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Vortex penetration into a thin superconducting strip of a rectangular cross section is considered at an increasing
applied magnetic field H,, taking an interplay between the Bean—Livingston and the geometric barriers in the
sample into account. We calculate the magnetic field H, at which the penetration begins and show that two
regimes of vortex penetration are possible. In the first regime, vortices appearing at the corners of the strip at
H, = H, immediately move to its center, where a vortex dome starts to develop. In the second regime, the
penetration occurs in two stages. In the first stage, at H, < H,, tilted vortices penetrate into the edge regions
of the strip, where novel domes are shown to be formed at the top, bottom, and lateral surfaces. In the second
stage, at H, = H,, the vortex propagation to the center becomes possible. The difference between the regimes
manifests itself in slightly different dependences of the magnetic moment of the strip on H,.

DOTI: 10.7868/S004445101309006X

1. INTRODUCTION

The Bean-Livingston [1] and geometric [2] barriers
are important for understanding many phenomena in
type-II superconductors. In particular, these barriers
lead to a hysteretic magnetic behavior of the super-
conductors even in the absence of any bulk pinning of
vortices [1-7]. Both these barriers also influence the
magnetic relaxation [8, 9] and transport properties of
superconductors [10-13]. Various manifestations of the
Bean—Livingston and geometric barriers were experi-
mentally studied in numerous works [14-31]. In this
paper, we theoretically consider how an interplay be-
tween the geometric and Bean-Livingston barriers in-
fluence the vortex penetration into a platelet-shaped
type-II superconductor placed in a perpendicular mag-
netic field H,. For simplicity, we assume that flux-line
pinning is negligible in the superconductor.

*E-mail: mikitik@ilt.kharkov.ua

The Bean-Livingston barrier in bulk superconduc-
tors is due to the attraction of a penetrating vortex to
the sample surface at distances of the order of the Lon-
don penetration depth A [1]. In the increasing magnetic
field H,, the attraction leads to a delay of the vortex
penetration compared to the lower critical field H,q.
As a result, the penetration is possible only at the field
H, that can reach [32] KH1/Ink, the thermodynamic
critical field, where k = \/¢ is the Ginzburg-Landau
parameter and ¢ is the coherence length.

The geometric barrier has a different origin and is
due to the shape of the superconductor [2, 16]. This
barrier appears for samples different from an ellipsoid.
In an ellipsoid-shaped superconductor at the magnetic
field Heq = (1 — N)H,.y, the self-energy epl(r) of a
straight vortex placed at any point r of the sample is
exactly equal to the work W (r, H.,) done by the Meiss-
ner currents circulating in the sample to transfer the
vortex from the surface of the superconductor to this
point. Here, eq = (®¢/4m)\)?In(\/€) is the vortex en-
ergy per unit length, ®q is the flux quantum, I(r) is the
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length of the vortex passing through the point r, and
N is the appropriate demagnetizing factor of the ellip-
soid. This specific property of the ellipsoid-shaped su-
perconductors leads to the penetration of vortices into
the sample just at the equilibrium penetration mag-
netic field He, (if the vortex attraction to the surface
is neglected). In the platelet-shaped superconductors,
the position-dependent energy of a vortex,

E(r,H,) = eol(r) — W(r, H,),

sharply increases near the edges due to the increase in
the vortex length [ from zero to the sample thickness d
and decreases toward the center of the platelet due to
the effect of the Meissner currents. This geometric bar-
rier prevents the vortex penetration into the sample at
the field H., that can now be defined as the lowest field
at which the minimum of epd — W (r, H,,) with respect
to r reaches zero. Vortex penetration begins only at a
higher field H, = H, when the barrier near the edges
disappears. At H, > Hp, the penetrating vortices are
accumulated in the region of the superconductor where
E(r) has a minimum with respect to r, and hence a
vortex dome appears near the center of the platelet.

Two situations may occur for the platelet-shaped
superconductors. In the case of thin superconduct-
ing films whose thickness d is essentially less than
the London penetration depth A, the attraction of a
vortex to the film edges develops on the scale no-
ticeably larger than the effective penetration depth
Xesf = N2/d > A\, d [33], whereas the effect of the
vortex-length variation is not essential in this case.
This situation of the extended Bean-Livingston bar-
rier can be described by replacing egl in E(r) with an
appropriate attraction potential Uy, (r), and the pro-
cess of vortex penetration into such films reveals fea-
tures [10, 34] that are similar to the features in the
case of a purely geometrical barrier [2]. In the second
case of bulk platelet-shaped superconductors, we have
A < d, and the vortex attraction to the surface is es-
sential only at distances of the order of A, whereas the
geometrical barrier develops on the scale of the order
of d. Just this case A < d is studied in our paper.

In this paper, we consider a thin superconduct-
ing strip of a rectangular cross section of width 2w
(—w < x < w) and thickness d (—d/2 < y < d/2;
d < w), which infinitely extends in the z direction.
The magnetic field is directed along the y axis. In this
case, we have [2]

Heq = (d/2w)Her, Hp~ Hein/d/w>> Hey.

This estimate of H), is based on formulas for the Meiss-
ner currents circulating in an infinitely thin strip [35]
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and on cutting off these currents in the edge region
w—d < |z] < w, where they diverge. However, such an
approach cannot give an accurate result for the currents
in this edge region, which is especially important for the
understanding of the geometric and Bean—Livingston
barriers in the strip. To investigate both these barriers
in more detail and the interplay between them, we can-
not neglect the thickness of the strip, and in this paper
we find a two-dimensional distribution of the currents
in the xy plane of the strip. For simplicity, we assume
below that the superconductor is isotropic and that the
applied field H, is not too large, and hence the mag-
netic induction B in the sample is noticeably less than
the low critical field H.;. This assumption on B sim-
plifies our analysis of the geometric barrier.

The paper is structured as follows. In Sec. 2, we
present a two-dimensional distribution of the Meissner
currents in a thin strip with a rectangular cross sec-
tion. Using this distribution, the magnetic fields of the
vortex penetration through the Bean-Livingston bar-
rier in a corner of the strip and through the geometric
barrier are estimated in Sec. 3, and it is shown that
two regimes of vortex penetration into the sample can
occur depending on the relation between these fields.
In Sec. 4, the penetration field due to the geometric
barrier is analyzed with a consideration of stray fields
of the penetrating vortices. In Secs. 5 and 6, we dis-
cuss and briefly summarize the obtained results. Some
mathematical details are presented in the Appendix.

2. MEISSNER STATE IN A THIN STRIP WITH
RECTANGULAR CROSS SECTION

For the strip in the Meissner state, the magnetic
field H(z, y) outside the sample can be found from the
Maxwell equations

divH=0, rotH =0,

and hence the field can be described both by the scalar
potential

@(xay)v H= _VQP,

and by the vector potential

A =zA(x,y), H=rotA,

where z is the unit vector along the z axis. The com-
plex potential ¢ — iA is known [36] to be an analytic
function of = + iy. For the strip with a rectangular
cross section, this potential can be obtained using a
conformal map of the upper half of the complex plane
to the region lying to the right of the line a-b-c-e-f-g
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Fig.1. The magnetic field line (a-b-c-e-f-g) adjoining

a superconducting strip in the Meissner state. Under

the conformal map described in the text, this line is the
image of the real axis of the complex plane

in Fig. 1 (the a-b-c-e-f-g contour coincides with the
magnetic field line A = 0). This region is a rectan-
gle with one of its sides passing through the infinite
point, and the map can be found using the Schwarz—
Christoffel formula [37]. In the map, the upper surface
of the strip (the segment b-c), its lateral surface c-e,
and its lower surface e-f are parameterized by a single
variable ¢. This variable ¢ ranges from —1/y/m (point
b) to 1/y/m (point f), where m is a constant parame-
ter, 0 < m < 1, whose value is determined by d/w. At
the corners of the strip, we have t = +1, and ¢t = 0 at
the point @ = w, y = 0. Calculating H = —V using
the obtained potential at the surface of the strip (H is
tangential to the surface), we find the Meissner sheet
currents JJ, = J flowing on the strip surface because we
have |J| = (¢/4x)|H]| for any surface point.

These Meissner currents in the strip with an arbi-
trary ratio d/w were found previously [38] under the
only assumption that A < d, w. Here, we present the
appropriate formulas in the case of a thin strip, when
d < w. In this limit case, we arrive at the following
parametric representations for the lateral surface x = w
of the strip:

Y

1
Sn—— (arcsin(t) +t/1— t2) : (1)
T
where —1 < ¢ < 1, whereas for the upper (—1/y/m <
<t < —1) and lower (1 <t < 1/y/m) surfaces of the
strip, we have:

~

w—=T fl(|t|7m) (2)
w o fi(1/ymm)’
where
|| ]
fi(ltl,m) =m i ds,
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m & 2d/mw < 1, and f;(1/y/m,m) = 1. The Meissner
surface currents on all these surfaces are described by
the unified formula

rJ(t) V1 —mt?
cHoe — my/1-¢2]’

where [t| < 1/y/m.

At 2> 1,i.e., at w — 2 > d, we find from Eq. (2)
that x/w ~ V1 —mt2, and with Eq. (3), we arrive at
the well-known result obtained in the limit of the in-
finitely thin strip [2, 35]:

) cH, x

J (x, i 7*11}2 —

On the other hand, at t* > 1,i.e., at w — 2 < d, for-
mula (2) gives

P %|t|\/t2 —1- %ln [|t| +Ve - 1] NG

w

(3)

~

d

g -r(e

s

; 4

w

Thus, formulas (1), (3), and (5) provide an explicit
description in the parametric form of the surface cur-
rents in the edge region of the strip. In particular,
near a corner of the sample (at | = w — 2 < d, or at
I =d/2—]y| < d/2), we obtain that the surface current

cH,

diverges like [=1/3:
1/3
d7/m < ) '

Of course, this divergence should be cut off at [ < A,
and the current density j throughout the corner region
(w=—A<z<w,d/2—X<]y| <d/2)is approximately
constant and is of the order of
1/3
)" o

3. THE PENETRATION FIELD

2d
3l

~

(6)

J(x=w-—2N)
A

N cH,
~ dnay/m

2
3T

j(xvy) ~

3.1. Bean—Livingston barrier

Using the results in Sec. 2, we now estimate the pen-
etration field H}" that is due to the Bean—Livingston
barrier originating on the scale A from the surface.
Since the Meissner currents are maximum at the cor-
ners of the sample, it is favorable for a vortex to pene-
trate into the strip through these points. We consider
a small circular vortex arc of radius r < A with its fo-
cal point placed at a corner of the strip (in estimating
HPT | we assume that ¢ < A for simplicity). The ef-
fect of the surfaces of the superconductor on the vortex
segment can be taken into account by constructing the
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images of the arc. This trick ensures that the currents
generated by the vortex are tangential to the surface [1].
The energy of the vortex arc calculated within this ap-
proach also largely takes the stray fields outside the
sample into account [39]. Therefore, the energy Eg;.. of
the penetrating vortex arc can be estimated as a quar-
ter of the energy of the appropriate circular vortex ring
placed in the bulk of the superconductor [40, 41],
™
X —Teo -

b(()ed]

where 9 = ®2/(47)\)?, the factor In(r/¢) takes into
account that the magnetic fields and currents begin to
decay sharply at the distance r from the ring rather
than at the distance A, and the constant ¢y determines
the energy of the ring of the radius r = £. This constant
¢p is given by the formula [40, 41],

Eore(r) z

K

L P EA T R SO )
CON&/dq 1+ O/d vy O

0

where Ji (2) is the Bessel function of the first kind. At
k > 1, the constant ¢y is practically independent of k,
and we have ¢q ~ 0.22.

At a given current density j, there is a critical radius
r. at which the Lorentz force (j®q/c)nr./2 generated
by the current and acting on the vortex is balanced by
the squeezing force —9FE,,../0r. In other words, this
rc(j) is found from the equation

—> + 1+ CO:| .

[In<£

If r > r., the vortex arc expands, and the quantity

Uc(j4) = Eare(re) —j@oﬂrf/élc

. ™ Te
—id .
20] 07Te 250

specifies the height of the Bean-Livingston barrier near
the corner. When the current density j increases, the
radius r. and U.(j) decrease, and the barrier U, disap-
pears at r. &~ £exp(l — ¢p) ~ 2.26. The appropriate j
is of the order of the depairing current density,
) CE0. ~ 0.92cH 1k

dy¢ drilnk '

whereas 47j\/c, the local surface field near the corner,
reaches the value of the thermodynamic critical field in
agreement with the results in Refs. [32, 39, 42, 43].
Equating this j to the current density defined by
Eq. (7), we find the penetration field H, = HP" at
which the Bean—Livingston barrier disappears for a vor-
tex penetrating through a sample corner,

(52"

(10)

18d)\?

w3

0.92H 1k

HBL ~
p Ink

(11)
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Fig.2. Two scenarios of vortex penetration into the

strip. a) p > p., the Bean—Livingston barrier prevails
over the geometric one. b) p < p., the penetration of
vortices is mainly determined by the geometric barrier.
The parameter p is defined by Eq. (19), p. =~ 0.52. The
dashed lines schematically show vortices propagating in
the strip. The solid lines inside the strip designate the
immobile vortices that are in equilibrium. These vor-
tices form flux-line domes near the edges of the strip

We note that due to a small value of the ratio A/d, this
penetration field is noticeably smaller not only than the
common HfL ~ H. k/Ink but also than the field of a
vortex penetration through the equatorial point ¢ = 0
of the lateral surface of the strip,

)"

This estimate is obtained by equating the depairing
current density to J(0)/A, where J(0) is taken from
Eq. (3).

Hclfﬁ

Ink

2
Tw

3.2. Geometric barrier within a simplified
approach

We now calculate the penetration field caused ex-
clusively by the geometric barrier in a thin strip, ne-
glecting the attraction of vortices to the surfaces of the
strip. In this case, a penetrating vortex can jump to
the center of the sample only when its two rectilinear
segments meet at the equatorial point (z = w, y = 0),
as shown in Fig. 2. We consider a vortex that ends at
the point xg of the lower plane of the strip and at the
point yo of its lateral surface. The balance between the
line tension of the vortex and the forces generated by
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the surface currents leads to the following equations for
Lo, Yo, 07 and H,:

1
_(I)O‘](wa yO) = €0 CO8 97
C

1

—(I)0J o, — =%
C

d .
2) = egsinb,

(12)

where the sheet currents J(z,y) are determined by the
formulas in Sec. 2, eg = gglnk, and § < 7/2 is the tilt
angle of the vortex relative to the lateral surface of the
strip (see Fig. 2). An inspection of Fig. 2 also gives a
geometric relation between xg, yo, and 6,

d
w— Ty = (5 + y0> tgd. (13)

Because g 0 at the penetration field, Eqs. (12)
and (13) completely determine the three quantities 6,
H, = Hp, and x.

We rewrite these equations using formulas of Sec. 2.

Then Eqs. (12) become
V1—mit?

cos = —————h, 14
T (14)
V1 —mit?
sing = Y-, (15)
V2 -1
where m =~ 2d/7w, h = I—ifa/\/m, H, = o/He is

the dimensionless applied magnetic field, and the pa-
rameters t < 1 and t; > 1 respectively correspond to
the points yo and z9. Equation (13) with the use of
formulas (1) and (5) gives

™

[ﬁ\/t%——l——h1<t1ﬁ-\/t%——l)] =
(5 —arcsin(t) — ty/1 —t2 ) tgh. (16)
Besides, we can set V1 —mit2 ~ /1 —mt? ~ 1 in

Eqs. (14) and (15) since m < 1, ¢t < 1, and t; ~ 1
here. Then Eqs. (14)-(16) become independent of m,
and the aspect ratio d/w specifies only the normaliza-
tion factor in the definition of A.

At the penetration field, we have t = 0, and
Eqgs. (14) and (15) give h ~ cos@ and #? ~ 1 + ctg? 0.
Eventually, Eq. (16) reduces to an equation for the an-
gle 6,

™ _ / 2
Etgt‘)—ctgt‘) 1+4ctg” 0 —
G@9+V1+a§9>,(w)

—In
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which gives tgf ~ 0.74 (# =~ 36.5°). Hence, from
h =~ cosf, we obtain the penetration field caused by
the geometric barrier

~

HSP ~ Hpqv/mcos?, (18)

~
~

where cosf 0.80. The obtained HfB has the
same order of magnitude as the penetration field found
in [2, 3]. However, we emphasize that estimate (18) is
derived for a single vortex reaching the equator. Such a
situation does not actually occur, as is described in the
next section. We also note that at the penetration field
given by Eq. (18), the surface current .J(0) at the equa-

torial point (z = w, y = 0) is equal to cH.; cosf/4m.

3.3. Two scenarios of vortex penetration

The comparison of formulas (11) and (18) shows
that the ratio of HfL and HfB is equal to p/p. where
the parameter p is defined as

e /213
= (Z 1
p=r ( d) , (19)
and s
2 2 cosf
e = | — — =~ 0.52.
b <37r) exp(1 — ¢p)

If the parameter p is larger than its critical value p,
we have HEL > HEB, and the penetration field H,
coincides with HJF:

0.8p
Pe

p=Dp

H,=HP' ~ Haym e (20)
In this case, small vortex segments appearing at the
corners of the strip at H, = H*" immediately expand,
merge at the equatorial point (z = w, y = 0), and
the created vortex jumps to the center of the sample
(see Fig. 2). This type of penetration occurs because
at p > p. and H, = HEL, when the current density in
the corner region is close to the depairing current den-
sity, the surface current J(0) at the equatorial point is
larger than c¢H, cos@/4m, and the vortex end cannot
be in equilibrium at this point. At H, > H,, the vortex
dome appearing in the center of the strip is quite sim-
ilar to the dome described previously [2], even though
the penetration field is now determined by the Bean—
Livingston barrier. This is because the dome is deter-
mined by the Meissner currents flowing far away from
the edges of the strip.

If the parameter p is less than the critical value p.,
we have HP" < HGP | and the vortex penetration is a
two-stage process. The current density in the vicinity of
the corners reaches the depairing value at H, = HEL.
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At this field, a penetrating vortex line enters the sam-
ple through the corner, but it cannot reach the point
(x = w, y = 0) because J(0) is less than cH,y cos /4,
and hence this line “hangs” between the corner and the
equatorial point (x = w, y = 0). With increasing H,,
two domes filled by these inclined lines expand in the
lateral surface of the strip. The penetration field H),
is determined by the condition that the boundaries of
these domes meet at a equatorial point, and at this
field, a dome in the center of the strip begins to form.
But the value of H,, strictly speaking, is different from
that given by Eq. (18) since the vortex domes near the
edges of the strip modify the current distribution, and
therefore H), has to be calculated self-consistently (see
Sec. 4). Interestingly, if (A\/d)'/? > 0.2, we obtain that
p > p. for any k > 1. Therefore, for the case p < p.
to be possible at a given k, the sample should be thick
enough compared to A.

4. SELF-CONSISTENT CALCULATION OF
THE PENETRATION FIELD H, AT p < p.

We consider the case p < p., when the domes of the
tilted vortex lines appear on the lateral surfaces of the
strip in an increasing applied magnetic field. In this sit-
uation, the surface currents in the sample are composed
of the part that screens the applied magnetic field H,
and the part generated by the vortices. The first part
was calculated in Sec. 2, while the second part can be
found using formulas in the Appendix. Let the ends of
a vortex be at the point (z = w, y = yo) of the lateral
surface of the strip and the point (z =z, y = —d/2) of
its lower plane. (In reality, we consider a vortex “layer”
extending in the z direction and consisting of such in-
clined vortices.) According to Eqs. (12), for this vortex
to be in equilibrium, the surface currents must be equal
to cHgy cosf/4m at the point (z = w, y = yo) and to

cH. sinf/4m at the point (z = xg, y = —d/2). Then
Eqgs. (12) take the form
cos = [h+ F(t)], (21)

V1 —mit?
T
t2
sin § = V\/_ml [h+ F(t1)], (22)
where h = H, /+/mH.1, and the first terms in the right-

hand sides of these equations describe the Meissner cur-
rents that were solely taken into account in deriving

5 ZKSOT®, Bem. 3 (9)

HfB in Sec. 3.2. The second terms describe the cur-
rents generated by the inclined vortices,

t) = %/dt’ﬁx(t’)\/l — (2 x
Lt =) + 1)
[t2 = (#)2][E2 — (#)?]

where I—L = H,/H. and H, is the z-component of
the magnetic field at the lateral surface z = w. This
component is due to the tilt of the vortices and is per-
pendicular to this surface. In Egs. (21)—(23), the co-
ordinates xo and yo are expressed in terms of the pa-
rameters ¢ and ¢; used in Sec. 3.2. Due to geometric
condition (16), the parameters t1, ¢, and 6 are inter-
connected (the same is true for ¢, t}, and 6 in the
integrand in Eq. (23)). The integration in Eq. (23) is
carried out over the vortex dome, tg4 < t < t,, located
in the lower part of the lateral surface of the strip. The
boundaries of this dome, t4 and t,,, are found from the
conditions that the current density .J/\ at the distance
A from the corner be equal to the current density de-
fined by Eq. (10),

(23)

HBL 0 8p
h+ F(1 24
1) =t~ (24)
and that
H, =0 (25)

att=tgand t =t,
When H, = HP" (the dashed line in Fig. 3), we
have F/(1) = 0 from Eq. (24). This means that t4 = t,,
e., the dome only begins to form at this magnetic
field. We can then omit the function F(t) in Eqs. (21)
and (22). These equations together with formula (16)
allow finding ¢t = t; = t, and also ¢; and 6 in the
manner similar to that of Sec. 3.2. In other words, we
can find the point on the lateral surface of the strip
where the dome begins to form. With increasing H,,
the difference t, — t4 increases, and the parameter tg4
reaches zero at H, = Hj,. Thus, H, can be found from
Eqgs. (16), (21)—(25) if we set t; = 0 in Eq. (23). Even-
tually, we find

Hp:Hm/w(pﬂ), p<pe (20

where the function f(u) calculated numerically is
shown in Fig. 3. It can be seen that in the self-
consistent calculation, H,/H.1/m decreases compared
to the value 0.8 that follows from Eq. (18). As p — 0,
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3
p/Pe

Fig.3. The penetration field H), (the solid line) as a
function of the parameter p defined by Eq. (19). The
line with circles is the function f(p/p.) in Eq. (26), and
the line with dots at p/p. > 1 is given by formula (20).
The dashed line is the extrapolation of dependence (20)
to the region p < p.. The dotted line shows H,(p) ac-
cording to Eq. (18) with cosf = 0.80. The field H, is
measured in units of H.1y/m

we now have H,/H.\/m =~ 0.63. As an example, in
Figs. 4 and 5 we show the dependences H,(y) and 6(y)
obtained by solving Eqs. (16), (21)—(25) at ty = 0 with
p/p. = 0.895. We note that the field H,(y) in the
vortex dome formed on the lateral surface has oppo-
site signs above and below the equator and vanishes at
y=0.

The tilted vortices starting on the lateral surfaces
of the sample also form the domes H,(z) on the up-
per (lower) surfaces of the strip near its corners. The
shape of these domes can be found from the obtained
profiles H,(y) and 6(y) using the conservation of the
flux and relation (16), Fig. 6. We note that the derived
edge dome in Fig. 6 is a unique feature of the com-
bined effect of surface and geometric barriers and is
very different from the edge field distribution obtained
in Refs. [2] and [3], which increases monotonically and
diverges at the sample corners.

We assumed above that the tilted vortices pene-
trating the lateral surface of the strip are straight, see
Eq. (16). This assumption is indeed justified under the
condition B <« H,.; implied throughout the paper. In
this case, we have [44, 45| H = Hn =~ H_n for the ther-
modynamic magnetic field H = 470F /0B, where F(B)
is the free-energy density, n = B/B = (cos#,sin8,0) is
the unit vector along B, and the angle #(z,y) defines
the local direction of a vortex at the point (z,y). The
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Fig.4. The profile H,(y) on the lateral surface of the
strip at H, = H), for p/p. = 0.895. This p corresponds
to H, = 0.737H.1/m, t, = 0.5, and 2y(t.)/d =~
~ 0.609. The field H, is measured in units of H.q

20 /m
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0.41
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2[yl/d
Fig.5. The profile (y) on the lateral surface of the

strip at H, = H,, for p/p. = 0.895

shape of the vortex lines inside a superconductor in
the absence of pinning is determined by the equations
divB = 0 and rot H = 0 [46]. The last of these equa-
tions gives (n - V)# = 0, which means that the angle
# is indeed a constant along any tilted vortex crossing
the lateral surface of the strip.
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Fig.6. The profile H,(z) on the upper surface of the
strip at H, = H, for p/p. = 0.895. The field H, is
measured in units of H.y

5. DISCUSSION

We compare the magnetic moment of the strip (cal-
culated per unit length along the z axis) in the cases
p > pe and p < p.. In the first case (p > p.), when
the penetration field H, is determined by the Bean-
Livingston barrier, the magnetic moment of the strip
in the Meissner state, i.e., at H, < Hp, is equal to [38]

w?(1 —m)H, N _Haw2

M, = TAEER) —mKEE T 4

(27)

where m ~ 2d/7w, k' = /1 —m, and K (k') and E(k')
are the complete elliptic integrals of the first and sec-
ond kinds, respectively. In the second case (p < p.),
where the penetration field is determined by the geo-
metric barrier, the magnetic moment is still given by
formula (27) at H, < HP", where H}" is described
by Eq. (11) or Eq. (20). But at HP" < H, < H,,
an additional contribution 61/, to the magnetic mo-
ment appears. This contribution is due to the currents
generated by the domes of the tilted vortices. The ac-
curate analysis of §M, requires substantial numerical
calculations, and we here give only a simple estimate
of this §M,,

0M]
| M,|

\/E<1—0.8 P ><<1, (28)
peh

where h = H,/\/mH. . Hence, a small break in the

H,-dependence of the magnetic moment should occur

at H, = HfL in the second case, p < p.. Because the

parameter p increases with increasing the temperature

T due to the increase in A\(T"), the second type of the
vortex penetration transforms into the first type with
increasing 7'. In this situation, if the temperature de-
pendence of the magnetic moment A/, is measured at a
constant H,, a break in this dependence M (T') should
also occur.

When H, exceeds H),, the vortex dome in the cen-
ter of the strip begins to form. The boundary b of this
dome is found from the condition that the current den-
sity J/\ at the distance A from the corner is equal to the
current density defined by Eq. (10), whereas the shape
of the vortex dome at |z| < b is determined by the
equation J(x,d/2) = J(x,—d/2) = 0. The difference
between the cases p > p. and p < p,. is only in that the
currents generated by the domes of the tilted vortices
must be taken into account in the second case. But if
H, < H, < H_, then the domes near the edges of the
strip and at its center are far from each other, and we
can neglect their mutual influence in the first approx-
imation. In this situation, the domes near the edges
of the sample do not change with increasing H,, and
the distinction between the central domes for p > p.
and p < p. is small. Using formula (34), we can show
that these central domes are approximately described
by the appropriate formula in [2]. When H, ~ H.1, the
central dome and the domes near the edges of the strip
are close to each other, and any of them should be cal-
culated self-consistently, taking the effect of the other
domes into account. This situation will be considered
elsewhere.

So far, we have considered the vortex penetra-
tion into an isotropic superconducting strip. We now
briefly discuss the case of an anisotropic superconduc-
tor, where the anisotropy parameter ¢ = Ayp/Ac is less
than unity, ¢ < 1. Here, Ay, and A, are the respec-
tive London penetration depths in the plane of the
strip and in the direction perpendicular to this plane.
Because the field HIJIBL is determined by the depair-
ing current density (see Sec. 3.1), we can expect that
this field is practically independent of . With formu-
las of Ref. [47], it can be shown that the anisotropy
e leads to the respective additional factors 1/ep and
€2 /g in the left-hand sides of Eqs. (14) and (15), where

cos®>f +c2sin® 0. As a result, the field HS'P
found in Sec. 3.2 depends on . But this dependence
proves to be relatively weak, and hence the critical
value p. introduced in Sec. 3.3 as the ratio H?" /HSP
also depends on e weakly (Fig. 7). Therefore, p.(¢)
is of the same order of magnitude as in the isotropic
case ¢ = 1. This result means that we have p > p. for
anisotropic superconductors with x > 1 at reasonable
ratios A\,p/d.

5*
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Fig.7. The dependence of the critical value p. on the
anisotropy parameter ¢ under condition that HfL is in-
dependent of e. Here, m =1/36, i.e., w/d = 22.9

6. SUMMARY

We analyzed the process of vortex penetration into
a thin superconducting strip of a rectangular cross sec-
tion, with the width and the thickness of the strip be-
ing much larger than the London penetration depth. It
is shown that in the absence of flux-line pinning, the
process of penetration is governed by the parameter p,
Eq. (19), characterizing an interplay between the Bean—
Livingston and geometric barriers. If this parameter is
larger than the critical value p. ~ 0.52, the magnitude
H, of the external magnetic field at which the vor-
tex penetration into the central region of the sample
starts is determined by the Bean-Livingston barrier in
the corners of the strip, H, = HfL, and is given by
Eq. (11) or, equivalently, by Eq. (20). At an external
magnetic field H, > Hp, the vortex dome in the center
of the strip forms, and its shape is close to that de-
scribed previously [2]. In the opposite situation where
p < pe, we obtain H, > HP" (see Fig. 3), and the vor-
tex penetration is a two-stage process. In the interval
HZ],BL < H, < H,, the tilted vortices penetrate only
into the edge regions of the strip, and vortex domes
of unusual shape appear there (see Figs. 4 and 6). At
H, > H,, the edge domes practically do not change,
whereas the vortex dome in the center of the strip de-
velops. The shape of this central dome is again close
to that described previously [2]. Hence, two types of
vortex domes exist in the sample in this case.

In principle, the predicted new edge domes should
be observable experimentally by decorations, magneto-
optics, and scanning SQUID microscopy. These domes
change currents circulating in the sample. Hence,
if the edge vortex domes appear or disappear in a
superconductor under changes of the external magnetic
field H, or the temperature 7', the magnetic moment

M of the sample should exhibit a small break in the
appropriate H,- or T-dependences of M.

We thank I. M. Babich for the helpful discussions.
This work was supported by the German—Israeli Foun-
dation for Scientific Research and Development (GIF).

APPENDIX

Currents generated by “layers” of tilted
vortices in a strip

We consider two thin “layers” of tilted vortices in the
lower part of the strip (Fig. 8a). These two layers are
located symmetrically with respect to the axis x = 0,
and extend to infinity in the z direction. Let the ends
of the right layer be at the points (w,yo) and (zo,—d/2)
described by the respective parameters t' and ;. The
width of the layer is determined by the small interval
dt or by the appropriate dyg, and the layer carries the
magnetic flux d® = H,(yo) dyo. The surface currents
generated by the two layers can be found using the re-
sults of Sec. 2 and a conformal map that transforms
the upper half-plane of the complex plane onto the in-
terior of the rectangle shown in Fig. 8. The lower and
upper sides of this rectangle correspond to the parts of
the magnetic field lines A = 0 and A = —d® that lie
outside the strip and that are shown in Fig. 8a, while

g
a YA _
ap| A=
w o x
At
N A= s
't/ -<—
| A=0 1
A
b —Ay
dd
kg
Fig.8. a) Two thin symmetric layers of tilted vor-

tices penetrating the lower part of the strip are shown
schematically as the dashed lines. The ends of the
right layer carrying the flux d® are marked by ¢ and
t1. Arrows indicate directions of the magnetic field lines
A =0 and A = —d® that leave and enter the right
layer and that adjoin the surface of the strip (the line
A = 0 also passes through the infinite point). ) The
rectangle in the complex plane p —iA (see the text)
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the lateral sides of the rectangle correspond to the in-
finitesimal intervals dyo and dzg carrying the flux d®.
Eventually, we find that the surface current generated
by the layers at a point ¢ is given by

dr o (Tem\P -t
=70 _G(t)< 1—#2 ) [t — 8t — '] (29)
if =1 <t <1, and by
%J(t) =
. o (L=m\'P 1)
= sign(t)G(t') ( 2 ) = =7 (30)

if 1 < |t| < 1/\/m. Here, sign(t) = 1 for t > 0 and
sign(t) = —1 for t < 0, the factor G(t') is

"2 1/2
( 1- () 2) , (31
and H,(t") = H,(yo).

1—m(t)

If two similar layers are in the upper part of the
strip, i.e., if the right layer has the coordinates —t' and
—t} and carries the flux H,(—t") dyo H,(t") dyo =
—d®, then we find

H,(t')dt'

™

G(t")

dr o (1=m\? (=)

7J(t)__G(t)< 1—1¢2 ) [t + t][t +#] (82)
for -1 <t<1and

%J(t) =

L y(L=m\'"? (- t)

= —sign(t)G(t") ( yoR— ) A+ 7] (33)

for 1 < |t| < 1/y/m. Formula (23) is the sum of the
expressions (29) and (32) and also (30) and (33) for
t>0.

In a similar manner, we can obtain the surface
currents generated by two vertical layers of vortices
that are located symmetrically with respect to the axis
T 0. Let the ends of the right layer be at the
points (xg,—d/2) and (z¢,d/2) described by the respec-
tive parameters ¢t} and —t}. The width of the layer
is determined by the small interval dt] or by the ap-
propriate dxg, and the layer carries the magnetic flux
d® = H,(xo)dxo. Eventually, we find the following
surface currents generated by the layers at a point ¢, on
the upper or lower surfaces of the strip, 1 < |t1| < /m,

na2y 1/2
%J(u) - —%Hy(u') du' <%) x
X w? — (u')?’ (34)
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where v = /1-mt?//T—m, v = u(t;) and
Hy(u') = Hy(t)) = Hy(zo). When z is not close to
the edge of the strip (w — x¢ > d), we have u & zo/w
(see Sec. 2).
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