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We predict the universal p ower-law dep endence of the lo calization length on the magnetic �eld in the strongly

lo calized regime. This e�ect is due to the orbital quantum interference. Physically, this dep endence shows up in

an anomalously large negative magnetoresistance in the hopping regime. The reason for the universality is that

the problem of the electron tunneling in a random media b elongs to the same universality class as the directed

p olymer problem even in the case of wave functions of random sign. We present numerical simulations that

prove this conjecture. We discuss the existing exp eriments that show anomalously large magnetoresistance. We

also discuss the role of lo calized spins in real materials and the spin p olarizing e�ect of the magnetic �eld.
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1. INTRODUCTION

In strongly disordered conductors, single electrons

states are lo calized, and therefore the conductivity is

due to phonon-assisted electron tunneling b etween lo-

calized states. The length of a typical hop r

hop

in-

creases as the temp erature is decreased and b ecomes

much larger than the distance b etween the lo calized

states in the variable-range hopping regime [ 1 ; 2 ]. In

this pap er, we study the orbital mechanism of the mag-

netoresistance in this regime. We show that at su�-

ciently low temp eratures, it is due to the lo calization

length dep endence on the magnetic �eld B and that it is

given by a universal p ower law. This lo calization length

dep endence on the magnetic �eld translates into an ex-

p onentially large variation of the resistance. The sign

of the orbital magnetoresistance dep ends on the details

of impurity scattering, but in the typical case, the low-

temp erature magnetoresistance is negative. Similarly

to the metallic regime, the origin of the negative mag-*
E-mail: io�e@physics.rutgers.edu

netoresistance is the electron quantum interference, but

the amplitudes that interfere corresp ond to di�erent

pro cesses in these two cases. Despite its much larger

magnitude, the negative magnetoresistance in the hop-

ping regime received much less attention, b oth theoret-

ically and exp erimentally, than its counterpart in the

metallic regime. One of the goals of this pap er is to

draw the attention of the community to this interest-

ing phenomenon.

We b egin with a brief review of the nature of mag-

netoresistance in metals. The conventional theory of

magnetoresistance asso ciates it with the classical ef-

fect of electron motion along cyclotron orbits. For a

typical metal, the magnetoresistance is controlled by

the parameter ( !

c

�

tr

)

2
, where !

c

is the cyclotron fre-

quency and �

tr

is the transp ort mean free time (see,

e. g., [3]). In contrast to these exp ectations, many

disordered metals show negative magnetoresistance at

small magnetic �elds. The negative magnetoresistance

in weakly disordered metals has b een explained in the

framework of the weak lo calization theory, which takes

into account the quantum interference of probability

amplitudes for electrons to travel along self-intersecting632
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Fig. 1. Qualitative picture of the interference e�ects

in disordered metals. Panel a shows interference in the

weak lo calization regime that is due to self-crossing

di�usive paths. Quantum propagation from A to B

is the sum of two amplitudes that contain clo ckwise

and counterclo ckwise motion along the lo op that is a

part of the self-intersecting path. Panel b shows inter-

ference in the hopping regime in which the backward

motion of electrons gives negligible contribution to the

tunneling b etween sites A and B. In this case, typical

paths contributing to the interference are lo cated in the

shaded (light gray) area with the transverse direction

that scales with the length of the hop L . The magnetic

�eld has a signi�cant e�ect if the �ux S

�

through the

area formed by a typical path and a straight line (dark

gray) is of the order of one �ux quantum

di�usive paths [4�7], such as those shown in Fig. 1 a .

The interfering amplitudes corresp ond to the clo ckwise

and counterclo ckwise propagation of the electron wave

along the lo op formed by a self-intersecting path. In the

absence of the magnetic �eld, these amplitudes inter-

fere constructively, increasing the probability of return

to the intersection p oint. In the presence of the mag-

netic �eld, these amplitudes acquire di�erent phases,

and the interference is suppressed, leading to the neg-

ative magnetoresistance. The negative magnetoresis-

tance magnitude in this regime is relatively small b e-

cause it scales with the small parameter 1 =k

F

l

tr

, where

k

F

is the Fermi momentum and l

tr

is the transp ort

mean free path.

Exp erimentally, in many materials the magnetore-

sistance in the hopping regime is signi�cantly larger

than in the metallic regime. A p ositive magnetoresis-

tance of several orders of magnitude in the hopping

regime has b een observed long ago (see, e. g., Ref. [1]

and the references therein). Signi�cant negative mag-

netoresistance in the variable-range hopping regime

ranging up to two orders of magnitude has b een ob-

served in many exp erimental works [8�18]. In some of

these works, a large anisotropy of the negative magne-

toresistance has b een observed in 2 D samples, indicat-

ing its orbital nature.

Phonon emission and absorption make di�erent

hopping events incoherent, while the electron tunnel-

ing b etween lo calized states is a quantum mechanical

pro cess. The magnetoresistance is due to the magnetic

�eld dep endence of the probability of one hop. Quali-

tatively, large orbital magnetoresistance in the hopping

regime is due the interference of the tunneling ampli-

tudes along di�erent tunneling paths contributing to a

single hop that are distributed in a cigar-shap ed region

shown in Fig. 1 b . In this regime, the tunneling paths

containing lo ops give exp onentially small contribution

to the tunneling probability. This is the main di�er-

ence from the weak lo calization, where the interference

is due to the paths that circle a lo op (see Fig. 1 a ). In

the variable-range hopping regime, electrons hop over

distances much larger than the distance b etween lo cal-

ized states, and hence the cigar-shap ed region contains

many electron scatterers. The amplitude �

i

describ-

ing the individual scattering pro cess at a state i can

b e p ositive and negative. The sign distribution of the

�

i

determines the sign of the magnetoresistance, as we

explain b elow in Sec. 2.3.

Large p ositive magnetoresistance may b e asso ciated

with a shrinkage of the hydrogen-like lo calized electron

wave functions at the scales less than the inter-impurity

distance. Quantitatively, this picture works well only in

a very high magnetic �eld and at su�ciently high tem-

p eratures at which the typical electron hopping length

is shorter than the distance b etween impurities. A the-

ory of the p ositive magnetoresistance that takes the

electron scattering with p ositive scattering amplitudes

into account has b een develop ed in [19�23]. In this

case, the tunneling amplitudes interfere constructively

in the absence of the �eld, while the phases induced by

the magnetic �eld destroy this interference.

An orbital mechanism of the negative magnetore-

sistance may b e asso ciated with the randomness of the

signs of the scattering amplitudes �

i

, which is due to

the random sign of � � �

i

[24�29]. Here, � is the energy

of the tunneling electron and �

i

is the energy of a lo cal-

ized state. This sign randomness may lead to random

signs of the interfering tunneling amplitudes at B = 0 .

The magnetic �eld makes tunneling amplitudes com-

plex, which increases the conductance in this situation.

Thus, the sign of the orbital magnetoresistance is re-

lated to the sign distribution of the lo calized electron

wave functions.633
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In this pap er, we develop a quantitative theory of

orbital magnetoresistance in the hopping regime and

discuss the available exp erimental data in the light of

our results. Because most of exp eriments have b een

done on two-dimensional samples, we fo cus on the two-

dimensional hopping regime of electrons and the corre-

sp onding exp eriments.

We show that in physically relevant cases, even a

small concentration of impurities with �

i

< 0 leads to

completely random signs of the tunneling amplitudes

at large scales. Therefore, at su�ciently low temp era-

tures and small magnetic �elds, the variable-range hop-

ping magnetoresistance is negative. At higher magnetic

�elds and higher temp eratures, it can b e b oth p ositive

and negative.

The plan of the pap er is as follows. In Sec. 2.1, we

start with a brief review of the basis of variable-range

hopping theory and discuss a qualitative picture of the

variable-range hopping magnetoresistance. In Secs. 2.2

and 2.3, we discuss the statistics of the mo dulus and the

sign of the lo calized electron wave function. In partic-

ular, in Sec. 2.3, we discuss the conditions for the exis-

tence of the �sign phase transition�, where as a function

of the concentration of scatterers with �

i

< 0 , the sys-

tem changes from the sign-ordered to sign-disordered

phases. In Sec. 3, we apply the theory develop ed in

Sec. 2 to compute the magnetoresistance. Section 4

discusses applications of the results for the sign phase

transition to other physical systems. Finally, Sec. 5

gives a short review of the exp erimental situation.

2. ELECTRON TRANSPORT IN THE

VARIABLE-RANGE HOPPING REGIME

2.1. Review of the variable-range hopping

theory

In the lo calized regime, the electron wave functions

decay exp onentially with the distance j r � r

i

j from the

impurity:  

i

( r ) � exp( �j r � r

i

j =� ) , where r

i

is the

center of a lo calized wave function and � is a typi-

cal lo calization radius. In this case, the conductivity

is determined by phonon-assisted electron hopping b e-

tween lo calized states. At low temp eratures, the typ-

ical hopping length r

hop

is determined by the comp e-

tition b etween two exp onential factors: the hopping

probability W

ij

that decays exp onentially with the dis-

tance r

ij

b etween impurities and the thermal factor

exp( � E

hop

( r

ij

) =T ) , where E

hop

( r

ij

) is the hopping ac-

tivation energy that decreases with r

ij

. These factors

give the exp onential dep endence of the typical hopping

rate at a distance r

hop

: exp( � E

hop

( r ) =T � 2 r =� ) . This

exp onential factor is maximal for the typical hopping

length r

hop

, which is much larger than the distance b e-

tween lo calized states, as illustrated in Figs. 1 b , 2:

r

hop

�

�

T 0
T

�

�

� : (1)

As a result, the resistivity acquires an exp onential de-

p endence on temp erature [ 1 ; 2 ]:

� ( T ) = � 0 exp

"

�

�

T 0
T

�

�

#

: (2)

Here, the prefactor � 0 is determined by the electron�

phonon matrix element and � is the lo calization radius.

Generally, the density of lo calized states can b e

energy-dep endent near the Fermi energy [1]:

� ( � ) = C �

�

; (3)

where we count the energy � of a tunneling electron

from the Fermi energy. In the absence of electron�

electron interaction (Mott's theory), the density of

states at the Fermi level is constant ( � = 0 and C =

= � 0 ) , leading to the activation energy T 0 � 13( � 0 �

2
)

� 1
and to the exp onent � = 1 = 3 for d = 2 (Mott's law). In

the case where electrons (in two or three dimensions)

interact via the three-dimensional Coulomb interaction

(Efros�Shklovskii regime) � = 1 , C � (2 =� ) e

4
=�

2
,

where � is the dielectric constant. This results in � =

= 1 = 2 and T 0 � e

2
=�� for 2 D electrons with the three-

dimensional Coulomb interaction.

The qualitative arguments of the Mott theory can

b e made more quantitative by considering the p ercolat-

ing cluster of electron hops [1]. Probability of a single

hop b etween the states lo calized around p ositions r

i

and r

j

is given by

W

ij

=

2 �

h

Z

j M

ij

( q ) j

2
� ( �

i

� �

j

� uq ) d

d

q ; (4)

where

M

ij

�

Z

d

d

r  

i

( r � r

i

)  

j

( r � r

j

) e

i q � r

(5)

is the phonon matrix element, u is the sp eed of sound,

and q is its wave vector. Because the wave functions

 

i

( r � r

i

) and  

j

( r � r

j

) decrease exp onentially, M

ij

and W

ij

are exp onential functions of the lo calization

length � ( B ) .

In the main part of this pap er, we consider the mag-

netic �eld range in which the W

ij

( B ) dep endence is

dominated by � ( B ) . In this case, we can approximate

the phonon tunneling matrix element by the amplitude

of tunneling b etween states i and j : M

ij

� A

ij

.634
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In a uniform medium, the magnetic �eld suppresses

the amplitude of a single quantum tunneling event:

A

ij

/ exp

 

�

r

2
ij

2 L

2
B

!

at r

ij

�

L

2
B

�

; (6)

which gives p ositive magnetoresistance. Here, L

B

=

= ( c ~ =eB )

1= 2
is the magnetic length. In disordered me-

dia, electrons scatter from other lo calized states that

have energies di�erent from the energy of the �nal

state. The e�ect of the magnetic �eld is due to the in-

terference of the directed optimal paths, which is shown

schematically in Fig. 1 b . In this case, A

if

=

P � A � is

a coherent sum of amplitudes A � ( B ) to tunnel along

paths � b etween the initial � i � and �nal � f � sites. The

tunneling paths can b e de�ned by the sequence of states

that scatter electrons in the course of tunneling. At

zero magnetic �eld B = 0 , the wave functions of lo cal-

ized states and the tunneling amplitudes A � (0) can b e

chosen to b e real [30]:

A

if

(0) =

1

j r

f

� r

i

j

1= 2 exp

�

�

j r

j

� r

i

j

�

�

+

+

X

�

1

j r

�

� r

i

j

1= 2 exp

�

�

j r

�

� r

i

j

�

�

�

�

( �

�

)

1= 2
j r

�

� r

j

j

1= 2 exp

�

�

j r

�

� r

f

j

�

�

+

+

X

�;�

1

j r

�

� r

i

j

1= 2 exp

�

�

j r

�

� r

i

j

�

�

�

�

j r

�

� r

�

j

1= 2 �

� exp

�

�

j r

�

� r

�

j

�

�

�

� ;

j r

�

� r

f

j

1= 2 �

� exp

�

�

j r

�

� r

f

j

�

�

+ : : : = (7)

=

X � A � (0) ; (8)

�

�

�

b

�

�

� �

i

: (9)

Here, �

�

is the amplitude of scattering on � 's lo calized

state, �

i

and �

�

are energies of the tunneling electron

and the lo calized scattering state, b �

p

� � 0 > 0 , and

� 0 is the characteristic binding energy of the lo calized

states. Generally, �

�

are random quantities, and hence

the amplitudes A � ( B = 0) = A � (0) have random signs.

We note that Eq. (7) describ es b oth the pro cesses in

which an electron is scattered by empty sites and the

pro cesses in which it go es through o ccupied sites (see

Fig. 2), which can b e describ ed as a hole moving back-

wards. The imp ortant condition for the interference is

that in the �nal state, all intermediate electrons should

return to their original p ositions and spin states.

�

0 � F

f

i

Fig. 2. Qualitative picture of the phonon-assisted tun-

neling through lo calized states from the initial state

i to the �nal state f . Solid bars indicate the ener-

gies of the lo calized states. The energies of the initial

and �nal states are close to the Fermi energy �

F

= 0
(indicated by the dashed line) while the intermediate

lo calized states are typically farther away from � = 0.

The states with negative energies can b e �lled with one

or two electrons. In the former case, they are charac-

terized by the spin of the electron shown by vertical ar-

rows. The states with � > 0 are empty. Black and gray

arrows indicate electron tunneling paths through empty

and �lled lo calized states. If the path go es through a

site that is already o ccupied by the electron with the

same spin, the coherent pro cess o ccurs by creating an

electron�hole pair (indicated by the empty circle), then

by tunneling the hole carrying the opp osite spin in the

opp osite direction, and �nally by anihilating it with the

electron coming from the left. This pro cess leaves the

spin state intact. The incoherent pro cess in which the

hole carrying the same spin might also b e p ossible in

some physical situations (see Sec. 3.3)

The hopping probability W

if

is a random quantity.

Generally, to obtain the value of the resistance of the

system, one has to solve the full p ercolation problem

with the probability of individual hops given by W

if

[1]. But as long as

ln

� ( B )

� (0)

1

ln � (0)

� 1 ;

the magnetoresistance is given by the average of the

logarithm of the hopping probability [1]:

ln

� ( B )

� (0)

= �

�

ln

W

if

( B )

W

if

(0)

�

: (10)

Here, the brackets denote averaging over random scat-

tering con�gurations and over di�erent hoppings that

b elong to a p ercolation cluster. These hoppings are

characterized by a typical hopping length r

hop

. With a

go o d accuracy, we can replace the full average (10) with

the average over random scattering con�gurations for635
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the hopping pro cesses by the distance r

hop

. Physically,

the averaging of the logarithm in (10) means that the

resistivity is controlled by the typical hopping proba-

bility rather than by rare events.

The application of a magnetic �eld B intro duces

random phases to the tunneling amplitudes,

A � ( B ) = A � (0) exp

�

i 2 �

� �
� 0 �

; (11)

where � � = B S � and S � is the area enclosed b etween

the the path � and the straight line going from the

initial to �nal states (see Fig. 1 b ).

Dep ending on distributions of the signs of the am-

plitudes A � (0) , the orbital magnetoresistance can b e

b oth p ositive and negative. To illustrate this fact, we

consider a mo del in which there are only two paths,

A 1 (0) � A 2 (0) , which are indep endent random quan-

tities and j � 1 � � 2 j � � 0 . If A 1; 2 (0) > 0 are p osi-

tive, in the presence of magnetic �eld, then the ampli-

tudes A � ( B ) partially cancel each other. As a result,

h ln W

ij

( B ) i decreases by a factor of the order of unity

when j � 1 � � 2 j � � 0 . In this case, the magnetoresis-

tance is p ositive.

The situation changes if A 1; 2 (0) have random signs.

In the simplest case where the signs are completely ran-

dom, the average probability

D

�

�

�

X

A � ( B )

�

�

�

2 E

=

X

D

j A (0) j

2 E

is indep endent of B . If the magnetic �ux through the

closed lo op formed by paths 1 and 2 is larger than the

�ux quantum, the phases of the amplitudes A 1; 2 are

completely random, and therefore h A 1 ( B ) A 2 ( B ) i = 0 :

This implies that the variance

*

�

�

�

�

�

X � A � ( B )

�

�

�

�

�

4 +

�

*

�

�

�

�

�

X � A � ( B )

�

�

�

�

�

2 + 2
decreases by a factor of the order of unity when

j � 1 � � 2 j � � 0 . As a result, a typical value of the

resistance de�ned by (10) increases by a factor of the

order of unity and the magnetoresistance is negative.

This simpli�ed picture of magnetoresistance b eing

determined by the interference b etween only two paths

b ecomes more complicated for two reasons. First, at

large scales, the propagation amplitude is dominated

by many paths that go through the same scatterer or

a group of scatterers. This implies strong correlations

b etween the amplitudes A � , as we discuss in Sec. 3.1.

This makes the mathematical problem calculating � ( B )

nontrivial. Second, the b ehavior of the magnetoresis-

tance b ecomes more complicated if the amplitude signs

are correlated at some �nite distances (see Sec. 2.3). In

this case, we can exp ect a crossover from the negative

to p ositive magnetoresistance as the �eld increases, as

we explain in Sec. 3.

Because the sign and the magnitude of the magne-

toresistance are intimately related to the statistics of

the sign and amplitude distribution of A

ij

(0) , we start

with a discussion of this quantity.

2.2. Statistics of the amplitude A in the

absence of the magnetic �eld

In the case of small and p ositive scattering ampli-

tudes �

�

> 0 and at zero magnetic �eld, the problem

of electron tunneling can b e mapp ed [30�33] onto the

problem of directed p olymers. In the latter problem,

one studies the thermo dynamics of an elastic string

in a delta-correlated two-dimensional random p otential

W ( x; y ) , characterized by the energy functional

H

dir pol

f y ( x ) g =

=

x

Z

�1

h

�

2

( @

x

y )

2
+ W ( x; y ( x ))

i

dx: (12)

Intro ducing the partition function

Z ( y ; x ) =

X

y f x g

exp( � � H )

of the string that ends at the p oint ( x; y ) , we obtain

that its evolution as a function of x is describ ed by the

equation

@

x

Z =

1

2 � �

@

2
y

Z � � W ( x; y ) Z : (13)

This equation should b e compared with the equation

for the particle propagation in disordered media:

E 	 = �

1

2 m

r

2
	 + V ( x; y )	 ; (14)

with the white-noise p otential V ( x; y ) . At negative en-

ergies corresp onding to tunneling; after substitution

	 = exp( � � � x ) Z ( x; y )

we can neglect the terms with the second-order deriva-

tive in x , which are small at a weak p otential V � � E .

Then Schrö dinger equation (14) coincides with (13)

with ( � � )

2
= � 2 mE and W = � V = 2 E . This map-

ping also holds for an arbitrary (not necessarily white-

noise correlated) p otential V . However, it b ecomes less

useful for arbitrary p otentials b ecause analytic results636
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for this problem were obtained only in the case of the

white-noise p otential.

Computation of p ositive magnetoresistance requires

solving the directed p olymer problem b eyond the white

noise approximation, and hence the analytic results are

not directly applicable. Furthermore, the physically

relevant problem of scattering with negative amplitudes

cannot b e mapp ed onto any thermo dynamic problem

b ecause the corresp onding free energy b ecomes imag-

inary. The applicability of the results of the directed

p olymer problem in the white noise approximation b e-

comes even more questionable in this case. Below, we

give a brief review of the results of the directed p olymer

problem in the white noise approximation. Then we

present results of our numerical simulations b eyond the

white noise approximation, which indicate that these

problems b elong to the same universality class. Fi-

nally, we discuss the statistics of the signs of the tun-

neling amplitude and show that the existence of the

�sign phase transition� is compatible with the results

for the directed p olymer problem.

The main result of the directed p olymer theory is

the scaling form of the �uctuational part of a free en-

ergy of a p olymer of length L , F / L

1= 3
, and its de-

viations in the transverse direction Y / L

2= 3
: For the

equivalent problem of domain wall pinning, this scal-

ing was �rst found numerically in [34]. Analytically,

it was extracted from the third moment of the distri-

bution function of p olymers of length L , P ( F ) [ 35 ; 36 ].

The replica metho d that was used in this work might

b e questioned b ecause of an apparent noncommutativ-

ity of the limits L ! 1 and n ! 0 and b ecause it

gives unphysical results for all moments of the distri-

bution function except the third. All these problems

can b e eliminated by solving for the distribution of

the energy di�erences of the in�nitely long p olymers

that end at di�erent p oints y 1 and y 2 ; this solution

gives the same scaling exp onents [37] as the original

approach [34� 36 ; 38 �40].

The striking generality of this scaling result that

we prove by numerical simulations b elow is, proba-

bly, due to the qualitative reasoning that relates it to

the Markovian form of the free energy �uctuations as

a function of the transverse co ordinate. Indeed, the

Markovian form implies that free energy �uctuations

at large scales are prop ortional to Y

1= 2
; on the other

hand, they should b e of the order of the string elas-

tic energy at these scales, Y

2
=L / Y

1= 2
. Solving the

last equation for Y gives the scaling dep endences of the

exact solution and of the numerical simulations.

Despite b eing intuitively app ealing, the Markovian

nature of free energy �uctuations is di�cult to prove

for the physically relevant situation in which some scat-

tering amplitudes (9) are very large. It is even more

di�cult to prove it in the case of negative scattering

amplitudes in which wave function can change sign at

some p oints. At these p oints, the free energy de�ned

by F � � T ln Z acquires an imaginary part (Im F = � )

while its real part b ecomes large. Because these p oints

are due to close by negative scatterers, the e�ective

free energy b ecomes highly correlated, which violates

the main assumption of the Markovian nature of the

free energy �uctuations.

Recently [ 41 ; 42 ], a full Bethe-ansatz solution of

problem (12) established the complete form of the dis-

tribution function of the free energy F � � T ln Z of the

string of length L , which turns out to coincide with the

Tracy�Widom distribution [43]. This result allows us

to check that the problem of particle hopping b elongs

to the same universality class as the directed p olymers.

Namely, we de�ne the e�ective free energy of the quan-

tum problem as

F = � R ln A ( x; y ) ; (15)

where A is the electron amplitude at the site ( x; y ) ,

propagating in x -direction. This free energy describ es

the decay of the wave function. We compute the ampli-

tude A by simulating electron propagation and check

the scaling prop erties of its real part �uctuations in

the y -direction and the universality of the distribution

function.

We determine the amplitude A from the solution of

the lattice recursive equation

A

i;j

=

g

�

ij

[ A

i � 1;j +1 + A

i � 1;j

+ A

i � 1;j � 1 ] ; (16)

where �

ij

are random indep endent variables de�ned on

each lattice site and g is the parameter that determines

the average decay of the amplitude (inverse lo calization

length). Below, we discuss di�erent distribution func-

tions of �

ij

appropriate for di�erent physical systems.

Physically, the mo del in (16) describ es the motion

of electrons on the lattice shown in Fig. 3. The site with

the energy �

ij

= h � i can b e identi�ed with the ideal lat-

tice, the rest with impurities. If the energy �

ij

is dis-

tributed in a narrow interval around its average, evolu-

tion (16) b ecomes equivalent to (14) in the continuum

limit. As discussed in Sec. 2.1, the physically most

natural choices of the distribution function of � are uni-

form P ( � ) = � ( � ) , linear P ( � ) = 2 � , and their analogs

for the negative scattering amplitudes, P ( � ) = 1 = 2 and

P ( � ) = j � j . In all cases, we assume that the distribu-

tion is cut-o� by � 0 at large � : P ( j � j > �

max

) = 0 .

The choice of �

max

determines the average decay rate637
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i

j

Fig. 3. Schematics of the electron propagation de-

scrib ed by Eq. (16). The computation of the lo caliza-

tion length discussed in Sec. 2.2 involves simultaneous

propagation of amplitudes in the vertical direction for

many (typically, L > 106

) steps. For the computation

of the matrix elements in Sec. 3.2, the wave functions

were assumed to b e lo calized on two sites in the middle

of the upp er and lower rows at a distance L and then

determined in the middle

of the electron amplitude that is mostly irrelevant; in

the computations, we have set it to �

max

= 1 . We

have also studied the gapp ed distribution P ( � ) = 2 for

1 = 2 < � < 1 , for which we exp ect to obtain the re-

sults similar to the one predicted by the exact solution.

Finally, we studied the binary distribution

P ( � ) = (1 � X ) � ( � � 1) + X � ( � � ( � + 1)

� 1
)

characterized by a parameter X and a negative scat-

tering amplitude � < 0 .

Some of our results are presented in Figs. 4 and

5. For all the studied distribution, we observe very

go o d scaling,




� F

2 � 1= 2
/ L




, with the resp ective ex-

p onents 
 = 0 : 28 , 0.345, 0.343 for gapp ed, linear, and

uniform densities of states. These values are very close

to the exp ected value 1 = 3 , esp ecially for the linear and

uniform densities of states. The data for the gapp ed

density of states display a signi�cant transient regime,

and therefore the deviation of the exp onent from the

analytic result is not surprising. The presence of neg-

ative scattering amplitudes has small e�ect on these

exp onents; they b ecome 
 = 0 : 31 , 0.33, 0.345, which

are even closer to the exp ected values. Furthermore,

the higher moments of the distribution function tend

to the universal values exp ected for the Tracy�Widom

distribution. These results are in agreement with pa-

p ers [ 44 ; 45 ] that observed the Tracy�Widom distribu-

tion of conductances in two-dimensional mo dels.

These data lead to the conclusion that the main re-

sults of the directed p olymer problem, the scaling de-

p endence of the free energy and the universality of the

distribution function, remain valid for the problem of

electron tunneling in disordered media.

2.3. The sign phase transition

As explained in Sec. 2.1, the sign of the magne-

toresistance is related to the statistics of signs of the

amplitudes A

if

(0) in the absence of the magnetic �eld.

If the concentration of impurities with negative scat-

tering amplitudes is large, the sign of A

if

(0) b ecomes

completely random. If all impurities are characterized

by p ositive scattering amplitudes �

i

> 0 , the sign of

A

if

(0) is p ositive. We let P + and P

�

denote the re-

sp ective probabilities to �nd a p ositive or negative am-

plitude A

if

(0) . The quantity � P = P + � P

�

cha-

racterizes the sign order. As the concentration X of

the impurities with negative scattering amplitudes in-

creases, � P should change from 1 to 0 . Generally,

� P is scale-dep endent and acquires its limit value as

j r

i

� r

f

j ! 1 . There are two logical p ossibilities: ei-

ther at large scales � P

r !1

= 0 only for X > X

c

while

� P

r !1

> 0 for smaller X < X

c

, or any nonzero X > 0

leads to � P

r !1

= 0 . The former implies that the

change in the X -dep endence of the sign statistics can

b e viewed as a phase transition. This p ossibility has

b een suggested in [ 24 ; 25 ; 27 ], while the alternative was

argued for in [31�33].

We study the sign statistics in the lattice mo dels de-

�ned by (16) in Sec. 2.2 and show that b oth the phase

transition and crossover can b e realized dep ending on

the distribution of �: We start with the simplest case of

the binary distribution

P ( � ) = (1 � X ) � ( � � 1) + X � ( � + � 0 )

with small X � 1 and small � 0 � 1 . This mo del

describ es the wave function propagation on the ideal

lattice (sites with � = 1 ) that contains rare impuri-

ties characterized by a negative scattering amplitude

� � � 1 = 2 � 0 , j � j � 1 . The large value of j � j allows

a continuous description of the tunneling amplitude.

The size of the region where the tunneling amplitude

A

if

(0) < 0 is negative can b e found by noticing that

the wave function

	( x; y ) = exp

�

�

x

�

�

+

�

( x

2
+ y

2
)

1= 4 exp

 

�

p

x

2
+ y

2
�

!

changes its sign in the egg-shap ed region in the wake

of the impurity given by

y

2
( x ) = x� ln

�

�

2
=x

�

; 0 < x < �

2
:638
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Fig. 4. Scaling dep endence of �uctuations of the electron wave function decay, �F = h F i � F , where F is de�ned by (15).

The quantity F is equivalent to the free energy of the directed p olymer problem. a � the results for the linear density of

states with P (� < 0) = 0, and b � the same results for the equally probable p ositive and negative scattering amplitudes.

The upp er insets show the distribution function of �F and its �t to the Gaussian, compared to which the distribution is

slightly skewed as exp ected for the Tracy�Widom distribution. The lower insets show the evolution of the normalized higher

moments of the distribution function that tends to the universal values exp ected for the Tracy�Widom distribution (shown

as dashed horizontal lines). The numerical results were obtained by simulating evolution (16) on systems of sizes N = 106

,107

, 5 � 107

, as indicated by p oints of di�erent size and colors. The straight line corresp onds to the exp onent 
 = 0: 345 ( a ),0: 33 ( b ). The convergence to the scaling form of the free energy �uctuations o ccurs relatively fast, while higher moments

of the distribution function require enormous statistics, esp ecially at large L , as is indicated by the deviation of curves

representing the fourth moment for N = 107

and N = 5 � 107

The area of this region is

S ( � ) =

2

3

r

2 �

3

j � j

3
�

1= 2
:

A small concentration X S � 1 of such impurities leads

to indep endent lakes of negative signs shown in Fig. 6.

In this situation, � P > 0 .

As the concentration X increases, di�erent lakes

start to overlap and form a state with random sign

of the amplitudes. The transition b etween these two

phases o ccurs at X = X

c

� S

� 1
/ j � j

� 3
. The dep en-

dence P

�

( X ) is exp ected to have a general form charac-

teristic of a phase transition, sketched in Fig. 7 a . These

qualitative arguments ignore the contributions from

impurities lo cated close to each other, which should

not b e relevant in the limit X ! 0 .

The numerical simulations show that the transition

also survives for not very large values of the scattering

amplitudes. In particular, this transition has b een ob-

served for the binary distribution functions with � 0 = 1 .

Figure 7 represents the results of our numerical simula-

tions for this case. As we can see, the b ehavior of � P as

a function of the distance changes qualitatively as X in-

creases b eyond X

c

� 0 : 032 . For smaller concentrations

x , the probability di�erence � P saturates at nonzero

values, while for larger concentrations, it approaches

0 . The scales needed to observe this change in the b e-

havior are generally very long. We b elieve that this is

the reason that prevented unambiguously establishing

the existence of the transition in early numerical sim-

ulations. We note that the scales are further enlarged

near X

c

� 0 : 032 , as is exp ected at a phase transition.

We have also checked that the phase transition b e-

tween the sign-ordered and sign-disordered phases sur-

vives for a gapp ed distribution of � de�ned in Sec. 2.2.

The numerical data lo ok very similar to those shown in

Fig. 7, the value of X

c

in this mo del is X

c

� 0 : 02 .

The existence of the sign phase transition has b een

questioned in pap er [33], which used the mapping to

the directed p olymer problem. The essence of the ar-

gument is that the free energy of directed p olymers

leading to a given site are dominated by a single path,

and hence just a single impurity along this path su�ces

to change the sign of the amplitude. At a small con-

centration of negative scatterings, one concludes that

the amplitude should b ecome completely random at the

scale L / 1 =X . This argument, however, do es not take

the contribution from sub dominant paths into account,

which may eventually restore the sign of the amplitude

at large scales, as is indicated by numerical data for the

gapp ed density of states (see Sec. 2.2).639
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Fig. 5. Scaling dep endence of �uctuations of the elec-

tron wave function decay �F = h F i � F obtained from

the numerical solution of evolution (16) with a gapp ed

density of states. The lower data set (denoted by PS)

corresp onds to the p ositive scattering amplitudes, and

the upp er data set (denoted by RS), to the completely

random amplitudes with equal probability of signs. The

data were �tted with the scaling dep endences with the

exp onent 
 = 0: 28 for p ositive scatterers and 
 = 0: 31
for random signs. The results were obtained for the

systems of size N = 107

, 5 � 107

. Higher moments

tend to the universal values of the Tracy�Widon distri-

bution as shown in the inset, which gives the data for

random-sign scatterers

Fig. 6. Qualitative picture of lakes of negative ampli-

tude signs formed in the wake of an impurity (shown

as a small gray circle) characterized by a negative scat-

tering amplitude

We now show that for a gapless density of states (3)

with � < 2 and for any nonzero concentration of neg-

ative scatterers, the sign of the amplitude A b ecomes

completely random at large scales. Indeed, in this case,

the total area of negative lakes is

S

tot

� X

Z

d�� ( � ) S [ � ( � )] ;

where S [ � ] / �

3
/ "

� 3
. Hence, S

tot

diverges for all

densities of states � ( � ) � "

�

with � � 2 . For example,

this is the case for the Coulomb gap, where � ( � ) / " .

We have checked this conclusion numerically for the

linear density of states and we have indeed observed

that even a very small X � 10

� 4
leads to a random

sign of the amplitude at very large scales. Our data

are shown in Fig. 8. As exp ected, the scale at which

the sign b ecomes random grows quickly with the de-

crease in X .

3. MAGNETORESISTANCE IN THE HOPPING

REGIME

3.1. Magnetic �eld dep endence of the

lo calization length

We now turn to the discussion of magnetoresistance

in the variable-hopping regime. We b egin by summa-

rizing the results of numerical simulations for recursive

equation (16) that was mo di�ed to include the phases

�

j

= B j induced by magnetic �eld

A

i;j

( B ) =

1

�

ij

[ A

i � 1;j � 1 e

i�

j � 1 = 2

+

+ A

i � 1;j

e

i�

j � 1 = 2

+ A

i � 1;j +1 e

i�

j +1 = 2

] : (17)

Then we give the qualitative explanation of the results

based on the mapping of hopping to the directed p oly-

mers. The dimensionless magnetic �eld B in this equa-

tion and in the discussion b elow is given by the �ux of

the physical magnetic �eld B

phy s

through the elemen-

tary square plaquette of the lattice: B = B

phy s

a

2
= � 0 ,

where a is the lattice constant and � 0 = hc=e is the

�ux quantum.

Our main result is that at large r

hop

> L

B

(which

holds at low temp eratures), b oth p ositive and negative

magnetoresistances are describ ed by corrections to the

lo calization length:

g ( B ) =

� � ( B )

� (0)

= � C

�

�

B �

2
� 0 �

�

: (18)

This scaling law is characterized by the universal exp o-

nent � � 4 = 5 and nonuniversal numerical co e�cients

C

�

. The latter dep end on the distribution of "

ij

, e. g.,

C + � 2 : 6 for the gapp ed and C + � 0 : 9 for linear den-

sity of states. Here, we de�ne the lo calization length

as the limit � = lim

r

ij

!1

ln A

ij

( B ) =r

ij

. The p ositive

sign ( + ) in (18) corresp onds to the case where the sys-

tem is in the sign-disordered phase and the negative640
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Fig. 7. a � Qualitative picture of the phase transition describ ed by the order parameter �P (X ) that o ccurs at X
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for the the binary distribution describ ed in the text. b � Scale dep endence of the probability of the negative amplitude,

showing the transition around X
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� 0: 032
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Fig. 8. a ) The map of the amplitude sign resulting from the wave function evolution in the vertical direction for the linear

density of states. The wave function has all p ositive signs (shown in black) at the b eginning of the evolution (b ottom).

As the evolution go es upward, the presence of a small concentration X = 10� 4

of negative scattering amplitudes results

in a larger and larger regions of negative signs (white regions) until the whole amplitude sign b ecomes completely random

at the top. b ) The length scale L (X ) at which the sign b ecomes random as a function of the concentration X . Here, we

de�ne L (X ) as the length at which �P = 0: 25. The data �t well with the dep endence L / 1=X , in agreement with the

theoretical exp ectations based on the directed p olymer mapping

sign ( � ) corresp onds to the sign-ordered phase. The

universal regime (18) is achieved at low �elds. We note

that while the value of � ( B ) is mathematically de�ned

for any magnetic �eld, its applicability to the hopping

problem requires that r

hop

> l

B

.

At intermediate �elds, a slightly di�erent p ower law

g ( B ) =

� � ( B )

� (0)

= � D

�

�

B �

2
� 0 �

�

0

(19)

if often observed with a di�erent exp onent and pref-

actors, �

0

� 0 : 5 , 0.6, 0.64 for the scattering of ran-

dom signs with gapp ed, linear, and uniform densities

of states resp ectively. For these densities of states the

prefactors are D + � 0 : 11 , 0.22, 0.30. The value of D +
for the gapp ed density of states is in agreement with

the previous numerical simulations in [ 26 ; 28 ]. We note

that the value of D + for the uniform density of states

is roughly three times larger than for the gapp ed one.

13 ÆÝÒÔ, âûï. 3 (9) 641
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Fig. 9. Change in the inverse correlation length � � = � (1=� ) induced by the magnetic �eld. a,c corresp ond to the gapp ed

density of states and b,d � to linear density of states. a,b corresp ond to random scattering amplitude signs and c,d �

to p ositive scattering. The absolute values of the inverse correlation length at B = 0 in these cases are �

� 1

0

= 1: 85; 1: 42
for gapp ed and linear densities of states, and X = 0: 5 and �

� 1

0

= 1: 31, 0: 95 for uniform and linear density of states for

p ositive scattering ( X = 0). The results for the constant density of states (not shown) are very similar to the ones for the

linear density of states shown in b,d : they display a large domain of the intermediate regime of p ower-law b ehavior with the

resp ective exp onents 0: 6 and 0: 9 for X = 0: 5 and X = 0
This makes it p ossible to observe large negative mag-

netoresistance exp erimentally, as we discuss in Sec. 5.

These statements are illustrated in Fig. 9. The scaling

dep endence with the exp onent �

0

� 0 : 6 was observed

previously in a numb er of works [ 28 ; 32 ], in which in-

su�cient system sizes prevented the observation of the

asymptotic b ehavior.

We now give qualitative arguments that repro duce

the observed scaling b ehavior of the change in the lo-

calization length explained ab ove.

As we have shown in Sec. 2.2, the problem of elec-

tron tunneling b elongs to the same universality class

as the problem of directed p olymers. In particular, the

typical tunneling action varies from one path to another

by the amount that scales as � F / L

1= 3
: This means

that the tunneling from p oint i to f is dominated by

a narrow bundle of paths, as shown in Fig. 10. The

width of this bundle do es not increase with the length

of the path, and hence the magnetic �eld has very lit-

tle e�ect on the tunneling in this approximation. An-

other bundle of paths that di�ers from the dominant

one at a scale L has the action that is typically larger

than that of the dominant path by � F / L

1= 3
, and

therefore its amplitude is exp onentially suppressed by

exp

�

� c ( L=a )

1= 3 �

, where a is the mean free path of the

electron (lattice spacing in the case of numerical simu-

lations). This leads to an exp onentially small e�ect of

the magnetic �eld. However, b ecause the di�erence of

the actions b etween two paths is a random variable it-

self, with probability p / L

� 1= 3
two actions di�er only

by the amount of the order of unity. If all scattering

amplitudes are p ositive, the change in the interference

caused by the magnetic �eld decreases the total am-

plitude by the factor of the order of unity, if the �ux

through the lo op formed by these two paths is of the or-

der of the �ux quantum. Because the transverse direc-

tion scales as Y � a ( L=a )

2= 3
, the interference b ecomes

relevant at scales � L :

B L

5= 3
a

1= 3
� � 0 (20)642
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Fig. 10. Directed p olymer picture

with probability p � ( L=a )

� 1= 3
: The resulting decrease

of the wave function implies that the typical inverse

lo calization length increases by

� �

� 1
� a

1= 3
=L

4= 3
� ( B = � 0 )

4= 5
a

3= 5
:

Rep eating the same arguments for the amplitudes

of the random signs and using the fact that the signs of

two paths that contribute to the interference are ran-

dom (cf. the discussion after Eq. (11)), we obtain the

same dep endence on magnetic �eld but with the opp o-

site sign: the inverse lo calization length is decreased by

the magnetic �eld.

All these conclusions are valid in the limit of long

scales, where � F � 1 . In the intermediate regime,

with � F . 1 , the probability that two paths interfere

is of the order of unity, resulting in the scaling dep en-

dence of � �

� 1
on the �eld with the exp onent �

0

= 3 = 5 .

Lo oking at the numerical results for the scaling dep en-

dence of � F shown in Fig. 4, we see that it remains of

the order of unity for L . 10

2
, which translates into the

�eld B & 10

� 3
, in rough agreement with the numerical

results shown in Fig. 9.

The b ehavior of the correlation length is given by

simple scaling equations (18) and (19) only in the limit

of completely random and p ositive amplitude signs. In

the case of a small concentration of negative scatter-

ings, a more complicated b ehavior is exp ected. Large

�elds a�ect the amplitude at short scales. At these

scales, the rare negative scatterings have small e�ect

on the amplitude sign, and hence at large �elds the

inverse lo calization length is increased by the �eld,

similarly to the case of p ositive scattering amplitudes.

By contrast, at large scales relevant for small �elds,

the amplitude sign b ecomes completely random, and

therefore a negative correction to � �

� 1
is exp ected at

small �elds, similarly to the fully random sign case. As

the �eld is increased, the sign of the correction should

change. Exactly this qualitative b ehavior is shown by

numerical simulations of mo del (17) with a small con-

centration of scatterers with negative amplitudes. Our

1.5
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Fig. 11. Universal b ehavior of the increment of the

inverse lo calization length as a function of the �eld

for a small concentration of negative �

ij

and the lin-

ear density of states. Di�erent curves show � �

� 1

for di�erent concentrations X = 0: 02, 0: 08, 0: 16
rescaled in b oth vertical and horizontal directions:

� �

� 1 = � �

� 1

0

� (B =B

0

). The characteristic value of the

�eld scales with X as B

0

/ X

�

with � � 2: 8. Very

small values of the �eld imply that the negative cor-

rection of � �

� 1

wins over the p ositive one only when

signs are completely randomized; even a small corre-

lation b etween the signs of the amplitude su�ces to

result in a p ositive correction

results shown in Fig. 11 display universal b ehavior of

� �

� 1
( B =B 0 ) . The characteristic �eld B 0 scales, as ex-

p ected, with the concentration X : B 0 / X

�

, but the

exp onent � � 2 : 8 is su�ciently larger than the one

exp ected from the scaling b ehavior of L ( x ) / 1 =x ob-

tained in Sec. 2.3: �

expected

� 1 : 6 . We do not have a

satisfactory explanation of this discrepancy. We only

note that very small values of B 0 found numerically

imply that even a small amount of sign correlations is

su�cient to result in the p ositive � �

� 1
. This is not

so surprising b ecause the p ositive increment of � �

� 1
,

although given by the same scaling dep endence, is an

order of magnitude larger than the negative one (cf.

Fig. 9 a,b and Fig. 9 c,d ).

The scaling dep endence in (18) is nonanalytic in

B , and should therefore dominate over other sources of

corrections to the lo calization radius as B ! 0 . In the

electron hopping problem, the largest scale r

hop

for the

coherent electron tunneling is set by temp erature (1).

The nonanalytic b ehavior predicted by (18) o ccurs if

the scale L given by (20) is less than r

hop

( T ) :

�

� 0
B

� 3= 5
a

1= 5
< �

�

T 0
T

�

�

:643 13*
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A B�
Fig. 12. Quantitative picture of tunneling paths in the

vicinity of the metal�insulator transition in the case

where � > a

B

. The path may contain return lo ops

at short scales (of the order of � ), but the electron

moves only in one direction at longer scales. We exp ect

that the problem is mapp ed onto directed p olymers at

scales larger than � , and hence small magnetic �elds

B �

2

. �
0

are exp ected to have the same e�ect on the

resistivity as in the strongly lo calized regime

In the discussion of the hopping transp ort, we have

assumed the strongly lo calized regime in which the elec-

tron wave function is lo calized at scales of the order of

the Bohr radius a

B

of a single impurity. However, all

our qualitative conclusions should also hold when the

lo calization length is larger, � > a

B

. In this case, the

electrons tunnel from one area to another as is shown

in Fig. 12. The lo ops of the tunneling paths are al-

lowed inside individual areas, but not b etween them.

In this regime, we exp ect to observe large nonanalytic

dep endence of the lo calization length on the magnetic

�eld given by (18) and (19) at low �elds B �

2
. � 0 .

These universal corrections add to the e�ect of the mag-

netic �eld coming from the scales shorter than � , which

can b e found from the renormalization group approach.

These corrections are of the order of � � =� � ( B �

2
= � 0 )

2
and are therefore negligible compared to the e�ects

in (18) and (19) coming from the longer scales at low

�elds. However, they can contribute signi�cantly to the

total variation of the magnetoresistance at large �elds.

3.2. Magnetoresistance in the variable-range

hopping regime

The results (18) and (19) for the � ( B ) dep endence

can b e converted into magnetoresistance if the induced

change of the lo calization length is small, � � � � ;

but the resulting change in the hopping amplitude

is exp onentially large, leading to resistance variations

ln ( � (0) =� ( B )) � 1 . In this case, we can neglect other

contributions to the variation of the hopping proba-

bility (which we discuss b elow), and the magnetoresis-

tance is given by

ln

� ( B )

� (0)

�

"

2 �

�

T 0
T

�

�

#

� �

�

: (21)

Combined with the � ( B ) dep endence discussed

in Sec. 3.1, this equation gives the magnetoresis-

tance at mo derate �elds, such that B �

2
. � 0 but

ln ( � ( 0) =� ( B )) � 1 .

At large magnetic �elds B �

2
& � 0 , Eq. (21) re-

mains valid, but the lo calization length dep endence on

the magnetic �eld is due to short scales and is nonuni-

versal. For a granular metal, the lo calization length is

roughly equal to the grain size r 0 ; b ecause the mag-

netic �eld has no e�ect at scales shorter than r 0 , the

� � ( B ) dep endence saturates at B �

2
. � 0 . By contrast,

in the case of a weakly disordered noninteracting 2 D

metal with k l

tr

>1, one exp ects [7] a strong dep endence

on the magnetic �eld. Indeed, in this case, the lo caliza-

tion length is exp onentially large � ( 0) � l

tr

exp ( k

F

l

tr

)

in the absence of the magnetic �eld, with l

tr

b eing elec-

tron mean free path. The conventional renormaliza-

tion group analysis [7] gives � � ( B ) =� (0) � ( B �

2
= � 0 )

2
at B �

2
< � 0 , and corrections of the order of unity

are therefore exp ected at B �

2
� � 0 . At larger �elds

( B l

2
tr

� � 0 ), the lo calization length increases exp o-

nentially to � ( B ) � l

tr

exp ( k

F

l

tr

)

2
. At even larger

�elds, the app earance of the quantum Hall regime and

a pseudometallic b ehavior are exp ected [13]. The pres-

ence of electron�electron interaction can lead to an even

greater variety in the lo calization length dep endence on

the magnetic �eld at high �elds.

The computation of the � ( B ) dep endence in Sec. 3.1

translates into the predictions for magnetoresistance

(21) only in the asymptotic regime of large magnetic

�elds at which ln ( � (0) =� ( B ) ) � 1 . There are at least

two reasons why it is imp ortant to study the magne-

toresistance in the opp osite limit of low magnetic �eld.

First, b ecause it is di�cult to measure large resis-

tances, the parameter r =� . 15 cannot b e very large,

and therefore the condition ln ( � (0) =� ( B ) ) � 1 is sat-

is�ed only in a limited range of �elds. As we show

b elow, the p ower-law dep endence of ln ( � (0) =� ( B ) ) ex-

tends somewhat in the regime if ln ( � (0) =� ( B ))) . 1 ,

which makes the observation of this dep endence more

realistic.

Second, many exp erimental data show that the

magnetoresistance often changes sign in small �elds. As

we discuss in more detail b elow, this sign change agrees

with the theoretical exp ectations. For instance, if the644
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scattering amplitudes are mostly p ositive ( P

�

� 1 ),

the lo calization length at large �elds b ecomes shorter

(see Sec. 2.3) and magnetoresistance is p ositive. But it

may change its sign and b ecome negative at small �elds.

This change in the sign of the magnetoresistance can

b e due to the change in the sign of the correction to the

lo calization length discussed in Sec. 2.3 or to another

e�ect at short scales that we discuss b elow. Gener-

ally, the theoretical predictions in this regime are less

universal.

At small magnetic �elds, the accuracy of the ap-

proximation M

ij

� A

ij

b ecomes insu�cient b ecause

it overestimates the contributions to hopping rate (4)

from the impurity con�gurations in which the partial

amplitudes A � (0) cancel each other in the absence of

the magnetic �eld, whence A

if

(0) � 0 . For these con-

�gurations, a small magnetic �eld changes ln A

if

dra-

matically. For a �nite probability density of A

ij

(0) = 0 ,

the magnetic �eld dep endence of ln A ( B ) b ecomes

a nonanalytic function of B : ln [ A ( B ) =A (0)] / j B j

[ 24 ; 25 ]. Similarly to the qualitative discussion of the

� ( B ) dep endence in Sec. 3.1, this nonanalyticity can b e

demonstrated in the case where the propagation ampli-

tude is due to the interference b etween just two paths,

A

if

= A 1 + A 2 � 0 with random A 1 and A 2 . In this

mo del case, the typical amplitude in a magnetic �eld

b ecomes

ln

�

�

�

�

A ( B )

A (0)

�

�

�

�

=

Z

dA 1 dA 2 ln

�

�

A 1 � A 2 e

i�

�

�

� j � j ; (22)

where � / B is the phase di�erence induced by the

magnetic �eld. Here and b elow, we let the bar denote

the averaging over the impurity con�gurations. Be-

cause the probability density of A

ij

(0) = 0 is �nite at

any concentration of scatterers with �

i

< 0 , the typi-

cal amplitude always increases at small �elds. But this

do es not always translate into negative magnetoresis-

tance.

The crucial di�erence b etween the amplitude A

ij

and hopping rate (4) is that the latter is the sum of

the p ositive rates due to phonons with di�erent q di-

rections. As a result, the probability density to �nd

W

if

= 0 is zero, and the magnetorsistance is prop or-

tional to B

2
at small B .

To �nd the values of the crossover �elds, we note

that in the limit of low temp eratures at which q r

ij

� 1 ,

the exp onential in (5) can b e approximated by the �rst

nonzero term:

M

ij

( q ) �

Z

d r  

y

i

( r )  

j

( r ) q � r : (23)

The main contribution to the matrix element M

ij

comes from the comp onents of the phonon wave vec-

tor q that is parallel to r

ij

. In the leading approxima-

tion, we can neglect the contributions from the phonons

with momenta in other directions. In this approxima-

tion, the hopping probability (4) is controlled by the

matrix element M

ij

( q ^r

ij

) ^r

ij

= r

ij

=r

ij

. This matrix el-

ement has the same statistical prop erties as the ampli-

tude A

if

, and therefore the reasoning resulting in (22)

applies, whence

ln j M ( B ; q ) =M (0 ; q ) j � j B j :

The subleading pro cesses in which hopping (4) is due to

phonons with momenta p erp endicular to r

ij

cut o� the

nonanalytic b ehavior of ln W ( B ) at very small �elds.

Combining this result with the e�ect of the � ( B )

dep endence discussed in Sec. 3.1 that o ccurs at large

scales at which the �ux through the typical lo op is

larger than the �ux quantum, B r

5= 3
�

1= 3
> � 0 , we

obtain three regimes of the ln M ( B ) dep endence for

B �

2
< � 0 :

ln

� (0)

� ( B )

= ln

W

if

( B )

W

if

(0)

�

�

8

>

<

>

:

( B =B 0 )

�

& 1 ; B > B 0 ;

j B j =B 0 . 1 ; B 0 > B > B

�

;

B

2
=B

�

B 0 � 1 ; B < B

�

;

(24)

where B 0 = � 0 =r

5= 3
�

1= 3
: As we saw in Sec. 3.1,

the transverse deviations of the typical path scale as

r

?

� r

2= 3
�

1= 3
. This allows us to estimate the contri-

bution to the average in (4) from phonons with q ? r :

W

?

� ( � =r )

2= 3
W . Rep eating the arguments that led

to (22), we obtain

ln

W ( B )

W (0)

=

Z

dW

k

ln

�

W

k

+ W

ty p

�

2
+ W

?

�

; (25)

which results in the dep endence (25) with B

�

= � 0 =r

2
.

The qualitative estimates show that while the

regime of a nonanalytic dep endence is relatively wide

( B 0 < B < � 0 =r

2
) , the regime of the linear dep endence

is narrow. We note that the estimates of B

�

and B 0
neglect the numerical co e�cients that might b e imp or-

tant.

The discussion ab ove and the result in (24) assumed

that the system is deep in the sign-disordered phase, in

which signs of all amplitudes are completely random. If

the scattering amplitudes are mostly p ositive, P

�

� 1 ,

the signs of the amplitudes b ecome random only at

large scales. This implies that the system can b e in645
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the sign-ordered phase at characteristic scales set by

the magnetic �eld. In this case, the magnetoresistance

at largest �elds is p ositive in contrast to (24), while

at small B it is quadratic in B , and can therefore b e

b oth p ositive and negative dep ending on the value of

P

�

� 1 .

To verify the validity of (25) for realistic parame-

ters, we have p erformed the numerical computation of

the matrix elements. We did not attempt a full com-

putation of the matrix element and its averaging over

the distribution of r

ij

that characterize the p ercolat-

ing cluster. Instead, we computed the matrix element

for the characteristic r

ij

and averaged over di�erent

direction of q . Because the results do not change quali-

tatively when r is increased by a factor of 2 , we b elieve

that they faithfully repro duce the dep endence of the

magnetoresistance:

ln

� (0)

� ( B )

= ln

h M

2
( B ) i

q

h M

2
(0) i

q

; (26)

where the angular brackets denote averaging of the di-

rections of q . The result of our numerical simulations

for the uniform density of states P ( � ) = (1 = 2) � (1 � j � j )

is shown in Fig. 13 for two typical distances: r =� � 8

and r =� � 6 . In b oth cases, we observe a large regime

of the pseudo-universal b ehavior ln( � (0) =� ( B )) � B

�

with � � 0 : 5 , which is due to the nonuniversal correc-

tions to lo calization length (19). At larger r =� & 8 , we

observe the gradual app earance of the transient linear

dep endence in the magnetic �eld, in agreement with

the exp ectations from (25). Figure 14 shows the ex-

p ected magneto conductance at di�erent typical values

of r =� converted into exp ected values of the resistances.

3.3. Beyond the single particle mo del

So far in our discussion we have ignored the many-

b o dy e�ects due to electron�electron interaction. Gen-

erally, one exp ects that electron correlations play a

much bigger role in the hopping regime than in the

metallic regime. In this subsection, we brie�y discuss

their role and the conditions under which the single-

particle results obtained ab ove are valid.

At low temp eratures, the electron sites with �

�

< 0

(and �

�

< 0 ) are o ccupied by electrons, while the

sites with �

�

> 0 are empty. Tunneling b etween ini-

tial and �nal states can b e viewed as a virtual pro cess

in which the electron hops through the intermediate

lo calized states. Dep ending on the ratio b etween the

electron�electron interaction and the density of states

1

10−2

B

10−1

10−3

10−4

10−5

10� 1

10� 3

10� 5B2

B1.4

B0.45

B0.45

B1.5

B2

10−5 10−3 10−1

ln[�M2(B)�q/ �M2(0)�q]

10� 3 10� 110� 5

Fig. 13. Phonon matrix element as a function of the

magnetic �eld at long and mo derate scales. The main

panel shows the �eld dep endence of the matrix element

for relatively long hops corresp onding to r =� � 8: 0.

We observes a very signi�cant (two decades) regime

of the pseudo-universal scaling dep endence asso ciated

with the lo calization length dep endence in (19). At

shorter scales (corresp onding to r =� � 6 shown in the

inset), the scaling regime shrinks. In b oth cases, the

regime of the analytic dep endence ( B

2 ) is limited to

very small �elds

0 0 : 2 0 : 4 0 : 6 0 : 8 1 : 0 1 : 2

B

1

2

3

4

� (0) =� ( B )

1

2

3

Fig. 14. Magneto conductance as a function of the

magnetic �eld for di�erent values of the matrix element

at zero �eld corresp onding to R

�

=R

Q

� 5 � 105

( 1 ),104

( 2 ), 103

( 3 ). For small matrix elements (large

resistances), the b ehavior at low �elds can b e ap-

proximated by a p ower law � (B )=� (0) � B

a

with

a � 0: 5 � 0: 6. The regime of very small magnetic

�elds is hardly observable on the linear scale of the plot

even for smallest resistances646
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at the Fermi energy in the impurity band, these lo cal-

ized states can b e singly and doubly o ccupied. The

spins in the singly o ccupied states interact via the ex-

change interaction J . Although the detailed theory of

disordered electron systems do es not exit, three obvi-

ous limit cases are clearly p ossible. In the �rst case, the

interaction b etween electrons is large, the ma jority of

sites are singly o ccupied, and the resulting spin system

might form an S = 1 = 2 spin glass at low temp eratures

and a paramagnet at high temp eratures. The low-tem-

p erature spin glass state breaks the time-reversal sym-

metry; it might b e collinear or isotropic dep ending on

the anisotropy of the exchange couplings. Although

logically p ossible, neither collinear nor isotropic states

were observed exp erimentally, probably b ecause quan-

tum spin �uctuations are to o large for spin 1 = 2 . The

alternative (second case) is that each spin forms a sin-

glet with another spin to which it is coupled by the

strongest interaction [46]. This state do es not break

the time-reversal symmetry. Finally, in the limit of

small interaction, the ma jority of states are doubly o c-

cupied (third case). Both the second and third cases

are characterized by zero average spin on each site.

In all cases, the segments of the tunneling path

where electrons travel through o ccupied sites can b e

viewed as a tunneling of a hole moving backwards

through o ccupied states, as is schematically shown in

Fig. 2. In the interacting system, this pro cess can lead

to the creation of many-b o dy excitations in the �nal

state that destroy the coherence b etween hopping am-

plitudes A � along di�erent paths � . When this do es

not happ en, the tunneling can b e describ ed by Eq. (7)

with renormalized hopping amplitudes and energies �

a

.

We now discuss the tunneling interference in dif-

ferent electron states in more detail. We start with a

state in which all sites are singly o ccupied. At high

temp eratures, the resulting spins form a paramagnet,

and hence the �nal spin states formed after the charge

transp ort along di�erent paths � are generally di�erent

and do not coincide with the initial state. In this state,

the corresp onding amplitudes A � do not interfere. In

this situation, no orbital e�ects of the magnetic �eld

on the charge transp ort are exp ected. Application of

the magnetic �eld can p olarize the spin system, restor-

ing the path interference. Thus, in this case, we exp ect

that the p olarization of the spin system by the in-plane

�eld results in a state characterized by a large negative

magnetoresistance with resp ect to the �eld p erp endic-

ular to the plane, while application of a small p erp en-

dicular �eld in the absence of an in-plane one gives

small or no negative magnetoresistance. A large out-

of-plane �eld (in the absence of the in-plane �eld) has

two e�ects: it might p olarize the spin system and cause

orbital e�ects. Thus, we exp ect a complicated b ehavior

as a function of the out-of-plane �eld.

At low temp eratures, the spins may freeze in a spin

glass state or form a spin liquid. If the spins freeze

in the collinear spin glass state, the �nal states corre-

sp onding to two paths mostly coincide and the inter-

ference reapp ears. In this situation, the electron hop-

ping amplitude can b e describ ed by essentially the same

equation (7). Thus, we exp ect the same orbital e�ect

of the magnetic �eld as discussed in Sec. 3.1.

The electron hopping b ecomes very di�erent in the

noncollinear spin glass b ecause the electron amplitudes

acquire a nontrivial phase factors due to spin non-

collinearity, which can b e describ ed by complex scat-

tering amplitudes �

a

. We exp ect that the magnetic

�eld do es not a�ect the interference in this case and

do es not lead to orbital magnetoresistance. However,

the isotropic spin glass state is rather unlikely to b e

realized in physical two-dimensional and even three-

dimensional glasses [47].

In contrast to the spin glass states, the spin singlets

formed in the second and third cases do not break the

time-reversal symmetry. Thus, the scattering ampli-

tudes in these situations remain real as in the single-

particle mo del. At low temp eratures, the �nal states

formed after charge motion should coincide, and hence

the interference b etween di�erent paths remains the

same as it was in the one-particle mo del in Sec. 3.1.

We do not discuss the e�ect of the magnetic �eld

on the spin con�guration, which also a�ects the trans-

p ort of charges. This discussion is b eyond the scop e

of this pap er devoted to the orbital e�ects. But we

brie�y mention p ossible scenarios in Sec. 5, where we

discuss the exp eriment that indicates that these e�ects

are imp ortant.

4. APPLICATION TO OTHER PHYSICAL

SYSTEMS

The sign phase transition that app ears for the bi-

nary distribution of scattering amplitudes discussed in

Sec. 2.3 can b e observed in very di�erent physical sys-

tems. Here, we show that it a�ects the physics of ran-

dom classical magnets at high temp eratures. The sim-

plest example is given by the Ising mo del on a cubic

lattice

H =

X

i;j

J

ij

s

i

s

j

; (27)647
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where s

i

= � 1 and the exchange interaction takes two

values: J

ij

= J 0 > 0 with probability 1 � X and J

ij

=

= J 0 with probability X .

At high temp eratures, the susceptibility in this

mo del is given by

� ( r

i

; r

f

) = h s ( r

i

) s ( r

f

) i =

=

X

f s

0

g

s ( r

i

) s ( r

f

) exp

�

�

H

T

�

; (28)

which is a random quantity at large r

if

� 1 . To show

the existence of the sign phase transition in this quan-

tity, we notice that at T � j J

ij

j , we can expand the

exp onent in (28) and take only directed paths b etween

sites i and f into account. Summing over directed paths

is equivalent to solving the recursion equation

�

k m

= �

k � 1m

J

k m

k � 1m

+ �

;m � 1 J

k m

k m � 1n

; (29)

where indices � k m � denote the site with co ordinates

k ; m on the square lattice and J

k m

k � 1m

denote the b ond

connecting two such sites. Recursion (29) is very sim-

ilar to (16) with the binary distribution of �

ij

, and we

can therefore exp ect that it shows the same sign tran-

sition as a function of the concentration X of negative

b onds. The only di�erence b etween (29) and (16) is

that the negative signs are asso ciated with b onds in

the former and with sites in the latter. This is similar

to the di�erence b etween site and b ond disorder in the

p ercolation problem which is known to have very little

e�ect. Thus, we exp ect that at r ! 1 , the distribution

function of � ( r ) exhibits the sign phase transition as a

function of X . At high temp eratures, the critical value

X

c

is T -indep endent. As the temp erature decreases,

the sign correlations increase, which can lead to the

formation of the sign-ordered phase. This means that

the transition from the spin-disordered to spin-ordered

phase shifts to larger X at lower temp eratures. Finally,

at su�ciently low temp eratures, the system might b e-

come a ferromagnet. At the transition p oint, suscep-

tibility (28) decreases as a p ower of j r

i

� r

f

| and the

sign correlations are long-range whereas spin correla-

tor decreases exp onentially. Thus, the transition to

the sign-ordered state o ccurs ab ove the transition to a

ferromagnet.

The staggered susceptibility is de�ned by ~� ( r ) =

= ( � 1)

n

� ( r ) , where n is the numb er of steps in a di-

rect path on a square lattice b etween the sites 0 and

r . Obviously, it also exhibits a sign phase transition.

Thus, at high temp eratures, the sign-disordered phase

is separated from the phases in which the sign of the

susceptibility is p ositive or alternating. At su�ciently

F AF
T Signdisordered
0 1XSG

Fig. 15. Qualitative picture of the phase diagram of

Ising spin glass. Dashed lines separate sign-ordered and

sign-disordered phases at high temp eratures. The spin

glass phase (SG, dots) app ears in dimension three and

higher. In two dimensions, the spin system remains

paramagnetic down to lowest temp eratures in the ab-

sence of the ferromagnetic (F) (or antiferromagnetic

(AF)) long-range order

low temp eratures, the system freezes into a magnet-

ically ordered or a spin glass phase. The spin glass

phase may b e sign-ordered or sign-disordered, the for-

mer corresp onds to the co existence of ferromagnetic

(or antiferromagnetic) and spin glass order parameters.

These conclusions are summarized by the phase dia-

gram shown in Fig. 15.

5. REVIEW OF THE EXPERIMENTAL

RESULTS AND CONCLUSIONS

Theoretical exp ectations describ ed in the previ-

ous sections can b e separated into the qualitative and

quantitative predictions. Veri�cation of the qualitative

prediction of the orbital mechanism of a large nega-

tive magnetoresistance in the variable-range hopping

regime is relatively simple: it requires measurements of

the anisotropy with resp ect to the parallel and p erp en-

dicular magnetic �eld. By contrast, verifying quanti-

tative predictions represented by (18) and (19) would

require stronger conditions ln [ % (0) =� ( B )] > 1 and

B �

2
> � 0 . We are not aware of exp eriments on the neg-

ative magnetoresistance where all these requirements

were satis�ed. Below, we discuss the currently avail-

able data on large negative magnetoresistance in the

variable-range hopping.

We b egin with the maximal value of the magnetore-

sistance observed exp erimentally and exp ected theoret-648
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Fig. 16. Data from [8] and their �t to the b ehav-

ior in (18) exp ected for relatively small resistances

R

�

=R

Q

� 103

� 104

involving the matrix elements com-

puted in Sec. 3.2. Curve 1 corresp onds to the �eld p er-

p endicular to the plane of the sample. Data p oints 2

show the e�ect of the �eld in the plane of the sample

p erp endicular to the direction of the current, and data

set 3 � to the �eld in the direction of the current.

The gray line shows the theoretical exp ectations. The

upturn at large �elds is due to the e�ect of the �eld at

small scales, where it mo di�es the hopping amplitude

b etween the sites, which was not taken into account

prop erly in the mo del

ically. In our numerical simulations, we obtained the

maximum value � � =� = 0 : 2 for the uniform density of

states (Mott regime) and � � =� = 0 : 05 for the density

of states linear in " (Efros�Shklovskii regime). The

measurable values of the resistance ( R . 10

11

 ) corre-

sp ond to ( T 0 =T )

�

. 15 . Hence, Eqs. (18) and (19) de-

scrib e the negative magnetoresistance whose value do es

not exceed % (0) =� ( B ) < 30 in the Mott regime, and is

exp ected to b e more mo derate, ln[ � (0) =� ( B )] < 1 , in

Efros�Shklovskii regime. This is in agreement with the

fact that in all pap ers [8�18] where b oth the large nega-

tive magnetoresistance has b een observed and the tem-

p erature dep endence of the resistance has b een mea-

sured, it followed Mott's law.

Surprisingly, one of the most comprehensive stud-

ies of the negative magnetoresistance in the variable-

range hopping regime in a two-dimensional material

was done in the early work [8] that studied Ge-sopp ed

GaAs �lms. It observed a strongly anisotropic nega-

tive magnetoresistance, the largest one corresp onding

to the out-of-plane �eld. The e�ect of the in-plane �eld

can b e accounted for by a signi�cant thickness of the

�lm ( d

eff

� 30 nm). Moreover, the in-plane negative

magnetoresistance was also anisotropic with resp ect to

the angle b etween the magnetic �eld and the current.

Finally, microscopic �uctuations of the resistance as a

function of the magnetic �eld in small samples were

observed. These observations prove the orbital nature

of the e�ect. In this exp eriment, the resistance of the

sample was R � . 30 M 
 at lowest temp eratures, in-

dicating that r =� . 5 . Accordingly, the magnitude

of the negative magnetoresistance remained mo derate:

(( � (0) � � ( B ) ) =� (0))

max

� 0 : 4 . In Fig. 16, we present

results of our numerical simulations of Eq. (26) and

their comparison with the exp erimental data in [8].

Pap er [10] observed negative magnetoresistance with

a similar amplitude and a similar dep endence on the

magnetic �eld in thin �lms of p olycrystalline In 2 O 3� x

.

A subsequent pap er [9] on GaAs/Al

x

Ga 1� x

As

disordered hetero junctions observed the signi�cantly

larger negative magnetoresistance % (0) =� ( B ) � 7 .

Strong anisotropy of the negative magnetoresistance

has b een observed, indicating the orbital nature of the

e�ect. The magnetic �eld dep endence of � ( B ) in low

�elds B . 4 T where magnetoresistance is negative was

roughly linear in co ordinates ln � ( B ) , B

1= 2
, which is in

go o d agreement with the dep endence exp ected theoret-

ically (25) and shown in Fig. 14. In these exp eriments,

the lo calization length � varied in the range 25�100 nm

for di�erent gate voltages, with B �

2
� � 0 o ccurring at

B � 4 T . Generally, one exp ects that the magneto con-

ductance should show a crossover to a di�erent regime

when B �

2
� � 0 . It is surprising that this crossover

is not observed in the data. On the other hand, this

pap er and the pap ers discussed b elow give values for

the lo calization length � extracted from the Mott law.

This pro cedure is prone to a numb er of uncertainties

such as the value of the density of states, the exact

form of the temp erature dep endence, etc., and the val-

ues of the lo calization length might therefore b e wrong

by a factor 2�5, which would b e su�cient to explain the

absence of the crossover in [9]. A similar large nega-

tive magnetoresistance ( % (0) =� ( B ) � 20 ) of the orbital

nature was observed in p olycrystalline In 2 O 3� x

�lms

in [1]. The b ehavior of % (0) =� ( B ) in these exp eriments

resembles a small p ower of magnetic �elds in a wide

range of �elds for all �elds; the quadratic b ehavior was

observed only in very low �elds ( B < 0 : 2 T ), at which

the relative change in the resistance was very small,

� R =R � 1 , in agreement with the theoretical exp ecta-

tions (cf. Fig. 13 in which the B

2
b ehavior app ears at

� R =R . 10

� 2
� 10

� 1
).

The maximal value of magnetoresistance in [9�11]

is somewhat ab ove the value exp ected theoretically for

the �lms of these resistances. For instance, the resis-

tance of GaAs/Al

x

Ga 1� x

As �lms in [9] implies that at649
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the lowest temp erature, the maximal value for these

�lms is ( T 0 =T )

1= 3
� 7 , which translates into the max-

imal exp ected value � (0) =� ( B ) � 2 �3. It is p ossible,

however, that the largest �elds studied in these pap ers

corresp ond to the regime B �

2
& � 0 , in which the mag-

netoresistance may continue to grow with B .

A huge e�ect of the transverse �eld on the con-

ductivity ( % ( 0) =% ( B ) & 30 ) of high mobility silicon

MOSFET was observed [ 12 ; 13 ] at low carrier concen-

trations. Remarkably, the large magnetoresistance in

the transverse �eld app ears in these exp eriments only

when the spins are p olarized by a large in-plane �eld,

while low �elds result in an isotropic small and p ositive

magnetoresistance. The latter indicates the spin nature

of the magnetoresistance, which is in agreement with

the strong correlations exp ected in this material. As

discussed in Sec. 3.3, this implies the existence of lo cal-

ized spins in the system that suppress the orbital e�ect

of the magnetic �eld. Application of a large in-plane

�eld p olarizes the spins, making the path interference

p ossible, such that a transverse �eld added to the sys-

tem leads to a large negative magnetoresistance, as is

observed exp erimentally. Unfortunately, pap er [12] did

not study the temp erature dep endence of the resistiv-

ity in these samples. It is likely that the change of the

sign of magnetoresistance observed in [14] in studying

the pregraphitic carb on nano�b ers that ob ey the Efros�

Shklovskii law is due to a similar mechanism. Unfortu-

nately, this work did not study the �eld anisotropy.

Pap er [15] rep orted a big negative magnetoresis-

tance ( % (0) =% ( B ) � 10 ) of H-dop ed graphene, while

the in-plane �eld had practically no e�ect on the resis-

tance. The observed negative magnetoresistance can b e

interpreted as a large change in the lo calization length

� ( B ) =� (0) = 4 induced by the �eld B = 9 T . These

results cannot b e compared directly with the univer-

sal scaling dep endence derived in this pap er b ecause

the large changes in the lo calization length imply that

B �

2
� 1 . We exp ect that at lower temp eratures, the

samples studied in this work should exhibit large mag-

netoresistance at low �elds asso ciated with small � � =� ,

but these data are not available.

Finally, it is p ossible that negative magnetoresis-

tance due to the orbital e�ect was also observed in

other materials but was not studied in any detail. For

instance, a sharp (factor of 2 ) drop of the resistance in

the �elds B = 1 T at T = 100 mK was observed in [16]

for CdSe: in samples that display the three-dimensional

Mott resistance with the exp onent � = 1 = 4 and R (0) =

= 6 M 
 � cm , signi�cant ( � G=G � 0 : 2 ) negative mag-

netoresistance was also observed in three-dimensional

dop ed n -typ e InP samples that also show the Mott law

but a much lower resistance R (0) � 10 
 � cm . Pa-

p er [17] rep orted a decrease in the resistance by a factor

of 100 in the �eld B = 1 T for Ge �lms at T = 36 mK

characterized by R = 400 k 
 .

The complexity of the data outlined ab ove shows

that they cannot b e explained solely by a single-particle

theory. In particular, it cannot explain why some ma-

terials exhibit only p ositive while others only nega-

tive magnetoresistance in the whole range of temp era-

tures and magnetic �elds in the variable-range hopping

regime. Moreover, there are also materials that exhibit

an isotropic p ositive magnetoresistance only at small

�elds. At larger in-plane �elds, the magnetoresistance

of these samples saturates, and addition of a small p er-

p endicular �eld results in a giant negative magnetore-

sistance [ 12 ; 13 ]. Evidently, the spin physics plays an

imp ortant role in the these materials.

Positive magnetoresistance of several orders of mag-

nitude in high magnetic �elds has b een observed in

many exp erimental works (see, e. g., [ 23 ; 48 ; 49 ]). How-

ever, no data set is su�ciently complete to allow asso-

ciating it with the orbital interference mechanisms [19]

describ ed by (18) and (19). For example, these works

did not study the anisotropy of the magnetoresistance.

We now brie�y discuss the origin of the isotropic

p ositive magnetoresistance in small �elds, which was

observed in a numb er of works. There are at least

three p ossibilities. The �rst is that the electron spin

p olarization increases the electron energy. As a result,

the density of states at the Fermi energy changes as

well. This is exp ected to b e a relatively small e�ect.

An alternative mechanism asso ciates it with the pres-

ence of b oth singly and doubly o ccupied states near the

Fermi energy in the impurity band. In the absence of a

magnetic �eld, the pro cess in which the electron hops

from one o ccupied site to another (creating a singlet)

is p ossible. The magnetic �eld p olarizes spins, which

suppresses such pro cesses [50]. Thus, the magnetic �eld

e�ectively changes the density of states in the impurity

band. This mechanism provides contribution to log �

that are quadratic in B . Therefore, it can b e e�ective

only in the absence of the orbital contribution, which

is nonanalytic in B .

A di�erent mechanism might b e e�ective if the elec-

tron system is strongly correlated and in the absence

of disorder is close to the Wigner-crystal�Fermi-liquid

transition. In the presence of disorder, the system may

b e visualized as a random mixture of crystal and liquid

puddles. In this case, the insulating phase corresp onds

to the situation where metallic puddles do not over-

lap. Because the magnetic susceptibility of the Wigner

crystal is higher than that of the Fermi liquid, the frac-650
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tion of the Wigner crystal grows with increasing the

magnetic �eld, leading to the p ositive magnetoresis-

tance [13]. In the theory of

3
He, this phenomenon is

known as the Pomeranchuk e�ect. It is p ossible that

the huge p ositive isotropic magnetoresistance observed

in [ 12 ; 13 ; 51 ] in the metallic regime of Si MOSFET's

and GaAs quantum wells is due to this mechanism.

We b elieve that the same mechanism may b e resp onsi-

ble for the p ositive isotropic magnetoresistance in the

hopping regime [13].

Finally, the spin alignment in the parallel �eld pro-

duces the interference b etween the paths and corre-

sp onds to a new mechanism of magnetoresistance. Al-

though this mechanism in the hopping regime has never

b een considered theoretically, it is clear that it also pro-

duces a negative magnetoresistance. We exp ect that

this contribution will b e isotropic.

While this work was in progress, we learned ab out

pap er [52] that gives the arguments for the univer-

sal corrections to the magnetoresistance of strongly

disordered sup erconductors describ ed by a mo del

similar to the electron hopping discussed here. In our

terminology, this mo del corresp onds to the case of

the uniform density of states and p ositive scattering

amplitudes.
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