ПЕРЕКЛЮЧАТЕЛИ ТОКА НА ОСНОВЕ АСИММЕТРИЧНЫХ НАНОСТРУКТУР ФЕРРОМАГНЕТИК–СВЕРХПРОВОДНИК С УЧЕТОМ ТРИПЛЕТНОГО КАНАЛА ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ

М. В. Авдеев, Ю. Н. Прошин*

Казанский федеральный университет 420008, Казань, Россия

Поступила в редакцию 30 сентября 2012 г. после переработки 31 мая 2013 г.

Исследованы свойства асимметричных трехслойных (FSF и FFS) гетероструктур, состоящих из ферромагнетика (F) и сверхпроводника (S), во внешнем магнитном поле. Несимметричность FS-систем может быть обусловлена различием в параметрах, характеризующих F-слои, в частности неколлинеарностью намагниченностей ферромагнетиков, что приводит к генерации дальнодействующей триплетной компоненты сверхпроводящего конденсата. Рассматривается случай сильного рассеяния электронов проводимости на немагнитных примесях (так называемый грязный предел), для которого получены уравнения для парной амплитуды и соответствующие граничные условия к ним, справедливые в присутствии внешнего магнитного поля. На основе анализа фазовых диаграмм исследуемых FS-гетероструктур обсуждаются их возможные приложения в качестве спиновых переключателей, даны рекомендации для поиска оптимальных параметров, необходимых для их устойчивой работы. Предсказывается появление своеобразной возвратной сверхпроводимости при увеличении внешнего магнитного поля для FFS-системы.

DOI: 10.7868/S0044451013120146

1. ВВЕДЕНИЕ

В настоящее время заметный интерес вызывает изучение физических явлений, возникающих за счет эффекта близости [1] в искусственно созданных гетероструктурах, состоящих из ферромагнитных (F) и сверхпроводящих (S) слоев. Суть эффекта близости заключается в том, что в таких тонкопленочных системах сверхпроводящие корреляции могут проникать из S-слоя, в меру прозрачности SF-границы, на небольшую глубину в F-слой. Напомним, что в обычных сверхпроводниках с s-типом спаривания куперовские пары образуются из электронов с противоположными спинами [2], в то время как в ферромагнетике мощное обменное поле *I* стремится выстроить спины электронов параллельно, что приводит к подавлению сверхпроводимости, поскольку практически всегда выполняется условие $I \gg \Delta$, где Δ характерный масштаб энергии связи куперовской

пары (см., например, обзор [3]). По этой причине сосуществование сверхпроводимости и ферромагнетизма в однородных материалах требует достаточно трудновыполнимых условий. Однако в искусственно созданных FS-системах, где ферромагнитный и сверхпроводящий параметры порядка оказываются пространственно разделены, такое сосуществование сверхпроводимости и ферромагнетизма легко достижимо.

Одной из особенностей эффекта близости в FS-системах является проявление в слоистых FS-системах неоднородного бесщелевого состояния типа состояния ЛОФФ, предсказанного в работах Ларкина, Овчинникова [4] и Фульде, Феррела [5] для однородного ферромагнитного сверхпроводника. Параметр порядка $\Delta(\mathbf{r})$ в этом случае представляет собой осциллирующую функцию радиус-вектора \mathbf{r} , которую можно в простейшем случае представить в виде $\Delta(\mathbf{r}) = \Delta_0 \exp i \mathbf{k}_F \cdot \mathbf{r}$. Когерентный трехмерный импульс пар ЛОФФ пропорционален волновому вектору центра масс пары в F-области, $k_F \approx v_F/2I$ (v_F — скорость Фер-

^{*}E-mail: yurii.proshin@kpfu.ru

ми). Наличие такой осцилляционной зависимости сверхпроводящих корреляций в F-слое, а также антагонизм между сверхпроводящим и ферромагнитным параметрами порядка приводят к ряду необычных явлений, в частности, к нетривиальной зависимости критической температуры от толщин d_F F-слоев [3, 6, 7] от монотонного спада до нуля и немонотонного выхода на плато до возвратной и периодически возвратной сверхпроводимости, предсказанной в работах [8, 9]. Возвратная сверхпроводимость позднее была обнаружена на бислоях V/Fe [10], Nb/Cu_{1-x}Ni_x [11]. Отметим также недавнее предсказание уединенной возвратной сверхпроводимости [12, 13].

В последнее время большое число работ посвящено исследованию свойств FS-систем с неоднородной намагниченностью в F-слоях [14-17], что приводит к генерации дальнодействующей триплетной компоненты сверхпроводящего конденсата, описывающей корреляцию электронов с суммарной проекцией спина $S_z = \pm 1$. Особенность такой спин-триплетной компоненты заключается прежде всего в том, что она оказывается нечувствительной к величине обменного поля *I* и затухает в F-металле на значительно больших расстояниях, чем спин-синглетная компонента сверхпроводящего конденсата [18, 19]. Этот факт для тонкопленочных структур может приводить к существенной зависимости критической температуры T_c от угла ϕ между направлениями намагниченностей F-слоев [14, 17].

Прогресс в области изготовления высококачественных FS-контактов, а также многообразие явлений, возникающих в таких слоистых FS-системах, делают их перспективными и привлекательными для возможных технических приложений [3, 6, 7, 20, 21]. Так, в конце 90-х гг. прошлого века в работах [22-24] была предложена модель спиновых переключателей на основе трехслойных FS-систем, переключение которых осуществляется слабым внешним магнитным полем. Магнитное поле меняет направление вектора намагниченности М одного из F-слоев, в то время как намагниченность соседнего F-металла зафиксирована. В результате контакт может перейти из сверхпроводящего в резистивное состояние. Более детально реализация спинового клапана описана в работах [25-37], а также в обзорах [3, 6, 7].

В экспериментальных работах [36, 37] впервые было достигнуто полное переключение из сверхпроводящего в резистивное состояние во внешнем магнитном поле на трехслойных FFS-системах $CoO_x/Fe^1/Cu/Fe^2/In(Pb)$. Первая теория, описывающая свойства FFS-систем и качественно объясняющая результаты работ [36, 37], была предложена в работе [17]. Однако в работе [17] был сделан ряд приближений: FS-граница полагалась абсолютно прозрачной, что совершенно нереально для контактирующих металлов с существенно различной зонной структурой, толщина F-слоя считалась бесконечной, и, наконец, теория [17]

не учитывала влияния магнитного поля, в то

время как экспериментальные измерения [36, 37]

проводились во внешнем магнитном поле. В данной работе мы рассматриваем тонкопленочные трехслойные FSF- и FFS-гетероструктуры в присутствии внешнего магнитного поля H, направленного параллельно плоскости контакта. Ранее учет магнитного поля был проведен для FSF-систем в работах [38–41]. Однако в цитируемых работах был рассмотрен случай только симметричных структур. Следует заметить, что реально созданные FS-контакты не являются идеально симметричными в силу специфики их изготовления. Более того, как будет показано ниже, наличие асимметрии при некоторых условиях может приводить к более высоким, по сравнению с симметричным случаем, значениям разности критических температур $\Delta T_c = T_c^{AP} - T_c^{P}$ (здесь T^{AP} и T^P — критические температуры для антипараллельной и параллельной ориентаций векторов намагниченности). Получение высоких значений разности ΔT важно для устойчивой работы спинового переключателя.

Мы рассматриваем случай «грязных» металлов, когда электроны проводимости достаточно сильно рассеиваются на немагнитных примесях, что позволяет использовать для описания эффекта близости уравнения Узаделя [42]. Также предполагается, что глубина проникновения магнитного поля λ_H много больше толщин S- и F-слоев ($\lambda_H \gg d_{S,F}$), и это позволяет считать поле однородным.

2. МЕТОД

Вблизи сверхпроводящего перехода критическая температура T_c неоднородной системы определяется из самосогласованного уравнения для параметра порядка (см., например, обзоры [6, 7])

$$\Delta(\mathbf{r})\ln t = \pi T_c \sum_{\omega>0}^{\infty} \operatorname{Sp}\left(\hat{F}(\mathbf{r},\omega) - \frac{\Delta(\mathbf{r})}{\omega}\right), \quad (1)$$

где $t = T_c/T_{cs}$ (T_{cs} — критическая температура перехода уединенного немагнитного сверхпроводника), $\omega = \pi T_c(2n+1)$ — мацубаровская частота. Функция \hat{F} — парная амплитуда сверхпроводящего конденсата, записанная в виде матрицы в спиновом пространстве.

В рамках принятых приближений в духе работ [38, 39] микроскопически можно показать, что в присутствии внешнего магнитного поля парная амплитуда удовлетворяет уравнению ($\omega > 0$)

$$\begin{bmatrix} |\omega| - i\mathbf{I}(\mathbf{r}) \cdot \hat{\boldsymbol{\sigma}} - \frac{1}{2}D\hat{\mathcal{L}}^2 \end{bmatrix} \hat{F}(\mathbf{r},\omega) = \hat{\Delta}(\mathbf{r}),$$

$$\hat{\mathcal{L}} = \nabla - \frac{2\pi i}{\Phi_0} \mathbf{A}.$$
 (2)

Здесь **А** — векторный потенциал, Φ_0 — квант магнитного потока, **I** — вектор обменного взаимодействия в ферромагнетике, $\hat{\sigma}$ — вектор, составленный из матриц Паули, D — коэффициент диффузии. В некоторых случаях оказывается удобным работать с уравнением (2), записанным в базисе, в котором спин-обменное взаимодействие $-\mathbf{I}(\mathbf{r}) \cdot \hat{\sigma}$ имеет диагональный вид. Это достигается за счет следующего калибровочного преобразования $\hat{F} = \hat{U}^{\dagger} \hat{F} \hat{U}$, где унитарная матрица $\hat{U} = \exp(i\theta(\mathbf{r}) \cdot \hat{\sigma}/2)$ (здесь $\theta(\mathbf{r})$ векторный фазовый множитель) обеспечивает преобразование $\hat{U}\mathbf{I}(\mathbf{r}) \cdot \hat{\sigma} \hat{U}^{\dagger} = I(\mathbf{r}) \hat{\sigma}_z$. При этом уравнение (2) для функции \hat{F} будет иметь вид

$$\begin{bmatrix} |\omega| - iI(\mathbf{r})\hat{\sigma}_z - \frac{1}{2}D\hat{D}^2 \end{bmatrix} \hat{F}(\mathbf{r},\omega) = \hat{\Delta}(\mathbf{r}),$$

$$\hat{D} = \hat{U}\hat{\mathcal{L}}\hat{U}^{\dagger} = \nabla - \frac{2\pi i}{\Phi_0}\mathbf{A} - \frac{i}{2}\nabla\boldsymbol{\theta}(\mathbf{r})\cdot\hat{\boldsymbol{\sigma}}.$$
(3)

Уравнения (2) необходимо дополнить граничными условиями. Мы используем граничные условия из работы [9], являющиеся модернизированными граничными условиями Куприянова – Лукичева [43], справедливые при наличии внешнего магнитного поля и произвольной взаимной ориентации векторов намагниченности. На FS-границе они имеют вид

$$\frac{4D_f}{\sigma_f v_F^f} \hat{\mathcal{L}} \hat{F}^f = \frac{4D_s}{\sigma_s v_F^s} \hat{\mathcal{L}} \hat{F}^s,$$

$$\frac{4D_s}{\sigma_s v_F^s} \mathbf{n} \hat{\mathcal{L}} \hat{F}^s = \hat{F}^s - \hat{F}^f.$$
(4)

Здесь $v_F^{s(f)}$ и $\sigma_{s(f)}$ — соответственно скорость Ферми и параметр прозрачности границы со стороны S(F)-металла (см. обзор [6]), **п** — вектор нормали к SF-границе.

Граничные условия для плоского контакта ферромагнетик-ферромагнетик (F₁F₂) имеют аналогичный вид:

$$\frac{4D_{f2}}{\sigma_{f2}v_F^{f2}}\hat{\mathcal{L}}\hat{F}^{f2} = \frac{4D_{f1}}{\sigma_{f1}v_F^{f1}}\hat{\mathcal{L}}\hat{F}^{f1},$$

$$\frac{4D_{f1}}{\sigma_{f1}v_F^{f1}}\mathbf{n}\hat{\mathcal{L}}\hat{F}^{f1} = \hat{F}^{f1} - \hat{F}^{f2}.$$
(5)

Отсутствие потока парной амплитуды через внешние границы приводит к условию

$$\hat{\mathcal{L}}\hat{F}^{s,f} = 0$$

Заметим, что граничные условия (4), (5) удовлетворяют условию детального баланса [6]

$$\sigma_s v_F^s N_s = \sigma_f v_F^f N_f,$$

$$\sigma_{f1} v_F^{f1} N_{f1} = \sigma_{f2} v_F^{f2} N_{f2},$$

где $N_{s(f)}$ — плотность состояний на поверхности Ферми в S(F)-слое.

3. ТРЕХСЛОЙНАЯ СИСТЕМА F_1SF_2

Выберем систему координат так, что левый F₁-слой занимает область $-d_{f1} - d_s/2 < x < -d_s/2$, S-слой занимает область $-d_s/2 < x < d_s/2$, и правый F₂-слой занимает область $d_s/2 < x < d_s/2$, и правый F₂-слой занимает область $d_s/2 < x < d_s/2 + d_{f2}$. Вектор намагниченности F₁-слоя направлен под углом ϕ к оси z, т. е. $\mathbf{M}_1(0, M_1 \sin \phi, M_1 \cos \phi)$, при этом матрица \hat{U} имеет вид

$$\hat{U} = \begin{pmatrix} \cos\frac{\phi}{2} & i\sin\frac{\phi}{2} \\ \\ i\sin\frac{\phi}{2} & \cos\frac{\phi}{2} \end{pmatrix}.$$

Ориентация вектора намагниченности противоположного слоя F_2 зафиксирована и соответственно равна $\mathbf{M}_2(0, 0, M_2)$. Магнитное поле **H** направлено параллельно плоскости контакта, $\mathbf{H}(0, 0, -H)$. Схематичное изображение геометрии задачи для FFSи FSF-систем приведено на рис. 1.

При данной геометрии задачи все функции зависят лишь от переменной x. Заметим, что диагональные элементы $F_{11} = F_{22}^* = F_s$ включают в себя синглетную компоненту парной амплитуды и триплетную с нулевой проекцией суммарного спина на ось квантования ($S_z = 0$), в то время как недиагональные компоненты $F_{12} = -F_{21}^* = F_t$ соответствуют триплетной компоненте F_t с $S_z = \pm 1$.

Сделав стандартное приближение $\Delta_f = 0$, приведем решения для парной амплитуды к виду

$$F_s^s(x,\omega) = \frac{\Delta_s}{\omega + D_s Q_s^2 h^2/2} + \Delta_s A_s \operatorname{ch}(k_s x) + \Delta_s B_s \operatorname{sh}(k_s x), \quad (6)$$
$$F_t^s(x,\omega) = A_t \operatorname{ch}(k_s x) + B_t \operatorname{sh}(k_s x)$$

Рис. 1. Геометрия задачи: *a* — F₁SF₂-система при φ = π (антипараллельная ориентация векторов намагниченности); δ — F₁F₂S-система при φ = 0 (параллельная ориентация векторов намагниченности); *в* — схематичное изображение ориентаций векторов намагниченности

для S-слоя,

$$\tilde{F}_{s}^{f1}(x,\omega) = C_{s1} \operatorname{ch} \left[k_{h1}(x+d_{f1}+d_{s}/2) \right], \\ \tilde{F}_{t}^{f1}(x,\omega) = C_{t1} \operatorname{ch} \left[k_{f1}(x+d_{f1}+d_{s}/2) \right]$$
(7)

для F₁-слоя $(\hat{F} = \hat{U}^{\dagger} \hat{\tilde{F}} \hat{U})$ и

$$F_s^{f2}(x,\omega) = C_{s2} \operatorname{ch}(k_{h2}(x - d_{f2} - d_s/2)),$$

$$F_t^{f2}(x,\omega) = C_{t2} \operatorname{ch}(k_{f2}(x - d_{f2} - d_s/2))$$
(8)

для F₂-слоя. Такой вид решений уже учитывает граничные условия на свободных границах. Здесь волновые векторы определяются следующим образом:

$$k_s^2 = \frac{2\omega}{D_s} + Q_s^2 h^2, \quad k_{f1,2}^2 = \frac{2\omega}{D_{f1,2}} + Q_{f1,2}^2 h^2,$$

$$k_{h1,2}^2 = \frac{2(\omega - iI_{1,2})(1 - 2iI\tau_{f1,2})}{D_{f1,2}} + Q_{f1,2}^2 h^2, \quad (9)$$

$$Q_\alpha^2 = \left(\frac{2\pi H_c}{\Phi_0}\right)^2 \langle x^2 \rangle_\alpha, \quad \alpha = (f_1, s, f_2),$$

где $h = H/H_c$ — приведенное магнитное поле $(H_c$ — критическое поле уединенного S-слоя). При получении решения (6) было сделано приближение $\Delta(x) \approx \approx \langle \Delta(x) \rangle = \Delta_s$, которое значительно упрощает вычисления и при использованных нами параметрах системы хорошо согласуется с точными методами (см., например, работы [14, 17]). Также мы усреднили по толщинам S- и F-слоев члены, содержащие квадрат векторного потенциала, как это было сделано в работе [44].

Константы, входящие в уравнения (6), (7) и (8), определяются из граничных условий (4) и (5). Приведенная критическая температура $t = T_c/T_{cs}$ определяется из уравнения (1) и в данном случае имеет вид

$$\ln t = 2\pi T_c \sum_{\omega>0}^{\infty} \left(\frac{1}{\omega + D_s Q_s^2 h^2/2} + \operatorname{Re} A_s(\omega) \frac{\operatorname{sh}(k_s d_s/2)}{k_s d_s/2} - \frac{1}{\omega} \right). \quad (10)$$

4. ТРЕХСЛОЙНАЯ СИСТЕМА F_1F_2S

Выберем систему координат так, что S-слой занимает область $0 < x < d_s$, F₁- и F₂-слои соответственно занимают области $-d_{f1} - d_{f2} < x < -d_{f2}$ и $-d_{f2} < x < 0$. Вектор намагниченности F₁-слоя составляет с осью z угол ϕ , а направление намагниченности второго слоя F₂ зафиксировано и параллельно оси z (см. рис. 1).

Все приближения, сделанные в разд. 3, остаются справедливыми и для рассматриваемой F_1F_2S -системы, поэтому приведем сразу решения для S- и F-слоев:

$$F_s^s(x,\omega) = \frac{\Delta_s}{\omega + D_s Q_s^2 h^2/2} + \Delta_s C_s^s \operatorname{ch} \left[k_s(x-d_s)\right],$$

$$F_t^s(x,\omega) = C_t^s \operatorname{ch} \left[k_s(x-d_s)\right],$$
(11)

для S-слоя,

$$F_s^{f2}(x,\omega) = A_s^{f2} \operatorname{ch}(k_{h2}x) + B_s^{f2} \operatorname{sh}(k_{h2}x), F_s^{f2}(x,\omega) = A_t^{f2} \operatorname{ch}(k_{f2}x) + B_t^{f2} \operatorname{sh}(k_{f2}x)$$
(12)

для F₂-слоя и

$$\tilde{F}_{s}^{f1}(x,\omega) = C_{s}^{f1} \operatorname{ch} \left[k_{h1}(x+d_{f1}+d_{f2}) \right],$$

$$\tilde{F}_{t}^{f1}(x,\omega) = C_{t}^{f1} \operatorname{ch} \left[k_{f1}(x+d_{f1}+d_{f2}) \right]$$
(13)

для F₁-слоя ($\hat{F} = \hat{U}^{\dagger} \hat{\tilde{F}} \hat{U}$).

Рис. 2. Зависимости величины Δt от толщин F-слоев для систем FSF (*a*) и FFS (*б*) в отсутствие магнитного поля. Здесь $l_s/\xi_{s0} = 0.2$, $I_1/\pi T_{cs} = I_2/\pi T_{cs} = 10$, а другие параметры следующие: $a - d_s/\xi_{s0} = 0.7$, $2I\tau_{f1} = 2I\tau_{f2} = 0.25$, $\sigma_{s1} = \sigma_{s2} = 0.8$, $\sigma_{f1} = \sigma_{f2} = 1.2$; $b - d_s/\xi_{s0} = 0.6$, $\sigma_s = \sigma_{fs} = 2$, $2I\tau_{f1} = 2I\tau_{f2} = 0.3$, $\sigma_{f1} = \sigma_{f2} = 10$

Уравнение (1), определяющее приведенную критическую температуру t, в данном случае имеет вид

$$\ln t = 2\pi T_c \sum_{\omega>0}^{\infty} \left(\frac{1}{\omega + D_s Q_s^2 h^2/2} + \operatorname{Re} C_s^s(\omega) \frac{\operatorname{sh}(k_s d_s)}{k_s d_s} - \frac{1}{\omega} \right). \quad (14)$$

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В данном разделе мы приводим результаты численного решения уравнений (10) и (14) для F_1SF_2 -и F_1F_2S -гетероструктур.

Вначале обсудим влияние асимметрии, связанной с различием в толщинах F-слоев, на величину разности $\Delta T_c = T_c^{AP} - T_c^P$ в отсутствие внешнего магнитного поля. На рис. 2 приведены зависимости величины $\Delta t = \Delta T_c/T_{cs}$ от относительных толщин F-слоев для F_1SF_2 - и F_1F_2S -систем (все длины, относящиеся к F-металлам, нормированы на длину спиновой жесткости $a_f = v_F/2I$). Видно, что в случае, когда толщины F-слоев различны, наблюдается более широкая область на фазовой диаграмме, где значение Δt значительно выше, чем в случае, когда $d_{f1} = d_{f2}$. Здесь важно отметить, что такая особенность наиболее ярко проявляется при выходе зависимости Δt на плато. В этом случае из-за быстрого затухания парной амплитуды в F-области влияние внешних границ F-металла на T_c (и, следовательно, на Δt) нивелируется. При этом отметим также, что если для случая FSF-системы функция $\Delta t(d_{f1}, d_{f2}) = \Delta t(d_{f2}, d_{f1})$, то для FFS-системы это условие нарушается. Если в такой F₁F₂S-системе сделать промежуточный F₂-слой достаточно тонким $(d_f \leq \sqrt{a_f l_f})$, то даже при достаточно большой толщине F₁-слоя величина разности Δt будет выше, чем в симметричном случае. Напомним, что для устойчивой работы спинового переключателя важно, чтобы эта разность Δt имела наибольшее значение.

Влияние внешнего магнитного поля на фазовые диаграммы FS-систем показано на рис. 3, где приведен пример расчета для несимметричной FSF-системы. В частности, из рис. 36, где изображена зависимость $t^{AP}(d_{f2})$, видно, что магнитное поле не только монотонно понижает температуру перехода, но также может качественно менять характер зависимости $t(d_{f2})$. Так, если при h = 0 зависимость t(df2) имеет неглубокий минимум и далее выходит на плато, то при увеличении поля появляется возвратная сверхпроводимость. При дальнейшем увеличении поля происходит монотонный спад кривой $t(d_{f2})$ до нуля. На рис. Зв изображена зависимость $t^{AP}(h)$ при различных фиксированных значениях толщин F-слоев. Здесь наблюдается монотонное понижение критической температуры перехода с увеличением магнитного поля, что хорошо согласуется с механизмом подавления сверхпроводимости за счет так называемого орбитального эффекта [45].

Важно заметить, что увеличение магнитного поля h может способствовать увеличению Δt (рис. 3a). Это связано с количественным различием в пове-

Рис. 3. Влияние магнитного поля на фазовые диаграммы FSF-системы при фиксированной толщине F₁-слоя $d_{f1}/a_{f1} = 0.4$ (a, b): кривые 1 - h = 0; 2 - h = 0.2; 3 - h = 0.3; 4 - h = 0.4; и для $(c) d_{f2}/a_{f2} = 0$ (кривая 5); $d_{f2}/a_{f2} = 0.4$ $(b); d_{f2}/a_{f2} = 0.8$ (7). Значения остальных параметров соответствуют рис. 2a

дении зависимости $t(d_f)$ при антипараллельной и параллельной ориентациях векторов намагниченности.

На рис. 4а, где изображена зависимость $t^{AP}(d_{f1}/a_{f1})$ для FFS-системы, видно, что увеличение приведенного магнитного поля h приводит к подавлению температуры перехода и к последующему возникновению своеобразной возвратной Зависимость $t^{P}(d_{f1}/a_{f1})$ сверхпроводимости. (рис. 4б) аналогичным образом меняет свой характер при увеличении поля. На рис. 4в показана угловая зависимость $t(\phi)$ при различных значениях *h*. Напомним, что при неколлинеарных ориентациях намагниченностей существен учет триплетных сверхпроводящих корреляций [14, 15, 17]. Сама зависимость $t(\phi)$ является немонотонной и имеет минимум при $\phi_m \approx 90^\circ$, т.е. в отличие от FSF-системы, где максимум Δt соответствует антипараллельной ориентации, в данном случае максимум достигается при перпендикулярной взаимной ориентации векторов намагниченностей, что согласуется с результатами, впервые полученными в работе [17]. Увеличение поля *h* приводит к тому,

что минимум на зависимости $t(\phi)$ становится более глубоким, т.е. приводит к возрастанию разности $\Delta t(\phi_m)$.

Заметим, что полученные нами результаты качественно соответствуют результатам недавней экспериментальной работы [37], где была исследована F_1F_2S -система $CoO_x/Fe_1/Cu/Fe_2/Pb$. В частности, в этой работе было показано и объяснено в рамках подхода работы [17], что максимум на зависимости $\Delta T_c(\phi)$ достигается при перпендикулярной ориентации намагниченностей в F-слоях, что также соответствует выводам нашей теории.

6. МОДЕЛЬ СПИНОВОГО ПЕРЕКЛЮЧАТЕЛЯ FFS

Рассмотрим модель спинового переключателя на основе трехслойной системы FFS, предложенной в работе [22]. Именно на такого типа системе $CoO_x/Fe_1/Cu/Fe_2/In$ впервые экспериментально удалось осуществить полное переключение между сверхпроводящим и резистивным состояниями [36]. Многочисленные экспериментальные

Рис. 4. Влияние магнитного поля на фазовые диаграммы FFS-системы при фиксированной толщине F₂-слоя $d_{f2}/a_{f2} = 0.5$ (a, b): кривые 1 - h = 0; 2 - h = 0.2; 3 - h = 0.3; 4 - h = 0.4; и при $d_{f1}/a_{f1} = 0.2$ (в). Значения остальных параметров соответствуют рис. 2b

попытки наблюдать полный эффект спинового клапана на системах FSF не дали положительных результатов для возможной практической реализации [25,26,28–31,33,35]. В отличие от работ [17,22], проведем вычисления с учетом внешнего магнитного поля. Это обусловлено тем обстоятельством, что в реальных экспериментах (см., например, [25–31,33–37]) FS-система находилась во внешнем параллельном магнитном поле, которое препятствовало образованию в F-слоях доменной структуры. Более того, как было показано выше, внешнее магнитное поле оказывает сильное влияние на характер фазовых диаграмм FS-систем.

При технической реализации спинового переключателя на основе F_1F_2S -системы намагниченность M_1 уединенного F_1 -металла фиксируют с помощью дополнительного слоя из антиферромагнитного диэлектрика, например, оксида кобальта [36, 37]. Направление намагниченности промежуточного слоя F_2 можно менять при помощи внешнего магнитного поля. Здесь мы рассмотрим два состояния FFS-системы, соответствующие антипараллельной и параллельной ориентациям векторов намагниченностей.

На рис. 5*a* приведена зависимость разности Δt от толщины промежуточного слоя F₂ при фиксированной толщине $d_{f1}/a_{f1} = 0.3$ слоя F₁ в отсутствие магнитного поля. Заметим, что поведение $\Delta t(d_{f2})$ качественно согласуется с соответствующей экспериментальной зависимостью, полученной в работе [37] и предсказанной теоретически в [17]. Зависимость $\Delta t(d_{f2})$ вначале имеет максимум и при дальнейшем увеличении толщины F₂-слоя, проходя через неглубокий минимум, где $\Delta t < 0$, монотонно обращается в нуль. Это связано с ослаблением и дальней-

10 ЖЭТФ, вып. 6 (12)

Рис.5. Фазовые диаграммы состояния спинового переключателя на базе FFS-системы во внешнем магнитном поле: кривые 1 - h = 0; 2 - h = 0.1; 3 - h = 0.2; 4 - h = 0.3. Звездочкой обозначена «рабочая» точка спинового переключателя (см. текст). Значения остальных параметров следующие: $d_s/\xi_{s0} = 0.8, l_s/\xi_{s0} = 0.5, \sigma_s = 4, n_{sf} = 0.75, d_{f1}/a_{f1} = 0.3, l_{f1}/a_{f1} = l_{f2}/a_{f2} = 0.25, \sigma_{f1} = \sigma_{f2} = 3, I_1/\pi T_{cs} = I_2/\pi T_{cs} = 15$

шей потерей когерентной связи между границами F₂-слоя из-за быстрого затухания парной амплитуды в глубь F-металла. При этом влияние F₁-слоя пропадает и поведение системы соответствует двухслойному FS-контакту.

На рис. 56 изображены зависимости $t(d_{f2})$ при различных значениях приведенного магнитного поля h. Сплошные линии соответствуют антипараллельным состояниям, а штриховые — параллельным состояниям системы. В соответствии с экспериментальным подходом работ [36, 37] положим, что изначально система находится в антипараллельном состоянии $\uparrow_1 \downarrow_2 S$ во внешнем магнитном поле, направленном параллельно намагниченности М₂ (для определенности возьмем h = -0.2). Конечное значение величины внешнего магнитного поля необходимо для контроля взаимной ориентации векторов намагниченностей F-слоев, а также для предотвращения образования доменной структуры (см. работы [36, 37]). Выберем рабочую точку спинового переключателя, которая обозначена на рис. 56 звездочкой $(t^* = 0.3, d_{f2}^*/a_{f2} = 0.2)$. При этом система находится в сверхпроводящем состоянии, поскольку $t^* < t^{AP}(h = 0.2).$

При изменении внешнего магнитного поля от значения h = -0.2 до значения h = 0.2 происходит переориентация вектора намагниченности M_2 , и система переходит в параллельное состояние $\uparrow_1\uparrow_2$ S. При этом критическая температура перехода для параллельного состояния оказывается ниже температуры системы, т.е. в данном случае выполняется условие $t^* > t^P (h = 0.2)$, и, соответственно, спиновый переключатель переходит в резистивное состояние.

При этом положение рабочей точки оптимально выбрать при таких толщинах F-слоев, где наблюдается максимум Δt . В данном случае это соответствует значениям толщин $d_{f1}/a_{f1} = 0.3$, $d_{f2}/a_{f2} = 0.2$, что соответствует несимметричному случаю. С другой стороны, для устойчивой работы спинового переключателя рабочая точка должна находиться по возможности с максимально высоким значением температуры, причем необходимо выполнение следующего условия: $T_c^P(H) < T^* < T_c^{AP}(H)$.

В рассмотренном примере наибольшая разность температур, а следовательно, и наибольший диапазон для размещения рабочей точки достигается при $h = \pm 0.3$.

7. ЗАКЛЮЧЕНИЕ

Исследования свойств слоистых FS-гетероструктур представляет интерес не только из-за богатой физики явлений, протекающих в рассматриваемых системах, но также из-за перспективных технических применений в области спинтроники и слаботочной электроники. Одним из важных параметров,

определяющих устойчивость работы спинового переключателя на основе FS-систем, является величина разности $\Delta t = T_c^{AP} - T_c^P$. В работе на основе полученного численного решения самосогласованного уравнения для параметра порядка мы показали, что асимметричность FS-систем, вызванная как геометрией системы, так и различием в значениях параметров, характеризующих F-слои, может приводить к большим значениям разности Δt по сравнению с полностью симметричным случаем. Показано, что величиной Δt можно управлять с помощью внешнего магнитного поля. Обсуждается возможное появление своеобразной возвратной сверхпроводимости при увеличении внешнего магнитного поля. Рассмотрена модель спинового переключателя на основе FFS-системы с учетом внешнего магнитного поля. Основные результаты и выводы работы находятся в хорошем качественном согласии с экспериментальными данными для FFS- и FSF-систем.

Эта статья не могла быть написана без предыдущих совместных публикаций с М. Г. Хусаиновым и С. Л. Царевским, светлой памяти которых и посвящается данная работа.

Работа выполнена при частичной финансовой поддержке РФФИ (грант № 13-02-01202).

ЛИТЕРАТУРА

- 1. P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).
- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
- K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, in *Magnetic Heterostructures*, Springer, Berlin-Heidelberg (2008), p. 251.
- А. И. Ларкин, Ю. Н. Овчинников, ЖЭТФ 47, 1136 (1964).
- 5. P. Fulde and R. Ferrell, Phys. Rev. A 135, 550 (1964).
- Ю. А. Изюмов, Ю. Н. Прошин, М. Г. Хусаинов, УФН 172, 114 (2002).
- 7. A. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
- M. Khusainov and Y. Proshin, Phys. Rev. B 56, R14283 (1997).
- Ю. Н. Прошин, М. Г. Хусаинов, ЖЭТФ 113, 1708 (1998).
- I. A. Garifullin, D. A. Tikhonov, N. N. Garif'yanov et al., Phys. Rev. B 66, 020505 (2002).

- V. Zdravkov, A. Sidorenko, G. Obermeier et al., Phys. Rev. Lett. 97, 057004 (2006).
- **12.** М. Г. Хусаинов, М. М. Хусаинов, Н. Иванов, Ю. Н. Прошин, Письма в ЖЭТФ **90**, 402 (2009).
- Y. Proshin, M. Khusainov, and M. Khusainov, Physica C: Superconductivity 470, 874 (2010).
- 14. Ya. V. Fominov, A. A. Golubov, and M. Yu. Kupriyanov, Письма в ЖЭТФ 77, 609 (2003).
- 15. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
- 16. M. Houzet and A. I. Buzdin, Phys. Rev. B 76, 060504 (2007).
- 17. Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya et al., Письма в ЖЭТФ **91**, 329 (2010).
- 18. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett. 86, 4096 (2001).
- 19. T. Champel and M. Eschrig, Phys. Rev. B 72, 054523 (2005).
- V. V. Ryazanov, V. A. Oboznov, A. S. Prokofiev et al., J. Low Temp. Phys. 136, 385 (2004).
- 21. A. A. Golubov, M. Yu. Kupriyanov, and E. Il'ichev, Rev. Mod. Phys. 76, 411 (2004).
- 22. S. Oh, D. Youm, and M. Beasley, Appl. Phys. Lett. 71, 2376 (1997).
- 23. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
- 24. A. I. Buzdin, A. V. Vedyayev, and N. V. Ryzhanova, Europhys. Lett. 48, 686 (1999).
- J. Y. Gu, C.-Y. You, J. S. Jiang et al., Phys. Rev. Lett. 89, 267001 (2002).
- 26. A. Potenza and C. H. Marrows, Phys. Rev. B 71, 180503 (2005).
- 27. K. Westerholt, D. Sprungmann, H. Zabel et al., Phys. Rev. Lett. 95, 097003 (2005).
- 28. I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006).

- 29. A. Y. Rusanov, S. Habraken, and J. Aarts, Phys. Rev. B 73, 060505 (2006).
- 30. R. Steiner and P. Ziemann, Phys. Rev. B 74, 094504 (2006).
- 31. I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. B 74, 220507 (2006).
- 32. Y. Proshin, A. Zimin, N. Fazleev, and M. Khusainov, Phys. Rev. B 73, 184514 (2006).
- 33. A. Singh, C. Sürgers, and H. V. Löhneysen, Phys. Rev. B 75, 024513 (2007).
- 34. D. H. Kim and T. Hwang, Physica C: Superconductivity 455, 58 (2007).
- 35. G. Nowak, H. Zabel, K. Westerholt et al., Phys. Rev. B 78, 134520 (2008).
- 36. P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin et al., Appl. Phys. Lett. 97, 102505 (2010).
- 37. P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin et al., Phys. Rev. Lett. 109, 057005 (2012).
- Z. Radović, L. Dobrosavljević-Grujić, A. I. Buzdin, and J. R. Clem, Phys. Rev. B 38, 2388 (1988).
- B. Krunavakarn and S. Yoksan, Physica C: Superconductivity 440, 25 (2006).
- 40. M. Avdeev, M. Khusainov, Y. Proshin, and S. Tsarevskii, Sol. St. Phenom. 152, 462 (2009).
- 41. M. Avdeev, M. Khusainov, Y. Proshin, and S. Tsarevskii, Supercond. Sci. Technol. 23, 105005 (2010).
- 42. K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
- 43. М. Ю. Куприянов, В. Ф. Лукичев, ЖЭТФ 94(6), 139 (1988).
- 44. М. В. Авдеев, Ю. Н. Прошин, М. Г. Хусаинов, С. Л. Царевский, ФММ 111, 563 (2011).
- **45**. В. Л. Гинзбург, ЖЭТФ **31**, 202 (1956).