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We review current theoretical and experimental efforts to identify a novel class of intermetallic 4f and 5f orbital
materials in which strong interactions between itinerant and predominately localized degrees of freedom gives
rise to a bulk insulating state at low temperatures, while the surface remains metallic. This effect arises due to
inversion of even-parity conduction bands and odd-parity very narrow f-electron bands. The number of band
inversions is mainly determined by the crystal symmetry of a material and the corresponding degeneracy of
the hybridized f-electron bands. For an odd number of band inversions, the metallic surface states are chiral
and therefore remain robust against disorder and time-reversal invariant perturbations. We discuss a number
of unresolved theoretical issues specific to topological Kondo insulators and outline experimental challenges in

probing the chiral surface states in these materials.
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1. INTRODUCTION

In the past ten years, researchers have been fas-
cinated with a peculiar kind of materials: topological
insulators [1-6]. These materials host spin-momentum-
locked (i.e., chiral) metallic surface states, which al-
low them to remain robust to time-reversal invari-
ant perturbations [7-13]. In addition, these materi-
als, when brought into contact with s-wave supercon-
ductors, support Majorana fermions that are their own
antiparticles [14, 15]. The combination of these prop-
erties makes topological insulators promising platforms
for spintronics and quantum computing applications.
At the same time, these materials, which have been
proved to possess topologically protected metallic sur-
face states, have significant bulk conductivity [16-19].
In this sense they are therefore not ideal topological
insulators.

One promising route to the discovery of ideal topo-
logical insulators is to examine materials with strong
electron—electron interactions. First, the electron cor-
relations may fully suppress the bulk conductivity. Sec-
ond, electronic interactions may significantly enhance
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the spin—orbit coupling, which is responsible for the in-
version of the bands with opposite parity. In weakly
correlated Bi-based topological insulators, spin—orbit
coupling inverts the s- and p-bands. In correlated topo-
logical insulators, we expect bands with higher orbital
numbers, either p- and d-orbitals or s-, d-, and f-orbi-
tals, to invert. For example, a topological Mott insu-
lating state has been theoretically predicted for d-orbi-
tal pyrochlore irridates within the extended Hubbard
model on a honeycomb lattice [20-24], while inversion
between Os d-bands and Ce f-bands leads to a topolog-
ical insulator in filled skutterudites [25] and the general
two-dimensional Kondo system where topological insu-
lating state is hidden inside the ferromagnetic metallic
state [26]. Tt is also worth mentioning the theoreti-
cal realization of various interaction-driven topological
phases in ultracold atom systems and graphene [27-29].

In this article, we focus on recent theoretical and
experimental breakthroughs in the search for the ideal
topological insulator in higher orbital systems. The
special attention is given to the already existing f-orbi-
tal materials [30], such as CeNiSn, Ce3BisPt3, YbByo,
and SmBg. These materials, which are called Kondo in-
sulators, have all the necessary features needed for real-
izing topological behavior: strong spin—orbit coupling,
strong electron—electron interactions, and orbitals with
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Table. Strength of the Hubbard interaction U and
spin—orbit coupling A depending on the orbital state
type

4d 5d Af

1.7
0.7,...

5f
2.1
1,...

U, eV
A, eV

15
0.1,...

,0.2 1 2

opposite parity (see Table). The strong spin—orbit cou-
pling is inherent in f-electron systems and guarantees
the inversion of the bands at the high-symmetry points
in the Brillouin zone. The predominantly localized
character of the f-electrons furnishes a strong Coulomb
repulsion between them, while hybridization between
the even-parity conduction electrons and f-electrons
leads to the emergence of the hybridization gap. In-
terestingly enough, the onset of the hybridization gap,
observed by Raman spectroscopy in some Kondo insu-
lators, has clear features of a second-order phase transi-
tion. In any case, the opening of the hybridization gap
does not guarantee an insulating gap, of course. But in
Kondo insulators, the total number of conduction and
f-electrons per unit cell is even and, consequently, it
immediately follows that Kondo insulators are strongly
correlated analogues of band insulators.

This article is organized as follows. In the next
section, we review the theoretical models that lead
to the original prediction [31] that Kondo insulators
with tetragonal or orthorhombic crystalline symmetries
can naturally become a host to topologically protected
metallic surface states. Section 3 is devoted to the re-
view of recent experimental and theoretical efforts to-
ward the understanding of the physics of cubic topo-
logical Kondo insulators and, specifically, SmBg. In
Sec. 4, we discuss open questions, the answers to which
will deepen our understanding of topological Kondo in-
sulators. We summarize the current status of the field
and present our conclusions in Sec. 5.

2. THEORIES OF TOPOLOGICAL KONDO
INSULATORS

In this section, we review the recent theories of
topological Kondo insulators. We consider the case
where the f-ion is in tetragonal crystalline field en-
vironment and review the theoretical results obtained
for this case first. We then proceed with the discussion
of the theories for cubic topological Kondo insulators,
which are relevant for SmBg, YbBi5, and Ce3BisPt3
materials.
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2.1. Tetragonal topological Kondo insulators

The minimal model of Kondo insulators must in-
volve conduction and strongly correlated f-electrons
as well as hybridization between them. Before we write
the corresponding periodic Anderson model, we need to
specify the f-electron states. Since most of the tetrago-
nal systems that are insulating or semi-metallic contain
Ce, we consider the model for the Ce ion in a state with
the total angular momentum .J = 5/2. The six-fold de-
generate multiplet is then split into the three Kramers
doublets with the eigenvectors written conveniently in
terms of the eigenvectors of the angular momentum
projection operator .J. as [32]

= 21) = [ £1/2),
| = £2) = cosa| £5/2) —sina| F3/2),
| = £3) =sinal £5/2) + cosa| F3/2),

(1)

where the angle a determines the degree of mixing be-
tween the corresponding orbitals. These eigenvectors
can be conveniently expressed in terms of the spin part
of the electron wave function y, as

5/2 3
)= > BuuVir Y Al imDxe,  (2)
M:75/2 m=—3
where A%w are the Clebsch—Gordan coefficients and

B, n are some known constants determined from the
crystalline electric field (CEF) potential.

The minimal model Hamiltonian for the tetragonal
Kondo insulator then takes the form [31-33]

H=> &, b, +
ko

+ Zsl((f)fliufku + Z (Vﬁ(aufliuéka + HC) +
ku kupo
1 A AL A
+5Uss >SSt s 3)
B!

where éfw creates an electron in the conduction band in

a plane-wave state with the momentum k, spin o =1, |
and energy & (relative to the chemical potential of the
conduction band), while fliu creates an f-electron in
a state with momentum k and the multiplet compo-
nent 4 in (1) and the energy sl((f). We note that the
bandwidth of the f-electrons is much smaller than the
one for the conduction electrons. The third term in (3)
describes the momentum-dependent hybridization be-
tween the conduction and f-electrons, while the last
terms accounts for strong local correlations between the
f-electrons on site 7. This last terms is important be-
cause it leads to the local moment formation.
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It is very intuitive that the momentum depen-
dence of the hybridization amplitude determines the
anisotropy of the hybridization gap, which becomes an
insulating gap if the total number of electrons per unit
cell is even. Formally, the momentum dependence of
Vipuo can be written in terms of the spherical harmonic
functions [32, 34]:

5/2 3
Vkua— = Z BuM \% 471—Vk:l Z Al]\r/[nayim(k)v (4)
M:75/2 m=—3

where Vj; are the matrix elements, which can be ex-
pressed in terms of the corresponding Slater—Koster
matrix elements [35]. We note that the values of the
momentum in (4) are defined everywhere in the Bril-
louin zone and

m 1 m/P )\ ik-
V) = - Y (R)e R
R#0

(5)

is a tight-binding generalization of the spherical Har-
monics that preserves the translational symmetry of
the hybridization, Vi = Vikiq, where G is a reciprocal
lattice vector [31, 34]. Here, R are the positions of the
Z nearest-neighbor sites around the magnetic ion.

The low-energy properties of the model in (3) can
be analyzed by the using the following conjecture: the
effect of the local correlations between the f-electrons
leads to the renormalization of the hybridization am-
plitude and a shift of the f-energy level:

(f) _ =N

(f)
S

= Ziu (5] + S0 = 0))
Viuo | = [Viewo | = / Zrep Viepo

where the renormalization factor Zy, is determined by
the f-electron self-energy part £, (k,w):

|

Then the low-energy model can be diagonalized, yield-
ing a band structure that consists of two doubly de-
generate bands separated by the momentum-dependent

—1

_ 8Euu(k,w)

50 (7)

Zp = 1

w=0

energy gap Ay given by

A% = 5, ©
where we suppressed the spin and orbital indices for
brevity. Since the total number of electrons per unit
cell is even, the lowest two bands are guaranteed to
be fully occupied, and we have a band insulator if Ay
does not have nodes anywhere in the Brillouin zone
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apart from the high-symmetry points, where it van-
ishes because V_i,,0 = —Vi 0. Analysis of the mo-
mentum dependence of Ay shows that for y = £2, 43,
the function Ay vanishes at k. = £k, i.e., the gap
has two point nodes [32]. Therefore, hybridization and
insulating gap always open for p = +1/2, correspond-
ing to a ground-state multiplet with J, = +1/2. We
note in passing that for systems with lower symmetry
(i.e., orthorhombic), the ground-state Kramers doublet
is given by a linear combination of states (1). In this
case, although J, = +1/2 is nodeless, it can be shown
that the hybridization gap acquires nodes at some fi-
nite values of the momentum k (see the discussion in
Ref. [32] for the details).

The parity at a high-symmetry point can be deter-
mined by 6,, = sign(&e. — 2)) [1,6,31,34]. Four in-
dependent Z, topological indices (vo; v1var3) [36], one
strong (a = 0) and three weak indices (a = 1,2, 3) can
be constructed from d,, as follows.

(i) The strong topological index is the product of
all eight d,,,s:

+1.

8
Isrr = (1) = [] 0m

m=1

(ii) By setting k; = 0 (where j = z,y, 2), three
high-symmetry planes P; = {k:#k; =0} are formed
that contain four high-symmetry points each. The
product of the parities at these four points defines the
corresponding weak topological index

Lyrr = (1) = H om ==%1, a=1,2,3,
kmEPj

with integers corresponding to the axes x,y, and z. The
existence of the three weak topological indices in 3D is
related to a Zs topological index for 2D systems (a weak
3D topological insulator is similar to a stack of 2D Z5
topological insulators). Because there are three inde-
pendent, ways to stack 2D layers to form a 3D system,
the number of independent weak topological indices is
also three. A conventional band insulator (BI) has all
of the four indices, Isr; = Ifyrr = Ly = Lyrr = +1
or equivalently (0;000). An index I = (=1) (v, = 1)
indicates a Z» topological state with an odd number of
surface Dirac modes. In a tetragonal Kondo insulator
the inversion index §,, of a particular high-symmetry
point m is negative if the conduction band is below
the f-band: &ex < 51(({). Hence, if {k: —o < 51(({):0 at
the I point, while the I%maining high—symmetrympoints
remain inert, {20 > 51(({), then I's7; = —1, and there-
fore the tetragonal Kondo insulator is a strong topolog-
ical insulator (STT), robust against disorder (Fig. 1a).
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Fig.1. Two topologically distinct states can be realized
in our model of tetragonal topological Kondo insulators.
The first one has the topological invariant v = (1; 000)
and corresponds to a strong topological insulator. The
second one has the topological invariant v = (0;111)

Weak topological insulators (WTIs) and topologically
trivial insulators can in principle be found for different
band structures and different values of 51((’2 _o (Fig. 1b).
We can go beyond the phenomenological description
described above and resort to a more microscopic ap-
proach. Specifically, we can consider the limit Uy — 0o
and work in the restricted phase space by projecting
out the doubly occupied f-states. Formally, this is ac-
complished by introducing the slave boson operators
[37-41]. Then the mean-field analysis of the resulting
model can be made by replacing the slave boson op-
erators by a number, which must be determined self-
consistently. The mean-field theory is controlled by
the degeneracy of the f-orbital multiplet. The large-V
mean-field for analysis the tetragonal Kondo insulator
has been done in [42] and also in [43]. The results of
the slave-boson mean-field theory generally agree with
the phenomenological approach for N = 2 (Fig. 2a).
In Ref. [43], the mean-field diagram has also been ob-
tained for N > 2 (Fig. 2b,c). Interestingly, it was found
that the WTTI state is suppressed as the degeneracy
of the f-multiplet increases, and only the STT state is
present for N = 6. This result indicates that the STI
state should be preferred for higher-symmetry, i. e., cu-
bic, systems. We return to this observation when we
discuss the cubic topological Kondo insulators below.
The phenomenological and mean-field models dis-
cussed so far assume that the interaction between f-
electrons is infinitely large. How do the results change
if we consider finite values of Uy? Can we study the
evolution of the topological state as a function of Ups?
In other words, can a Kondo insulator be adiabatically
connected to a non-interaction band insulator? This
and related questions have been recently addressed by
Werner and Assaad [44] by using the dynamical mean-
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a N=2
BI ‘ STI ‘ WTI
0.58 0.87 1.00
b N =4 nf
BI STI =
‘ =
0.59 0.951.00
c N=6 nf
BI ‘ STI
0.59 .00
ny

Fig.2. Large-N mean-field theory results for the topo-
logical Kondo insulator [43]. (@) Phase diagram calcu-
lated for a doubly degenerate f-ion multiplet, N = 2,
as a function of the average electronic occupation of
the f-level, 0 < ny < 1. In the local moment regime,
ny = 1, the weak topological insulator (WTI) with the
topological invariant v = (0;111) is realized. In the
mixed-valence regime, ny ~ 1, the Kondo insulator is a
strong topological insulator (STI) with the topological
invariant given by v = (1;111). When the hybridiza-
tion between the conduction and f-electrons becomes
even stronger, the material is a trivial or band insula-
tor (BI), v = (0;000). (b) and (c) Phase diagram for
N =4 and N = 6 correspondingly. Note that the WTI
state disappears as the degeneracy of the f-multiplet
increases

field theory (DMFT) to analyze the 2D Kondo insula-
tors.

The physical properties of the model described by
the Anderson lattice Hamiltonian in (3) can be cap-
tured, in particular, by the single-particle propagators.
The self-energy corrections in the single-particle cor-
relation functions are governed by the Hubbard repul-
sion between the f-electrons. Generally, the f-electron
self-energy part depends on both momentum and fre-
quency. Within the DMFT, however, a single f-elect-
ron site version of the lattice model in (3) is considered,
which allows computing the single-particle and higher-
order correlation functions exactly [45]. Consequently,
the self-energy parts, which encode the correlation be-
tween the f-electrons, are all momentum independent.
Then the self-energy parts for the conduction and f-
electrons corresponding to the lattice problem can be
determined self-consistently from the solution of the
impurity problem.

Interestingly, Werner and Assaad have found [44]

that increasing the strength of the Hubbard interaction
leads to a series of transitions from the normal insulator
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Fig.3. Dynamical mean field theory phase diagram for
the 2D Kondo insulator (adopted from Ref. [44]). As
the strength of the Hubbard interaction Uy between
the f-electrons increases, there are three topologically
distinct insulating states. A band insulator (Bl) is re-
alized for small (compared to the conduction electron
bandwidth) values of Uys. A topological insulator (TI)
with band inversion at the T point sets in for interme-
diate values of Uys. When the interaction strength Uyy
increases further, this state is superseded by a topolog-
ically nontrivial 7-TI state: in this state, bands of the
opposite parity invert at the X points of the 2D Bril-
At the boundaries between topologically
distinct states, the system is semimetallic

louin zone.

(small Uys) into a STI with the in-gap state crossing
the Fermi level at the I' point, and then into another
STTI, in which the in-gap states cross the Fermi level at
the X point (Fig. 3). These results clearly indicate that
the previously developed concept of adiabatic connec-
tion between uncorrelated band insulators and strongly
correlated Kondo insulators [46] does not hold at least
for the two-dimensional Kondo lattice. It remains to
be verified, of course, whether this conclusion holds for
a 3D Kondo insulator. In conclusion, we note that
true tetragonal Kondo insulators are still to be exper-
imentally discovered, because until now, the Ce-based
tetragonal “Kondo insulators”, such as CeNiSn [47] and
CeRuSng [48], become semimetals upon improving the
sample quality.

2.2. Cubic topological Kondo insulators

Kondo insulators consistently show insulating be-
havior in transport measurements — most notably,
SmBg, YbB15, and Ce3BisPts — are all cubic. In this
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The Sm ions are at

Fig.4. Crystal structure of SmBs.

the center of the unit cell and are surrounded by octa-

hedrons of boron ions located at the corners of the unit
cell

section, we review the recent theories of cubic topo-
logical Kondo insulators, using samarium hexaboride
as a specific example [49-51]. We note, however, that
the model that we discuss below should also hold for
Ce3BisPt3, although some parameters can be different.

The magnetic valence configuration of the Sm ion
corresponds to the state with the total angular momen-
tum J = 5/2. The six-fold degenerate Sm multiplet is
split by cubic crystal fields into the I'; Kramers doublet
and a T's quartet. Consequently, the eigenstates of the
cubic crystalline field Hamiltonian are given by

i>=\ﬁ|i5/2>—\/§|¢3/2>,
\/7|i5/2 \[|:F3/2

)= | £1/2).

|F77
(9)

| I‘

If T'; is the ground-state multiplet, the system is a
semimetal because the hybridization gap has nodes in
the Brillouin zone [32]. Thus, for an insulating state,
we necessarily need I's to be the ground-state multi-
plet. This appears to be indeed the case for SmBg (as
well as for Ce3BiyPt3), as is evidenced by inelastic neu-
tron scattering experiments and Raman spectroscopy
[52-55].

SmBg has a cubic CsCl-like crystal structure
(Fig. 4), with the Bg clusters located at the center of
the unit cell. From band-theory calculations [50, 56],
the Bg clusters act as spacers that mediate electron
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hopping between Sm sites, but are otherwise inert.
In addition to the band structure results, X-ray
photoemission spectroscopy (XPS) of SmBg [54] indi-
cates that the conduction bands that hybridize with
the localized 4f-orbitals are 5d-states, which form
electron pockets around the X points. In particular,
the physics of the 4f-orbitals is governed by valence
fluctuations involving electrons of the I's quartet and
the conduction e,-hole states, 4> = 4f% + h. The
conduction states must be d2>_,» and d3.>_,> orbitals
of the e, symmetry. Since the lowest-lying state must
be a quartet, we immediately conclude that the band
inversion occurs an odd number of times and the cubic
Kondo insulator must be a strong topological insulator
for a moderate value of the hybridization [51]. Indeed,
at the I' point, both d and f-bands remain four-fold
degenerate, such that the I' point remains topologically
inert.

Recently, Takimoto [49] performed the low-energy
analysis of the Anderson Kondo lattice model in (3)
properly generalized to take the realistic band struc-
ture of SmBg into account. Specifically, the conduc-
tion and f-electron spectrum have been derived using
the tight-binding approximation to the next-nearest-
neighbor approximation. We emphasize that the next-
nearest-neighbor hopping is needed in order to ob-
tain the minimum of the conduction bands at the X
points of the Brillouin zone. The hybridization part
of the Hamiltonian has also been derived using the
tight-binding approximation restricted to the nearest
neighbors only. This approximation can be justified by
noting that the orbital momentum Al = 41 is trans-
ferred from the conduction d-states to the f-states in
the process of hybridization. The phenomenological
analysis similar to the one in Ref. [31] of the resulting
model shows that SmBg is a strong topological insula-
tor. An important conclusion drawn from the results in
Ref. [49] is that as a consequence of the band inversion
at the X points, there are three Dirac cones on the sur-
faces perpendicular to the main symmetry axes. A sub-
sequent first-principle study based on the local density
approximation (LDA) plus the Gutzwiller method [50]
has confirmed the results of the phenomenological the-
ory [49].

Most recently, Alexandrov, Dzero, and Coleman
(ADC) formulated a general model for the cubic topo-
logical Kondo insulators [51]. The ADC model for the
three-dimensional Kondo insulator can be derived from
an effective (Upy — 00) model for the one-dimensional
Kondo insulator by applying a series of unitary trans-
formations. Specifically, we consider the quartet of
f- and d-holes described by an orbital and a spin in-

dex, denoted by the combination A = (a,0) (a = 1,2,
o = +1). Consequently, the d- and f-states are then
described by the eight-component spinor

Xox(s)

where dy(j) destroys a d-hole at site j, while Xy (j) =
= |4f%)(4f°, )| is the Hubbard operator that destroys
an f-hole at site j. The tight-binding Hamiltonian de-
scribing the hybridized f—d system is then

H= Z ‘I/I\(i)hu' (Ri —R;) ¥ (j), (11)

i,j

where the nearest hopping matrix has the structure

_(M(R) V(R)
h(R)—<VT(R) hf(R)>' (12)

Here, the diagonal elements describe hopping within
the d- and f-quartets and the off-diagonal parts de-
scribe the hybridization between them, and R €
€ (£x,+y, +7) is the vector linking nearest neighbors.
The various matrix elements simplify for hopping along
the z axis, where they become orbitally and spin diag-
onal:

hl(z) =t (1 m) . V(z) =iV (0 U ) . (13)

Here, [ = d, f and n; is the ratio of orbital hopping
elements. In the foregoing, the overlap between the
Fél) orbitals that extend perpendicular to the z axis is
neglected, since the hybridization is dominated by the
overlap of the the Fz(;2) orbitals that extend out along
the z axis. The hopping matrix elements in the x and
y directions are then obtained by rotations in the or-
bital/spin space. Such that

h(x) = Uyh(2)US, h(y) = U_.h(z)UL,,

where U, and U_, respectively denote 90° rotations
about the y and negative x axes. By construction,
the hopping terms h®/(k) in Hamiltonian (11) could
have been alternatively obtained from the tight-binding
approximation within the nearest-neighbor approxima-
tion. But it is important to keep in mind that the
correct band structure for SmBg is still recovered by
properly choosing the ratio between the corresponding
hopping amplitudes [51].

Furthermore, the Fourier-transformed hopping ma-
trices

h(k) = h(R)e *F
R

579 9*
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can be written in the compact form

K (k)
[ (K)+moa(k) /
- ((1—m>¢3<k) >>+ -

where [ = d, f. Here, € are the bare energies of the
isolated d- and f-quartets, and

P2(k) = 3(cz + ¢y),

o3(k) = \/g(cz —¢y) (ca =coskq,a=2,y,2).
The hybridization is given by
).

(

where we set 6, = 0, sin k,. Naturally, the hybridiza-
tion between the even-parity d-states and odd-parity
f-states is an odd-parity function of the momentum,
V(k) = -V (-k).

The model in (11) has been analyzed using the sla-
ve-boson mean-field approximation and it was shown
that the cubic Kondo insulator is an STI, in complete
agreement with previous works [49, 50]. Furthermore,
ADC have shown that the STI state extends well into
the local moment regime, similarly to the results form
the large-N theory for tetragonal Kondo insulators (see
Fig. 2¢). Lastly, we emphasize that the procedure for
obtaining the effective model for a cubic Kondo insu-
lator [51] can be easily generalized to various types of
conduction orbitals and can therefore be used to an-
alyze the topological properties of the band structure
for other cubic Kondo insulators such as YbBio and
Ce3BisPts.

(1—m)¢s3 (k)
b2 (k) +mé1 (k

o1 (k) = ¢y + ¢y + 4cs,

v

6

3(6, +ia,)  V3(6, —iFy)

V(k) =
(k) V3(6, —iGy) Gp+iG, + 45,

3. EXPERIMENT: SAMARIUM HEXABORIDE

In this section, we present a brief overview of ex-
periments on the canonical Kondo insulator SmBg [57].
There exists a vast amount of experimental literature
on this material, which merits a separate review paper.
Here, we focus on discussing the experimental proper-
ties of importance for possible realization of topologi-
cally protected chiral surface states.

SmBg is the first known and most experimentally
studied heavy-fermion semiconductor [57]. At high
temperatures, SmBg is a metal with the magnetic
susceptibility showing the Curie—Weiss-like behavior,
X ~ 1/T, signaling the existence of local magnetic mo-
ments originating from the Sm f-electrons. At low tem-
peratures T < Teon =~ 50 K, SmBg is a narrow-gap
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semiconductor with a weakly temperature-dependent
magnetic susceptibility [30, 33]. Furthermore, the av-
erage electronic occupation of the Sm f states is non-
integer and varies between the Sm?* (4f%) and Sm3*
(4f55d) configurations. This mixed-valence state ap-
pears as a result of strong hybridization between the
5d and 4f Sm electrons [56], which also leads to for-
mation of the hybridization gap Fj, ~ 10 meV and the
many-body insulating gap at £, ~ 5 meV.

Most importantly, the saturation of resistivity at
temperatures below T* &~ 5 K was consistently ob-
served independently by many groups [46]. Resistivi-
ty saturation was initially interpreted as an extrinsic
effect due to formation of the impurity band. Howe-
ver, almost ten years after the initial discovery [57],
Allen, Batlogg and Wachter [58] argued based on the
Hall coefficient data that the observed values of con-
ductivity were too small for a metallic-like system.
Moreover, with subsequent accumulation of the exper-
imental data, it became clear that this is an intrin-
sic electronic effect, although the controversy regard-
ing the intrinsic or extrinsic origin of the effect re-
mained. This controversy was mainly resolved with
pressure experiments [59,60], which have shown that
for the pressure above p* & 45 kbar, the SmBg re-
covers its metallic properties. Interestingly, it was ob-
served in [59] that the states contributing to low-T
conductivity dominate the transport up to sufficiently
high temperatures when the transport gap becomes
fully suppressed, which means that these states must
be an intrinsic property of the system. Transport
measurements under pressure and the applied mag-
netic field as large as 18 T have shown the negative
magnetoresistance [Ap(H)/p(H = 0)]pcp o< —H?
at small pressure, while for pressures above p*, the
magnetoresistance becomes positive and increases as
[Ap(H)/p(H = 0)]psp- < H?2. The activation gap,
on the other hand, is very weakly dependent on the
magnetic field, which indicates, albeit indirectly, that
the T's quartet is the ground-state multiplet for Sm3+
ions, since it has the smallest value of the g-factor,
gre = 2/7 [61].

Since the seminal paper [58], the puzzle of tempe-
rature-independent resistivity below 7" became clearly
recognized and its origin remained mysterious for al-
most thirty years. It was nevertheless widely believed
that the low-temperature conductivity in SmBg orig-
inates primarily from the bulk [62-66] and the sur-
face provides a significantly smaller, if any, contribution
to conductivity. From our current perspective, this is
quite remarkable, because the first topological insula-
tor could have been discovered almost 30 years ago, well
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before the discovery of the integer quantum Hall effect!
Nevertheless, it took many years until very recently to
ask the question whether the saturation of resistivity
below 5 K in SmBg is a purely surface effect. Motivated
by theoretical work [31], several groups [67-69] have
independently addressed the issue of bulk vs surface
conductivity. The transport [67], Hall effect [68], and
tunneling [69] measurements and the angular-resolved
photoemission spectroscopy (ARPES) [70] unambigu-
ously showed that only the surface of SmBg is con-
ducting below T*. Furthermore, the surface metallic
states remain surprisingly robust against variations in
the surface quality.

Thus, the results of the most recent experiments are
manifestly in support of the initial prediction [31] that
Kondo insulators host topologically protected surface
states. Indeed, the robustness of the surface states and
the fact that their appearance is correlated with the
emergence of the hybridization gap indicate that SmBg
is a strong topological insulator [49-51]. However, a
combination of high-resolution ARPES and tunneling
data are needed to directly confirm the chirality of the
metallic surface states in SmBg.

4. OPEN QUESTIONS

The theoretical and experimental results reviewed
by us so far bring up a number of issues that need to
be understood. For example, the Raman spectroscopy
data [54, 55] seem to indicate that opening of the hy-
bridization gap in SmBg happens in a way very similar
to a second-order phase transition, i.e., the hybridiza-
tion gap plays a role of the mean-field order param-
eter. Typically, mean-field-like transitions assume a
well-defined separation of energy scales, just like in con-
ventional superconductors, for example, when the small
ratio of the Debye frequency to the Fermi energy ren-
ders the mean-field BCS theory extremely reliable. In
addition, the mean-field-like onset of hybridization im-
plies that the fluctuations in Kondo insulators are much
weaker compared with the metallic heavy-fermion sys-
tems, which calls for a better understanding of the fluc-
tuations in heavy-fermion systems.

Theoretically, there is still an open problem of the
strong-coupling description of the topological Kondo
insulators, similar to the Noziéres Fermi-liquid picture
of the Kondo ground state [71]. The progress towards
the solution of that problem will significantly deepen
our understanding of the microscopic structure of the
chiral states on the surface of topological Kondo insu-
lators.
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Finally, another set of questions concerns Ce-based
heavy-fermion semiconductors that order antiferromag-
netically. These materials have a tetragonal crystal
structure, and it remains to be seen whether antiferro-
magnetic interactions promote the strong topological
insulating state. The same applies to the possibility
of the occurence of topological states in heavy-fermion
superconductors.

5. CONCLUSIONS AND AN OUTLOOK

As the search for an ideal topological insulator con-
tinues, we have come to realizion that at least one ideal
topological insulator — samarium hexaboride — has
been discovered almost 30 years ago. Current theories
of topological Kondo insulators all show that the exis-
tence of the chiral surface states in f-orbital semicon-
ductors is one of its fundamental signatures. Moreover,
these states exist for the broad range of the system pa-
rameters, such as the position of the f-electron chem-
ical potential and the strength of the Hubbard inter-
action between the f-electrons. For cubic topological
Kondo insulators, the only requirement is that the hy-
bridization between the conduction and the f-electrons
is strongest at the X or M high-symmetry points in the
Brillouin zone. This guarantees an odd number of the
band inversions and hence a strong topological insula-
tor.

In recent years, we have witnessed a resurgence
of theoretical and experimental activity in the field
of heavy-fermion semiconductors, and there remains
little doubt that SmBg is only the first topological
Kondo insulator. The new potential candidates are
YbBs and Ce3BisPts — materials with the physical
propeties very similar to those of SmBg. Topological
Kondo insulators would present an ideal platform for
in-depth transport studies of chiral surface states. In
addition, an interplay between the strong spin—orbit
coupling and electron—electron correlations may open
a way to study the broader range of effects related to
the nontrivial topological structure of the electronic
states in these materials. One possible direction is
the search for topologically nontrivial states in Kondo
semimetals. But the most important challenge lies
in developing new ways to probe the chirality of the
surface metallic states, whether by spin-polarized
tunneling spectroscopy, by Kerr effect measurements,
or by radio-frequency and microwave spectroscopy.
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and by DOE-BES DESC000191 (V. G.).

Note added in proofs. When we have submitted
this paper, several important experimental works on
SmBg became available. Neupane el al. [72] and Jiang
et al. [73] report high-resolution photoemission data.
The results of these experiments are in agreement,
with the theoretical calculations for the surface states
[49-51]. What is more, Kim, Xia and Fisk have demon-
strated [75] that doping of 3% of magnetic impurities
on the surface of SmBg leads to a dramatic increase
in resistivity — quite contrary to what is observed for
the same amount of doping with non-magnetic ions.
This result clearly indicates that surface states re-
main robust agains the time-reversal invariant pertur-
bations. Most recently, Xia group from UC Irvine have
shown [76] the weak antilocalization features in trans-
port properties of the surface states in SmBg imply-
ing the presence of the strong spin-orbit coupling and,
therefore, indirect probe of the surface electrons helici-
ty. Combination of current theoretical and experimen-
tal results unambiguously demonstrate that samarium
hexaboride is indeed the first ideal topological insula-
tor.
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