины фотонной запрещенной зоны $\delta = \Delta \nu / \nu_0$ (*a*) и ее спектрального положения ν_0 (*б*)

онной полосы (рис. 26) сопровождаются скачкообразным изменением ее полуширины. Наблюдаемый нами скачкообразный ход $\Delta \nu$ связан с сохранением материальных параметров n и Δn и соответственно их отношения при растяжении и сжатии спирали в ячейках с жесткими граничными условиями, что приводит к синхронному изменению $\Delta \nu_B$, $\Delta \nu$ и ν_0 . Следует отметить, что тонкие особенности температурной зависимости $\Delta \nu_B$ и $\Delta \nu$ (в частности, величины и температуры скачков) относятся к исследуемому образцу и будут изменяться, например, при изменении толщины ячейки. В то же время отношение $\Delta \nu / \nu_0$ имеет универсальный характер и не зависит от особенностей геометрии, жесткости граничных условий исследуемого образца.

Поскольку ширина запрещенной фотонной зоны $\Delta \nu$ пропорциональна анизотропии показателя преломления $\Delta \nu / \nu_0 = \Delta n / n$, ширина запрещенной зоны определяется ориентационным упорядочением молекул. Ориентационное упорядочение в жидком кристалле описывается параметром ориентационно-

Рис. 3. а) Температурная зависимость полуширины дифракционной полосы $\Delta \nu_B$ (светлые символы) и ширины фотонной запрещенной зоны $\Delta \nu$ (темные символы). Штриховые линии показывают температуры скачков положения дифракционной полосы. δ) Температурная зависимость параметра ориентационного порядка S(T) холестерического фотонного кристалла (•) и результат подгонки S(T) зависимостью, следующей из теории Ландау фазовых переходов (сплошная кривая)

го порядка $S = \langle 3\cos^2 \theta - 1 \rangle / 2$, где θ — угол ориентации длинных осей молекул относительно направления директора жидкого кристалла, усреднение проводится по различным ориентациям молекул [1, 2]. Температурная зависимость S(T) и параметры, характеризующие эту зависимость, могут быть определены, если установлена связь между двумя макроскопическими характеристиками жидкого кристалла Δn и S, а также использована адекватная модель, описывающая температурную зависимость S(T). Прежде чем решать эту задачу для жидкокристаллического фотонного кристалла, вкратце рассмотрим подходы, использовавшиеся для нематика. Живуцкий и Кучинский [7] предположили,

что двулучепреломление Δn в нематическом жидком кристалле связано простым соотношением с параметром ориентационного порядка $\Delta n = \Delta n_0 S$, где Δn_0 — двулучепреломление при полном ориентационном упорядочении молекул (T = 0 K). В качестве температурной зависимости S, как правило, использовалось предложенное Халлером полуэмпирическое выражение $S = (1 - T/T_{NI})^{\beta}$ [8]. В этом случае температурная зависимость двулучепреломления имеет вид $\Delta n(T) = \Delta n_0 (1 - T/T_{NI})^{\beta}$. Это выражение использовалось для определения ориентационного параметра порядка в нематическом жидком кристалле [9–12]. Существенным ограничением применимости соотношения Халлера является то, что только экспериментальные данные вдали от T_{NI} могут учитываться при подгонке. Более строгое соотношение между Δn и S было получено Вуксом [13], Чандрасекаром и Мадхусуданой [14] с учетом локального поля E_l , действующего на молекулу [15]:

$$\frac{\Delta n}{n} = \frac{n_I^2 - 1}{2n_I n} \frac{\Delta \alpha}{\langle \alpha \rangle} S, \qquad (2)$$

где n_I — показатель преломления изотропной жидкости. Соотношение (2) устанавливает связь между макроскопической характеристикой жидкого кристалла (анизотропией показателя преломления) и молекулярными свойствами (поляризуемость α) через скалярный параметр порядка. Анизотропия поляризуемости $\Delta \alpha = \alpha_l - \alpha_t$ и средняя поляризуемость $\langle \alpha \rangle = (\alpha_l + 2\alpha_t)/3$ выражаются через продольную α_l и поперечную α_t поляризуемости молекулы относительно ее длинной оси. Поляризуемость является молекулярной характеристикой, поэтому можно считать $\Delta \alpha$ и $\langle \alpha \rangle$ не зависящими от температуры.

В связи с ограниченностью применения приближения Халлера для описания температурной зависимости S(T) в широком интервале температур используется аналитическое выражение [15, 16]

$$S(T) = S^{**} + (1 - S^{**})|\tau|^{\beta}, \qquad (3)$$

где β — критическая экспонента, $\tau = (T^{**} - T)/T^{**}$. Соотношение (3) также учитывает скейлинговое условие для параметра порядка S(0) = 1.

Выражения (2) и (3) использовались [11, 15–17] для определения температурной зависимости S(T)в нематическом жидком кристалле и параметров модели S^{**} , T^{**} , β . Следует, однако, отметить, что хотя при таком подходе температурная зависимость параметра порядка может быть получена, параметры модели не имеют явного физического смысла и могут быть использованы только для сопоставления данных для различных веществ.

Подходы, развитые для описания нематических жидких кристаллов, и их ограниченность учтены нами при описании фотонных характеристик холестерического жидкого кристалла. Поскольку $\Delta n/n = \Delta \nu / \nu_0$, из выражения (2) следует, что относительная величина фотонной запрещенной зоны $\Delta \nu / \nu_0$ пропорциональна параметру порядка S жидкокристаллического фотонного кристалла. Для определения температурной зависимости S(T) и характеристик фазового перехода в жидкокристаллическом фотонном кристалле мы использовали теорию фазовых переходов Ландау [18, 19], которая носит универсальный характер и применима для различного типа слабых фазовых переходов первого рода. Разложение свободной энергии по степеням S взято в виде [19]

$$G(S) = \frac{1}{2}a(T - T^*)S^2 - BS^4 + DS^6.$$
 (4)

Для фазового перехода первого рода B > 0 и параметр порядка испытывает скачок при переходе. Условие минимума G(T) по S приводит к известной зависимости S(T) в упорядоченной фазе:

$$S = \left(\frac{B}{3D}\right)^{1/2} \left(1 + \sqrt{1 - \frac{3aD(T - T^*)}{2B^2}}\right)^{1/2}.$$

Как уже отмечалось, параметр ориентационного порядка S(0) = 1, что накладывает ограничения на коэффициенты разложения (4). С учетом нормировки S(0) = 1 температурная зависимость ориентационного параметра порядка принимает вид

$$S = \left(\frac{B}{3D}\right)^{1/2} \times \left(1 + \sqrt{1 - \left(\left(\frac{3D}{B}\right)^2 - \frac{6D}{B}\right)\frac{T - T^*}{T^*}}\right)^{1/2}.$$
 (5)

Коэффициент *a* из разложения Ландау (4) выражается через *B*, *D* и *T*^{*}. Из экспериментальных данных зависимости $\delta(T)$, представленных на рис. 2*a*, соотношения $\Delta \nu / \nu_0 = \Delta n / n$ и выражений (2), (5) получены температурная зависимость *S*(*T*), изображенная кружками на рис. 3*6*, и результат подгонки *S*(*T*) зависимостью (5), следующей из теории Ландау (сплошная кривая). Определенные в результате подгонки параметры теории $\frac{n_L^2 - 1}{2n_L n} \frac{\Delta \alpha}{\langle \alpha \rangle}$, *D*/*B*, температура потери устойчивости неупорядоченной фазы при охлаждении *T*^{*} позволяют определить следующую из теории равновесную температуру перехода

 $T_0 = T^* + B^2/2aD$. Полученная таким образом равновесная температура перехода $T_0 = 34.68 \,^{\circ}\mathrm{C}$ близка к экспериментально наблюдаемой $T_C \approx 34.4\,^{\circ}\text{C}$. В данном случае наблюдающаяся температура перехода оказывается ниже T₀. Это связано с тем, что в небольшом температурном интервале (около 0.6 °C) выше Т_С наблюдаются Голубые Фазы [20]. Энергия Голубых Фаз ниже, чем у изотропной фазы. В связи с этим переход из холестерического жидкого кристалла в Голубую Фазу происходит при более низкой температуре, чем температура T₀ виртуального (не наблюдающегося в эксперименте) перехода из холестерической фазы в изотропную жидкость. Полученная в результате подгонки величина $rac{n_I^2-1}{2n_In}rac{\Deltalpha}{\langle lpha
angle}$ и измеренное значение показателя преломления в изотропной фазе n_I позволяют определить анизотропию поляризуемости $\Delta \alpha / \langle \alpha \rangle = 0.455$, величина которой согласуется со значениями (0.409-0.504), определенными для нематического жидкого кристалла [15,17]. Малая величина коэффициента В в разложении энергии $(B/D \approx 0.1)$ связана со слабым фазовым переходом первого рода.

В работе определена температурная зависимость параметра порядка холестерического фотонного кристалла. Показано, что жесткие граничные условия для молекул на поверхности образца приводят к скачкам не только в температурной зависимости положения дифракционной полосы, но и полуширин дифракционных полос, а также ширины фотонной запрещенной зоны. Отношение $\Delta \nu / \nu_0$ носит универсальный характер и не зависит от граничных условий. Температурная зависимость относительной ширины фотонной запрещенной зоны $\Delta \nu / \nu_0$ описывается теорией фазовых переходов Ландау.

Исследования выполнены при частичной финансовой поддержке РФФИ (гранты №№ 02-12-33124-мол_а_вед, 14-02-01130).

ЛИТЕРАТУРА

- 1. П.-Ж. де Жен, Физика жидких кристаллов, Мир, Москва (1977).
- 2. Л. М. Блинов, Электро- и магнитооптика жидких кристаллов, Наука, Москва (1978).

- R. Dreher, G. Meier, and A. Saupe, Mol. Cryst. Liq. Cryst. 13, 17 (1971).
- В. А. Беляков, В. Е. Дмитриенко, В. П. Орлов, УФН 127, 221 (1979).
- 5. V. A. Belyakov and V. E. Dmitrienko, *Optics of Chiral Liquid Crystals*, Harwood Academic, London (1989).
- P. V. Dolganov, G. S. Ksyonz, V. E. Dmitrienko, and V. K. Dolganov, Phys. Rev. E 87, 032506 (2013).
- B. J. Zywucki and W. Kuczynski, IEEE Trans. Dielectr. Electr. Insul. 8, 512 (2001).
- 8. I. Haller, Prog. Sol. St. Chem. 10, 103 (1975).
- 9. J. Li, S. Gauza, and S.-T. Wu, J. Appl. Phys. 96, 19 (2004).
- P. V. Datta Prasad and V. G. K. M. Pisipati, Mol. Cryst. Liq. Cryst. 511, 102 (2009).
- S. Sreehari Sastry, T. Vindhya Kumari, K. Mallika, B. Gowri Sankara Rao, Sie-Tiong Ha, and S. Lakshminarayana, Liq. Cryst. **39**, 295 (2012).
- 12. J. Lalitha Kumari, P. V. Datta Prasad, D. Madhavi Latha, and V. G. K. M. Pisipati, Phase Transitions 85, 52 (2012).
- 13. M. Vuks, Opt. Spectrosc. 20, 361 (1966).
- 14. S. Chandrasekhar and N. V. Madhusudana, J. Phys. (Paris) Colloq. 30, C4 (1969).
- S. Erkan, M. Çetinkaya, S. Yildiz, and H. Özbek, Phys. Rev. E 86, 041705 (2012).
- I. Chirtoc, M. Chirtoc, C. Glorieux, and J. Thoen, Liq. Cryst. **31**(2), 229 (2004).
- 17. S. Yildiz, H. Özbek, C. Glorieux, and J. Thoen, Liq. Cryst. 34(5), 611 (2007).
- 18. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Наука, Москва (1995).
- 19. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge Univ. Press, Cambridge (1995).
- 20. В. А. Беляков, В. Е. Дмитриенко, УФН 146, 369 (1985).