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SPATIAL STRUCTURE OF A COLLISIONALLY INHOMOGENEOUSBOSE�EINSTEIN CONDENSATEFei Li a;b*, Dongxia Zhang , Shiguang Rong , Ying Xu aDepartment of Eduation Siene, Hunan First Normal University410205, Changsha, ChinabKey Laboratory of Low-Dimensional Quantum Strutures and Quantum Control,Ministry of Eduation, Hunan Normal University410081, Changsha, China Department of Physis, Hunan University of Siene and Tehnology411201, Xiangtan, ChinaReeived April 28, 2013The spatial struture of a ollisionally inhomogeneous Bose�Einstein ondensate (BEC) in an optial lattie isstudied. A spatially dependent urrent with an expliit analyti expression is found in the ase with a spatiallydependent BEC phase. The osillating amplitude of the urrent an be adjusted by a Feshbah resonane, andthe intensity of the urrent depends heavily on the initial and boundary onditions. Inreasing the osillatingamplitude of the urrent an fore the system to pass from a single-periodi spatial struture into a very om-plex state. But in the ase with a onstant phase, the spatially dependent urrent disappears and the Melnikovhaoti riterion is obtained via a perturbative analysis in the presene of a weak optial lattie potential. Nu-merial simulations show that a strong optial lattie potential an lead BEC atoms to a state with a haotispatial distribution via a quasiperiodi route.DOI: 10.7868/S00444510131100471. INTRODUCTIONEver sine Dahan et al. suessfully loaded Bose�Einstein ondensates (BECs) in optial latties [1, 2℄,the rih and interesting phenomena of BECs in opti-al latties attrat more and more attention. This isbeause BECs in optial latties open up numerousnew researh aspets for both fundamental and ap-plied problems in quantum mehanis. An optial lat-tie an be reated by the interferene of two or morelaser beams [3℄. Many important phenomena follow-ing from the interations between BECs and optiallatties have been profoundly investigated, both exper-imentally and theoretially. A quantum phase transi-tion in a BEC with repulsive interations, on�ned ina three-dimensional optial lattie potential, was foundin [4℄. As the potential depth inreases, a transition isobserved from a urrent to a Mott-insulator phase [4℄.In one-dimensional (1D) o�-resonane optial latties,*E-mail: wiself�gmail.om

for small values of the lattie well depth, Bloh osilla-tions were observed [5℄. Using the Holstein�Primako�(HP) transformation, Xie and oworkers theoretiallyfound that the dark and bright magneti solitons anexist in spinor BECs in a 1D optial latties in di�er-ent parameter regions [6℄. Up to date, the intriguingBEC phenomena investigated experimentally or theo-retially in optial latties inlude urrent and dissi-pative dynamis [7℄, arrays of Josephson juntions [8℄,Landau�Zener tunneling [2; 9�12℄, squeezed states [13℄,haos [14�30℄, and so on. In reent years, BECs intraveling optial latties also reeive onsiderable at-tention [29�39℄.It is undoubted that the spatial struture ofBECs � the spatial distribution of ondensed atoms �is of great importane to various phenomena exhibitedby BECs. The spatial haos of a trapped BEC in a1D weak optial lattie was studied in [19℄, followed bythe researh on spatial haos of BECs in a Wannier�Stark potential [20℄. In our previous works, the spatialhaos of BECs in a igar-shaped trap and an asym-metri periodi potential were investigated [21℄. The3 ÆÝÒÔ, âûï. 5 (11) 921



Fei Li, Dongxia Zhang, Shiguang Rong, Ying Xu ÆÝÒÔ, òîì 144, âûï. 5 (11), 2013spatial haos disussed in the above papers an be at-tributed to the same type, ontinuous spatial haos.Reently, a di�erent type of spatial haos de�ned as adisrete haoti state was announed [18℄. The authorspresented analyti evidene of this type of spatial haosin a 1D attrative BEC [18℄. In the study of the twotypes of spatial haos, both the amplitudes and signsof the nonlinearity parameters in the above referenesare spae-independent [18�21℄. However, experimentshave demonstrated that the nonlinearity parameter anbe adjusted from large negative values to large posi-tive values via a tehnique named the Feshbah reso-nane [40�45℄. In early years, the time-dependent non-linearity parameters were usually onsidered [25; 40�44℄.Reently, the realization and the role of a spatiallyvarying nonlinearity were disussed in [46�48℄ and thereferenes therein. BECs with spatially varying nonlin-earities are usually alled ollisionally inhomogeneousones [45, 49, 50℄. To the best of our knowledge, therole of spatially varying nonlinearities in the spatialdistribution of ondensed atoms has not been reportedso far. In this paper, we address this problem. As isknown, many properties of BECs, inluding the spatialdistribution of ondensed atoms, are badly in�uenedby the nonlinearity parameter. Therefore, studies onthe role of the spatially varying nonlinearities in thespatial distribution of BEC atoms are neessary.This paper is organized as follows. In Se. 2, thease with a spatially dependent phase is onsidered.We �nd that there exists a spatially varying urrentwith an expliit analyti expression in the system, anda strong osillation of the urrent indues a very om-plex spatial struture in the systems. In Se. 3, thease with a onstant phase is onsidered. A pertur-bative analysis is performed and the Melnikov haotiriterion is obtained. Numerial simulations demon-strate that the system steps from a quasiperiodi stateinto a haoti one as the depth of the external optiallattie potential inreases. In Se. 4, a brief onlusionis presented.2. THE CASE WITH A SPATIALLYDEPENDENT PHASEIn the mean-�eld approximation, the dynamis ofa quasi-1D BEC an be modeled by a 1D Gross�Pitaevskii equationi~� �t = � ~22m �2 �x2 + Vext(x) + gj j2 ; (1)

where m is the atom mass, ~ is the Plank onstant,Vext(x) is the external potential,  is the marosopiquantum wave funtion haraterizing the dynamialevolution of BEC near zero temperature,g = 2~!?asis the nonlinearity parameter haraterizing the two-partile interation, and as is the s-wave satteringlength: as > 0 indiates a repulsive interation andas < 0 orresponds to an attrative interation.In this paper, we onsider the sine optial lattiepotential Vext(x) = V1 sin(2Kx); (2)where K is the wave vetor of the lasers forming theoptial potential. Suh an optial potential an be re-ated by the interferene of two or more laser beams.For simpliity, we adopt the dimensionless variables~t = ~m [K℄2t; ~x = [K℄x; ~ =  pn;~V1 = m[K℄2~2 V1; ~K = K[K℄ ; ~g = mn[K℄2~2 g; (3)where n is the density of atoms in the BEC and [K℄is the unit of K. It is onvenient, and hopefully doesnot result in misunderstanding, to replae ~t with t, et.Then the Gross�Pitaevskii equation in dimensionlessform beomesi� �t = �12 �2 �x2 + V1 sin(2Kx) + gj j2 : (4)It has been pointed out that the spatial modulationof the sattering length an be ahieved via the Fesh-bah resonane tehnique, whih means that the non-linearity parameter g an be spatially dependent [46�48℄. In this paper, we onsider the nonlinearity param-eter of the formg(x) = g0 + g1 sin2(�x); (5)where g0 is the value of the nonlinearity parameter inthe absene of modulation, and g1 and � are the am-plitude and wavenumber of the modulation.Performing the transformation� =pg(x) for g(x) 6= 0;we arrive at [45, 46℄i���t = �12 �2��x2+j�j2�+V1 sin(2Kx)�+V̂eff (x)�; (6)922



ÆÝÒÔ, òîì 144, âûï. 5 (11), 2013 Spatial struture of a ollisionally inhomogeneous : : :V̂eff (x) = 12pg �2pg�x2 � 1g ��pg�x �2 ++ 1pg �pg�x ��x : (7)For the weak modulation with g0 � g1, V̂eff (x) anbe expressed asV̂eff (x) = �3�2g2116g20 + �2g12g0 os(2�x) ++ 3�2g2116g20 os(4�x) + ��g12g0 sin(2�x)� ��x : (8)We take the wave funtion in the form�(x; t) = R(x) expfi[�(x)� �t℄gwith �(x) and � being respetively the phase and thehemial potential. Substituting in Eq. (6) produesa hydrodynami version of the nonlinear Shrödinger(NLS) equation expressed asd2Rdx2 + 2~�R� 2R3 �R� d�dx�2 � 2V1 sin(2Kx)R�� ��" os(2�x) + 38"2 os(4�x)�R�� " sin(2�x)dRdx = 0; (9)ddx �R2 d�dx� = " sin(2�x)R2 d�dx : (10)In Eqs. (9) and (10), we have set2~� = 2�+ 3"2=8and the parameter " = �g1=g0 � 1is small due to the inequality g0 � g1. The �rstderivative d�=dx in Eq. (10) represents the veloity andR2 = n is the number density of atoms of the systemdesribed by Eq. (6) [46℄. Thereby, Eq. (10) suggeststhe existene of the spatially varying atomi urrentJ = R2 d�dx = �exp ��" os(2�x)2� � (11)in the system desribed by Eq. (6). Here, � is an inte-gral onstant determined by the initial and boundaryonditions. We note that the true number density ofatoms is not R2 but j j2 [46℄. Aordingly, J is not thetrue atomi urrent of the BEC. But, obviously, R2
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Fig. 1. Spatial evolutions of the urrent with � = 3:5,� = 1, " = 0:002 (a) and 0:2 (b )and J are respetively proportional to the true numberdensity of atoms and atomi urrent. As in Ref. [46℄,we treat R2 and J as the number density of atoms andthe atomi urrent of system (6). Given the above dis-ussion and after areful inspetion, we an �nd thatEqs. (9) and (11) are similar to the equations of motionof a lassial Newtonian partile in a entral �eld; theoordinate x plays the role of time t, and J is propor-tional to the angular momentum.In Refs. [18�21℄, the nonlinearity parameters are�xed and the atomi urrents are steady �ows. Butwhen the nonlinearity parameter is spatially depen-dent, the atomi urrent is spatially modulated, as anbe judged from Eq. (11).Equation (11) implies that there exists a spatiallydependent atomi urrent in the ondensate. The in-lusion of � and " related to the spatially dependentnonlinear parameter in Eq. (11) means that the atomiurrent an be adjusted via the Feshbah resonane.923 3*
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Fig. 2. Phase portraits in the plane (R(x); _R(x)) for " = 0:002 (a) and " = 0:2 (b ), with ~� = 7, V1 = 0:001, � = 3:5,� = 1, K = 4:5, R(0) = 0:5, and _R(0) = 0Undoubtedly, the urrent exerts an important e�et onthe spatial distribution of BEC atoms due to the trans-portation of BEC atoms within the system itself. InFig. 1, we numerially demonstrate the spatially depen-dent urrent with � = 3:5, � = 1, and di�erent valuesof ". We see from Fig. 1a that the osillating ampli-tude of the urrent is small when " = 0:002. Keepingthe values of � and � �xed and inreasing " to 0:2 leadsto a muh larger osillating amplitude of the urrent inFig. 1b. Aording to Eq. (11) and Fig. 1, we an on-lude that irrespetive of the values of the other param-eters, the urrent always osillates around the value �,namely the average intensity of the urrent is �. It hasbeen pointed out that � is determined by the initial andboundary onditions. This means that the initial andboundary onditions an exert very strong in�uene onthe intensity of the urrent. To summarize, the osil-lating amplitude of the urrent an be adjusted by theFeshbah resonane and the intensity of the urrent de-pends heavily on the initial and boundary onditions.To intuitively observe the e�et of the atomi ur-rent on the spatial distribution of ondensed atoms, wenumerially solve Eq. (9) in a spae interval from x = 0to x = 500 and plot the phase portraits in the plane(R(x), _R(x)) (see Fig. 2). We have set the parametersand initial onditions as ~� = 7, V1 = 0:001, � = 3:5,� = 1, K = 4:5, R(0) = 0:5, _R(0) = 0, " = 0:002 inFig. 2a, and " = 0:2 in Fig. 2b. When " = 0:002, weobserve from Fig. 2a that there is only one losed orbitin the phase spae, indiating that the system is in asingle-periodi state. But as " inreases to 0:2, the sys-tem is in a very omplex or even haoti state, as shownin Fig. 2b. By ontrasting Figs. 2a and b, we an on-

lude that a strong enough osillation of the urrent antake the system to a very omplex or even haoti state.In reality, a strong osillation of the urrent means astrong modulation of the nonlinear interation betweenatoms, whih must result in a omplex spatial distri-bution or even ompletely haoti spatial distributionof ondensed atoms.3. THE CASE WITH A CONSTANT PHASEThe omplexity of Eq. (9) indiates that it is dif-�ult to �nd its exat solution by analyti methods.But when the phase is onstant, for example, in thease of a standing wave with � = 0, the atomi urrentdisappears and we arrive atd2Rdx2 + 2~�R� 2R3 � 2V1 sin(2Kx)R�� ��" os(2�x) + 38"2 os(4�x)�R �� " sin(2�x)dRdx = 0: (12)If the oordinate x is replaed with time t, Eq. (12)is just a driven Du�ng equation with damping. Toperform a perturbative analysis, we assume thatV1 = "v1and hange Eq. (12) into the perturbed form924



ÆÝÒÔ, òîì 144, âûï. 5 (11), 2013 Spatial struture of a ollisionally inhomogeneous : : :d2Rdx2 + 2~�R� 2R3 = 2"v1 sin(2Kx)R++ ��" os(2�x) + 38"2 os(4�x)�R++ " sin(2�x)dRdx : (13)Expanding a solution of Eq. (13) to the �rst orderR = R0 + "R1; (14)and substituting it in Eq. (13), we obtain the zeroth-order unperturbed equationd2R0dx2 + 2~�R0 � 2R30 = 0 (15)and the �rst-order equationd2R1dx2 + 2~�R1 � 6R20R1 = 1 (16)with1 = dR0dx sin(2�x) + [� os(2�x) + 2v1 sin(2Kx)℄R0:Zeroth-order equation (15) is just the Du�ng equation,admitting the famous heterolini solutionR0 =p~� th hp~�(x� C)i ; (17)where C = x0 � th�1 hR0(x0)=p~�i =p~�is a onstant determined by the initial and boundaryonditions for ~� > 0. In the phase spae of unperturbedsystem (15), the separatrix is just formed by the het-erolini orbits orresponding to the heterolini solu-tions. In our theoreti analysis, what we are interestedin whether the system phase spae struture is lose tothe separatrix. If the unperturbed system is subjetto various fores, ompliated and even haoti spaestrutures may appear in the viinity of the separatrix.Aording to [16℄, when 1 = 0, using heterolinisolution (17), we an easily obtain two linearly inde-pendent solutions of Eq. (16) asf1 = dR0dx = ~� seh2 hp~�(x� C)i ; (18)f2 = dR0dx Z �dR0dx ��2 dx == 38~� (x� C) seh2 hp~�(x� C)i++ 18~�3=2 nsh h2p~�(x�C)i+3 th hp~�(x�C)io : (19)

It is obvious that f2 is unbounded and exponentially in-reases as x inreases beause it involves the hyperbolisine funtion. Using the two linearly independent solu-tions, we an onstrut the general solution of Eq. (16)as [17℄ R1(x) = f2 xZC1 f11dx� f1 xZC2 f21dx; (20)where C1 and C2 are two arbitrary onstants deter-mined by initial onditions. This solution an be di-retly proved by omparing the seond derivative R1xxfrom Eq. (20) with that in Eq. (16). It is not di�ultto verify that the general solution (20) is usually un-bounded due to the exponentially inreasing funtionf2. In other words, the density of the ondensed atomsbe very large, similarly to the ase where the densityis very large at the origin of the vertial oordinate [2℄.But if the onditionI� = limx!�1 xZC1 f11dx = 0 (21)is satis�ed, then this kind of unboundedness an be ef-fetively avoided. Inspeting Eq. (21) arefully, we �ndthat I+ � I� = 0an eliminate the onstant C1 and produe the famousMelnikov funtionM(x0) = I+ � I� = 1Z�1 f11dx = 0: (22)Performing the integration in Eq. (22), we obtainM(x0) = 2�� �23(�2 + ~�)� �2� sh� ��p~���� sin(2�C) + 4�v1K2sh��Kp~���� os(2KC) = 0: (23)As is well known, the Melnikov funtion is also alledthe Melnikov distane between the stable and unstablemanifolds in the Poinaré setion at x0. If the Melnikovfuntion M(x0) has simple zeros, there exists Smale-horseshoe haos in the system. Thereby a simple zeroMelnikov funtion M(x0) an lead to a haoti spatialstruture of the ondensate.Equations (22) and (23) indiate that boundednessondition (21) ontains the Melnikov haoti riterionprediting the onset of haoti spatial struture. In925
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spatial evolutions of R(x) in Figs. 6 and 7 from x = 0to x = 500. When V1 = 4, from the phase portraitin Fig. 6a we an see typial quasiperiodi orbits in-diating that system is in a quasiperiodi state; theorresponding spatial evolution of R(x) also indiatesthat the system is in a quasiperiodi state (see Fig. 6b ).Both the phase portrait and spatial evolution of R(x)in Fig. 6 show that BEC atoms are in a quasiperiodispatial distribution. But as V1 inreases to 8:2 andthe other parameters and initial onditions are �xed, atypially haoti phase portrait appears, as an be seenin Fig. 7a; Fig. 7b is the orresponding haoti spatialevolution of R(x). This signi�es that BEC atoms arein a haoti spatial distribution. For visual larity, weonly plot the spatial evolutions of R(x) from x = 0927
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