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TWO REGIMES OF VORTEX PENETRATION INTOPLATELET-SHAPED TYPE-II SUPERCONDUCTORSE. H. Brandt a, G. P. Mikitik b*, E. Zeldov 
aMax-Plan
k-Institut für Metallfors
hungD-70506, Stuttgart, GermanybB. Verkin Institute for Low Temperature Physi
s & Engineering, Ukrainian A
ademy of S
ien
es61103, Kharkov, Ukraine
Department of Condensed Matter Physi
s, Weizmann Institute of S
ien
e76100, Rehovot, IsraelRe
eived Mar
h 26, 2013Dedi
ated to the memory of Professor Anatoly LarkinVortex penetration into a thin super
ondu
ting strip of a re
tangular 
ross se
tion is 
onsidered at an in
reasingapplied magneti
 �eld Ha, taking an interplay between the Bean�Livingston and the geometri
 barriers in thesample into a

ount. We 
al
ulate the magneti
 �eld Hp at whi
h the penetration begins and show that tworegimes of vortex penetration are possible. In the �rst regime, vorti
es appearing at the 
orners of the strip atHa = Hp immediately move to its 
enter, where a vortex dome starts to develop. In the se
ond regime, thepenetration o

urs in two stages. In the �rst stage, at Ha < Hp, tilted vorti
es penetrate into the edge regionsof the strip, where novel domes are shown to be formed at the top, bottom, and lateral surfa
es. In the se
ondstage, at Ha = Hp, the vortex propagation to the 
enter be
omes possible. The di�eren
e between the regimesmanifests itself in slightly di�erent dependen
es of the magneti
 moment of the strip on Ha.DOI: 10.7868/S004445101309006X1. INTRODUCTIONThe Bean�Livingston [1℄ and geometri
 [2℄ barriersare important for understanding many phenomena intype-II super
ondu
tors. In parti
ular, these barrierslead to a hystereti
 magneti
 behavior of the super-
ondu
tors even in the absen
e of any bulk pinning ofvorti
es [1�7℄. Both these barriers also in�uen
e themagneti
 relaxation [8, 9℄ and transport properties ofsuper
ondu
tors [10�13℄. Various manifestations of theBean�Livingston and geometri
 barriers were experi-mentally studied in numerous works [14�31℄. In thispaper, we theoreti
ally 
onsider how an interplay be-tween the geometri
 and Bean�Livingston barriers in-�uen
e the vortex penetration into a platelet-shapedtype-II super
ondu
tor pla
ed in a perpendi
ular mag-neti
 �eld Ha. For simpli
ity, we assume that �ux-linepinning is negligible in the super
ondu
tor.*E-mail: mikitik�ilt.kharkov.ua

The Bean�Livingston barrier in bulk super
ondu
-tors is due to the attra
tion of a penetrating vortex tothe sample surfa
e at distan
es of the order of the Lon-don penetration depth � [1℄. In the in
reasing magneti
�eld Ha, the attra
tion leads to a delay of the vortexpenetration 
ompared to the lower 
riti
al �eld H
1.As a result, the penetration is possible only at the �eldHp that 
an rea
h [32℄ �H
1= ln�, the thermodynami

riti
al �eld, where � = �=� is the Ginzburg�Landauparameter and � is the 
oheren
e length.The geometri
 barrier has a di�erent origin and isdue to the shape of the super
ondu
tor [2, 16℄. Thisbarrier appears for samples di�erent from an ellipsoid.In an ellipsoid-shaped super
ondu
tor at the magneti
�eld Heq = (1 � N)H
1, the self-energy e0l(r) of astraight vortex pla
ed at any point r of the sample isexa
tly equal to the workW (r; Heq) done by the Meiss-ner 
urrents 
ir
ulating in the sample to transfer thevortex from the surfa
e of the super
ondu
tor to thispoint. Here, e0 = (�0=4��)2 ln(�=�) is the vortex en-ergy per unit length, �0 is the �ux quantum, l(r) is the508



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Two regimes of vortex penetration : : :length of the vortex passing through the point r, andN is the appropriate demagnetizing fa
tor of the ellip-soid. This spe
i�
 property of the ellipsoid-shaped su-per
ondu
tors leads to the penetration of vorti
es intothe sample just at the equilibrium penetration mag-neti
 �eld Heq (if the vortex attra
tion to the surfa
eis negle
ted). In the platelet-shaped super
ondu
tors,the position-dependent energy of a vortex,E(r; Ha) = e0l(r)�W (r; Ha);sharply in
reases near the edges due to the in
rease inthe vortex length l from zero to the sample thi
kness dand de
reases toward the 
enter of the platelet due tothe e�e
t of the Meissner 
urrents. This geometri
 bar-rier prevents the vortex penetration into the sample atthe �eld Heq that 
an now be de�ned as the lowest �eldat whi
h the minimum of e0d�W (r; Heq) with respe
tto r rea
hes zero. Vortex penetration begins only at ahigher �eld Ha = Hp when the barrier near the edgesdisappears. At Ha > Hp, the penetrating vorti
es area

umulated in the region of the super
ondu
tor whereE(r) has a minimum with respe
t to r, and hen
e avortex dome appears near the 
enter of the platelet.Two situations may o

ur for the platelet-shapedsuper
ondu
tors. In the 
ase of thin super
ondu
t-ing �lms whose thi
kness d is essentially less thanthe London penetration depth �, the attra
tion of avortex to the �lm edges develops on the s
ale no-ti
eably larger than the e�e
tive penetration depth�eff = �2=d � �; d [33℄, whereas the e�e
t of thevortex-length variation is not essential in this 
ase.This situation of the extended Bean�Livingston bar-rier 
an be des
ribed by repla
ing e0l in E(r) with anappropriate attra
tion potential Uattr(r), and the pro-
ess of vortex penetration into su
h �lms reveals fea-tures [10, 34℄ that are similar to the features in the
ase of a purely geometri
al barrier [2℄. In the se
ond
ase of bulk platelet-shaped super
ondu
tors, we have� � d, and the vortex attra
tion to the surfa
e is es-sential only at distan
es of the order of �, whereas thegeometri
al barrier develops on the s
ale of the orderof d. Just this 
ase �� d is studied in our paper.In this paper, we 
onsider a thin super
ondu
t-ing strip of a re
tangular 
ross se
tion of width 2w(�w � x � w) and thi
kness d (�d=2 � y � d=2;d � w), whi
h in�nitely extends in the z dire
tion.The magneti
 �eld is dire
ted along the y axis. In this
ase, we have [2℄Heq = (d=2w)H
1; Hp � H
1pd=w � Heq :This estimate of Hp is based on formulas for the Meiss-ner 
urrents 
ir
ulating in an in�nitely thin strip [35℄

and on 
utting o� these 
urrents in the edge regionw�d . jxj � w, where they diverge. However, su
h anapproa
h 
annot give an a

urate result for the 
urrentsin this edge region, whi
h is espe
ially important for theunderstanding of the geometri
 and Bean�Livingstonbarriers in the strip. To investigate both these barriersin more detail and the interplay between them, we 
an-not negle
t the thi
kness of the strip, and in this paperwe �nd a two-dimensional distribution of the 
urrentsin the xy plane of the strip. For simpli
ity, we assumebelow that the super
ondu
tor is isotropi
 and that theapplied �eld Ha is not too large, and hen
e the mag-neti
 indu
tion B in the sample is noti
eably less thanthe low 
riti
al �eld H
1. This assumption on B sim-pli�es our analysis of the geometri
 barrier.The paper is stru
tured as follows. In Se
. 2, wepresent a two-dimensional distribution of the Meissner
urrents in a thin strip with a re
tangular 
ross se
-tion. Using this distribution, the magneti
 �elds of thevortex penetration through the Bean�Livingston bar-rier in a 
orner of the strip and through the geometri
barrier are estimated in Se
. 3, and it is shown thattwo regimes of vortex penetration into the sample 
ano

ur depending on the relation between these �elds.In Se
. 4, the penetration �eld due to the geometri
barrier is analyzed with a 
onsideration of stray �eldsof the penetrating vorti
es. In Se
s. 5 and 6, we dis-
uss and brie�y summarize the obtained results. Somemathemati
al details are presented in the Appendix.2. MEISSNER STATE IN A THIN STRIP WITHRECTANGULAR CROSS SECTIONFor the strip in the Meissner state, the magneti
�eld H(x; y) outside the sample 
an be found from theMaxwell equationsdivH = 0; rotH = 0;and hen
e the �eld 
an be des
ribed both by the s
alarpotential '(x; y); H = �r';and by the ve
tor potentialA = zA(x; y); H = rotA;where z is the unit ve
tor along the z axis. The 
om-plex potential ' � iA is known [36℄ to be an analyti
fun
tion of x + iy. For the strip with a re
tangular
ross se
tion, this potential 
an be obtained using a
onformal map of the upper half of the 
omplex planeto the region lying to the right of the line a-b-
-e-f-g509
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d=2 e xy wHa
Fig. 1. The magneti
 �eld line (a-b-
-e-f-g) adjoininga super
ondu
ting strip in the Meissner state. Underthe 
onformal map des
ribed in the text, this line is theimage of the real axis of the 
omplex planein Fig. 1 (the a-b-
-e-f-g 
ontour 
oin
ides with themagneti
 �eld line A = 0). This region is a re
tan-gle with one of its sides passing through the in�nitepoint, and the map 
an be found using the S
hwarz�Christo�el formula [37℄. In the map, the upper surfa
eof the strip (the segment b-
), its lateral surfa
e 
-e,and its lower surfa
e e-f are parameterized by a singlevariable t. This variable t ranges from �1=pm (pointb) to 1=pm (point f), where m is a 
onstant parame-ter, 0 � m � 1, whose value is determined by d=w. Atthe 
orners of the strip, we have t = �1, and t = 0 atthe point x = w, y = 0. Cal
ulating H = �r' usingthe obtained potential at the surfa
e of the strip (H istangential to the surfa
e), we �nd the Meissner sheet
urrents Jz = J �owing on the strip surfa
e be
ause wehave jJ j = (
=4�)jHj for any surfa
e point.These Meissner 
urrents in the strip with an arbi-trary ratio d=w were found previously [38℄ under theonly assumption that � � d, w. Here, we present theappropriate formulas in the 
ase of a thin strip, whend � w. In this limit 
ase, we arrive at the followingparametri
 representations for the lateral surfa
e x = wof the strip:yd � � 1� �ar
sin(t) + tp1� t2 � ; (1)where �1 � t � 1, whereas for the upper (�1=pm �� t � �1) and lower (1 � t � 1=pm) surfa
es of thestrip, we have: w � xw = f1(jtj;m)f1 (1=pm;m) ; (2)where f1(jtj;m) = m jtjZ1 ps2 � 1p1�ms2 ds;

m � 2d=�w � 1, and f1(1=pm;m) � 1. The Meissnersurfa
e 
urrents on all these surfa
es are des
ribed bythe uni�ed formula4�J(t)
Ha = p1�mt2pmpj1� t2j ; (3)where jtj � 1=pm.At t2 � 1, i. e., at w � x� d, we �nd from Eq. (2)that x=w � p1�mt2, and with Eq. (3), we arrive atthe well-known result obtained in the limit of the in-�nitely thin strip [2, 35℄:J �x; d2� = J �x;�d2� � 
Ha4� xpw2 � x2 : (4)On the other hand, at t2 & 1, i. e., at w � x . d, for-mula (2) givesw � xw � m2 jtjpt2 � 1� m2 ln hjtj+pt2 � 1 i : (5)Thus, formulas (1), (3), and (5) provide an expli
itdes
ription in the parametri
 form of the surfa
e 
ur-rents in the edge region of the strip. In parti
ular,near a 
orner of the sample (at l � w � x � d, or atl � d=2�jyj � d=2), we obtain that the surfa
e 
urrentdiverges like l�1=3:J � 
Ha4�pm � 2d3�l�1=3 : (6)Of 
ourse, this divergen
e should be 
ut o� at l . �,and the 
urrent density j throughout the 
orner region(w�� � x � w, d=2�� � jyj � d=2) is approximately
onstant and is of the order ofj(x; y) � J(x = w � �)� � 
Ha4��pm � 2d3���1=3 : (7)3. THE PENETRATION FIELD3.1. Bean�Livingston barrierUsing the results in Se
. 2, we now estimate the pen-etration �eld HBLp that is due to the Bean�Livingstonbarrier originating on the s
ale � from the surfa
e.Sin
e the Meissner 
urrents are maximum at the 
or-ners of the sample, it is favorable for a vortex to pene-trate into the strip through these points. We 
onsidera small 
ir
ular vortex ar
 of radius r < � with its fo-
al point pla
ed at a 
orner of the strip (in estimatingHBLp , we assume that � � � for simpli
ity). The ef-fe
t of the surfa
es of the super
ondu
tor on the vortexsegment 
an be taken into a

ount by 
onstru
ting the510
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. This tri
k ensures that the 
urrentsgenerated by the vortex are tangential to the surfa
e [1℄.The energy of the vortex ar
 
al
ulated within this ap-proa
h also largely takes the stray �elds outside thesample into a

ount [39℄. Therefore, the energy Ear
 ofthe penetrating vortex ar
 
an be estimated as a quar-ter of the energy of the appropriate 
ir
ular vortex ringpla
ed in the bulk of the super
ondu
tor [40, 41℄,Ear
(r) � �2 r"0 �ln�r��+ 
0� ; (8)where "0 = �20=(4��)2, the fa
tor ln(r=�) takes intoa

ount that the magneti
 �elds and 
urrents begin tode
ay sharply at the distan
e r from the ring ratherthan at the distan
e �, and the 
onstant 
0 determinesthe energy of the ring of the radius r = �. This 
onstant
0 is given by the formula [40, 41℄,
0 � �� �Z0 dq q[J1(q=�)℄2p1 + q2 = � 1Z0 du u[J1(u)℄2p��2 + u2 ; (9)where J1(x) is the Bessel fun
tion of the �rst kind. At�� 1, the 
onstant 
0 is pra
ti
ally independent of �,and we have 
0 � 0:22.At a given 
urrent density j, there is a 
riti
al radiusr
 at whi
h the Lorentz for
e (j�0=
)�r
=2 generatedby the 
urrent and a
ting on the vortex is balan
ed bythe squeezing for
e ��Ear
=�r. In other words, thisr
(j) is found from the equation12
j�0�r
 = �2 "0 �ln�r
� �+ 1 + 
0� :If r > r
, the vortex ar
 expands, and the quantityU
(j) = Ear
(r
)� j�0�r2
=4
spe
i�es the height of the Bean�Livingston barrier nearthe 
orner. When the 
urrent density j in
reases, theradius r
 and U
(j) de
rease, and the barrier U
 disap-pears at r
 � � exp(1 � 
0) � 2:2�. The appropriate jis of the order of the depairing 
urrent density,j = 2e�(1�
0) 
"0�0� � 0:92
H
1�4�� ln� ; (10)whereas 4�j�=
, the lo
al surfa
e �eld near the 
orner,rea
hes the value of the thermodynami
 
riti
al �eld inagreement with the results in Refs. [32, 39, 42, 43℄.Equating this j to the 
urrent density de�ned byEq. (7), we �nd the penetration �eld Ha = HBLp atwhi
h the Bean�Livingston barrier disappears for a vor-tex penetrating through a sample 
orner,HBLp � 0:92H
1�ln� �18d�2�w3 �1=6 : (11)

d=2
d=2Ha

y
y x

x�w
wa

b
Fig. 2. Two s
enarios of vortex penetration into thestrip. a) p > p
, the Bean�Livingston barrier prevailsover the geometri
 one. b ) p < p
, the penetration ofvorti
es is mainly determined by the geometri
 barrier.The parameter p is de�ned by Eq. (19), p
 � 0:52. Thedashed lines s
hemati
ally show vorti
es propagating inthe strip. The solid lines inside the strip designate theimmobile vorti
es that are in equilibrium. These vor-ti
es form �ux-line domes near the edges of the stripWe note that due to a small value of the ratio �=d, thispenetration �eld is noti
eably smaller not only than the
ommon HBLp � H
1�= ln� but also than the �eld of avortex penetration through the equatorial point t = 0of the lateral surfa
e of the strip,H
1�ln� � 2 d�w�1=2 :This estimate is obtained by equating the depairing
urrent density to J(0)=�, where J(0) is taken fromEq. (3).3.2. Geometri
 barrier within a simpli�edapproa
hWe now 
al
ulate the penetration �eld 
aused ex-
lusively by the geometri
 barrier in a thin strip, ne-gle
ting the attra
tion of vorti
es to the surfa
es of thestrip. In this 
ase, a penetrating vortex 
an jump tothe 
enter of the sample only when its two re
tilinearsegments meet at the equatorial point (x = w, y = 0),as shown in Fig. 2. We 
onsider a vortex that ends atthe point x0 of the lower plane of the strip and at thepoint y0 of its lateral surfa
e. The balan
e between theline tension of the vortex and the for
es generated by511
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e 
urrents leads to the following equations forx0, y0, �, and Ha:1
�0J �x0;�d2� = e0 sin �;1
�0J(w; y0) = e0 
os �; (12)where the sheet 
urrents J(x; y) are determined by theformulas in Se
. 2, e0 = "0 ln�, and � < �=2 is the tiltangle of the vortex relative to the lateral surfa
e of thestrip (see Fig. 2). An inspe
tion of Fig. 2 also gives ageometri
 relation between x0, y0, and �,w � x0 = �d2 + y0� tg �: (13)Be
ause y0 = 0 at the penetration �eld, Eqs. (12)and (13) 
ompletely determine the three quantities �,Ha = Hp, and x0.We rewrite these equations using formulas of Se
. 2.Then Eqs. (12) be
ome
os � = p1�mt2p1� t2 h ; (14)sin � = p1�mt21pt21 � 1 h ; (15)where m � 2d=�w, h � ~Ha=pm, ~Ha � Ha=H
1 isthe dimensionless applied magneti
 �eld, and the pa-rameters t < 1 and t1 > 1 respe
tively 
orrespond tothe points y0 and x0. Equation (13) with the use offormulas (1) and (5) gives�t1qt21 � 1� ln�t1 +qt21 � 1�� == ��2 � ar
sin(t)� tp1� t2 � tg �: (16)Besides, we 
an set p1�mt2 � p1�mt21 � 1 inEqs. (14) and (15) sin
e m � 1, t < 1, and t1 � 1here. Then Eqs. (14)�(16) be
ome independent of m,and the aspe
t ratio d=w spe
i�es only the normaliza-tion fa
tor in the de�nition of h.At the penetration �eld, we have t = 0, andEqs. (14) and (15) give h � 
os � and t21 � 1 + 
tg2 �.Eventually, Eq. (16) redu
es to an equation for the an-gle �,�2 tg � = 
tg �q1 + 
tg2 � �� ln�
tg � +q1 + 
tg2 �� ; (17)

whi
h gives tg � � 0:74 (� � 36:5Æ). Hen
e, fromh � 
os �, we obtain the penetration �eld 
aused bythe geometri
 barrierHGBp � H
1pm 
os �; (18)where 
os � � 0:80. The obtained HGBp has thesame order of magnitude as the penetration �eld foundin [2, 3℄. However, we emphasize that estimate (18) isderived for a single vortex rea
hing the equator. Su
h asituation does not a
tually o

ur, as is des
ribed in thenext se
tion. We also note that at the penetration �eldgiven by Eq. (18), the surfa
e 
urrent J(0) at the equa-torial point (x = w, y = 0) is equal to 
H
1 
os �=4�.3.3. Two s
enarios of vortex penetrationThe 
omparison of formulas (11) and (18) showsthat the ratio of HBLp and HGBp is equal to p=p
 wherethe parameter p is de�ned asp � �ln� ��d�1=3 ; (19)and p
 = � 23��1=3 2 
os �exp(1� 
0) � 0:52:If the parameter p is larger than its 
riti
al value p
,we have HBLp > HGBp , and the penetration �eld Hp
oin
ides with HBLp :Hp = HBLp � H
1pm 0:8pp
 ; p � p
: (20)In this 
ase, small vortex segments appearing at the
orners of the strip at Ha = HBLp immediately expand,merge at the equatorial point (x = w, y = 0), andthe 
reated vortex jumps to the 
enter of the sample(see Fig. 2). This type of penetration o

urs be
auseat p > p
 and Ha = HBLp , when the 
urrent density inthe 
orner region is 
lose to the depairing 
urrent den-sity, the surfa
e 
urrent J(0) at the equatorial point islarger than 
H
1 
os �=4�, and the vortex end 
annotbe in equilibrium at this point. At Ha > Hp, the vortexdome appearing in the 
enter of the strip is quite sim-ilar to the dome des
ribed previously [2℄, even thoughthe penetration �eld is now determined by the Bean�Livingston barrier. This is be
ause the dome is deter-mined by the Meissner 
urrents �owing far away fromthe edges of the strip.If the parameter p is less than the 
riti
al value p
,we have HBLp < HGBp , and the vortex penetration is atwo-stage pro
ess. The 
urrent density in the vi
inity ofthe 
orners rea
hes the depairing value at Ha = HBLp .512



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Two regimes of vortex penetration : : :At this �eld, a penetrating vortex line enters the sam-ple through the 
orner, but it 
annot rea
h the point(x = w, y = 0) be
ause J(0) is less than 
H
1 
os �=4�,and hen
e this line �hangs� between the 
orner and theequatorial point (x = w, y = 0). With in
reasing Ha,two domes �lled by these in
lined lines expand in thelateral surfa
e of the strip. The penetration �eld Hpis determined by the 
ondition that the boundaries ofthese domes meet at a equatorial point, and at this�eld, a dome in the 
enter of the strip begins to form.But the value of Hp, stri
tly speaking, is di�erent fromthat given by Eq. (18) sin
e the vortex domes near theedges of the strip modify the 
urrent distribution, andtherefore Hp has to be 
al
ulated self-
onsistently (seeSe
. 4). Interestingly, if (�=d)1=3 � 0:2, we obtain thatp > p
 for any � > 1. Therefore, for the 
ase p < p
to be possible at a given �, the sample should be thi
kenough 
ompared to �.4. SELF-CONSISTENT CALCULATION OFTHE PENETRATION FIELD Hp AT p < p
We 
onsider the 
ase p < p
, when the domes of thetilted vortex lines appear on the lateral surfa
es of thestrip in an in
reasing applied magneti
 �eld. In this sit-uation, the surfa
e 
urrents in the sample are 
omposedof the part that s
reens the applied magneti
 �eld Haand the part generated by the vorti
es. The �rst partwas 
al
ulated in Se
. 2, while the se
ond part 
an befound using formulas in the Appendix. Let the ends ofa vortex be at the point (x = w, y = y0) of the lateralsurfa
e of the strip and the point (x = x0, y = �d=2) ofits lower plane. (In reality, we 
onsider a vortex �layer�extending in the z dire
tion and 
onsisting of su
h in-
lined vorti
es.) A

ording to Eqs. (12), for this vortexto be in equilibrium, the surfa
e 
urrents must be equalto 
H
1 
os �=4� at the point (x = w, y = y0) and to
H
1 sin �=4� at the point (x = x0, y = �d=2). ThenEqs. (12) take the form
os � = p1�mt2p1� t2 [h+ F (t)℄ ; (21)sin � = p1�mt21pt21 � 1 [h+ F (t1)℄ ; (22)where h = Ha=pmH
1, and the �rst terms in the right-hand sides of these equations des
ribe the Meissner 
ur-rents that were solely taken into a

ount in deriving

HGBp in Se
. 3.2. The se
ond terms des
ribe the 
ur-rents generated by the in
lined vorti
es,F (t) � 2� tuZtd dt0 ~Hx(t0)p1� (t0)2 �� (t01 � t0)(t0t01 + t2)[t2 � (t01)2℄[t2 � (t0)2℄ ; (23)where ~Hx = Hx=H
1 and Hx is the x-
omponent ofthe magneti
 �eld at the lateral surfa
e x = w. This
omponent is due to the tilt of the vorti
es and is per-pendi
ular to this surfa
e. In Eqs. (21)�(23), the 
o-ordinates x0 and y0 are expressed in terms of the pa-rameters t and t1 used in Se
. 3.2. Due to geometri

ondition (16), the parameters t1, t, and � are inter-
onne
ted (the same is true for t0, t01, and �0 in theintegrand in Eq. (23)). The integration in Eq. (23) is
arried out over the vortex dome, td � t � tu, lo
atedin the lower part of the lateral surfa
e of the strip. Theboundaries of this dome, td and tu, are found from the
onditions that the 
urrent density J=� at the distan
e� from the 
orner be equal to the 
urrent density de-�ned by Eq. (10),h+ F (1) = HBLpH
1pm � 0:8pp
 ; (24)and that ~Hx = 0 (25)at t = td and t = tu.When Ha = HBLp (the dashed line in Fig. 3), wehave F (1) = 0 from Eq. (24). This means that td = tu,i. e., the dome only begins to form at this magneti
�eld. We 
an then omit the fun
tion F (t) in Eqs. (21)and (22). These equations together with formula (16)allow �nding t = td = tu and also t1 and � in themanner similar to that of Se
. 3.2. In other words, we
an �nd the point on the lateral surfa
e of the stripwhere the dome begins to form. With in
reasing Ha,the di�eren
e tu � td in
reases, and the parameter tdrea
hes zero at Ha = Hp. Thus, Hp 
an be found fromEqs. (16), (21)�(25) if we set td = 0 in Eq. (23). Even-tually, we �ndHp = H
1pmf � pp
� ; p � p
; (26)where the fun
tion f(u) 
al
ulated numeri
ally isshown in Fig. 3. It 
an be seen that in the self-
onsistent 
al
ulation, Hp=H
1pm de
reases 
omparedto the value 0:8 that follows from Eq. (18). As p! 0,5 ÆÝÒÔ, âûï. 3 (9) 513
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Fig. 3. The penetration �eld Hp (the solid line) as afun
tion of the parameter p de�ned by Eq. (19). Theline with 
ir
les is the fun
tion f(p=p
) in Eq. (26), andthe line with dots at p=p
 > 1 is given by formula (20).The dashed line is the extrapolation of dependen
e (20)to the region p < p
. The dotted line shows Hp(p) a
-
ording to Eq. (18) with 
os � = 0:80. The �eld Hp ismeasured in units of H
1pmwe now have Hp=H
1pm � 0:63. As an example, inFigs. 4 and 5 we show the dependen
es ~Hx(y) and �(y)obtained by solving Eqs. (16), (21)�(25) at td = 0 withp=p
 = 0:895. We note that the �eld Hx(y) in thevortex dome formed on the lateral surfa
e has oppo-site signs above and below the equator and vanishes aty = 0.The tilted vorti
es starting on the lateral surfa
esof the sample also form the domes Hy(x) on the up-per (lower) surfa
es of the strip near its 
orners. Theshape of these domes 
an be found from the obtainedpro�les Hx(y) and �(y) using the 
onservation of the�ux and relation (16), Fig. 6. We note that the derivededge dome in Fig. 6 is a unique feature of the 
om-bined e�e
t of surfa
e and geometri
 barriers and isvery di�erent from the edge �eld distribution obtainedin Refs. [2℄ and [3℄, whi
h in
reases monotoni
ally anddiverges at the sample 
orners.We assumed above that the tilted vorti
es pene-trating the lateral surfa
e of the strip are straight, seeEq. (16). This assumption is indeed justi�ed under the
ondition B � H
1 implied throughout the paper. Inthis 
ase, we have [44, 45℄H = Hn � H
1n for the ther-modynami
 magneti
 �eldH = 4��F=�B, where F (B)is the free-energy density, n � B=B = (
os �; sin �; 0) isthe unit ve
tor along B, and the angle �(x; y) de�nesthe lo
al dire
tion of a vortex at the point (x; y). The
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Fig. 4. The pro�le Hx(y) on the lateral surfa
e of thestrip atHa = Hp for p=p
 = 0:895. This p 
orrespondsto Hp = 0:737H
1pm, tu = 0:5, and 2y(tu)=d �� 0:609. The �eld Hx is measured in units of H
1
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Fig. 5. The pro�le �(y) on the lateral surfa
e of thestrip at Ha = Hp for p=p
 = 0:895
shape of the vortex lines inside a super
ondu
tor inthe absen
e of pinning is determined by the equationsdivB = 0 and rotH = 0 [46℄. The last of these equa-tions gives (n � r)� = 0, whi
h means that the angle� is indeed a 
onstant along any tilted vortex 
rossingthe lateral surfa
e of the strip.514
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Fig. 6. The pro�le Hy(x) on the upper surfa
e of thestrip at Ha = Hp for p=p
 = 0:895. The �eld Hy ismeasured in units of H
15. DISCUSSIONWe 
ompare the magneti
 moment of the strip (
al-
ulated per unit length along the z axis) in the 
asesp > p
 and p < p
. In the �rst 
ase (p > p
), whenthe penetration �eld Hp is determined by the Bean�Livingston barrier, the magneti
 moment of the stripin the Meissner state, i. e., at Ha < Hp, is equal to [38℄My = � w2(1�m)Ha4[E(k0)�mK(k0)℄2 � �Haw24 ; (27)where m � 2d=�w, k0 � p1�m, and K(k0) and E(k0)are the 
omplete ellipti
 integrals of the �rst and se
-ond kinds, respe
tively. In the se
ond 
ase (p < p
),where the penetration �eld is determined by the geo-metri
 barrier, the magneti
 moment is still given byformula (27) at Ha � HBLp , where HBLp is des
ribedby Eq. (11) or Eq. (20). But at HBLp < Ha < Hp,an additional 
ontribution ÆMy to the magneti
 mo-ment appears. This 
ontribution is due to the 
urrentsgenerated by the domes of the tilted vorti
es. The a
-
urate analysis of ÆMy requires substantial numeri
al
al
ulations, and we here give only a simple estimateof this ÆMy,jÆM jjMyj � pm�1� 0:8 pp
h�� 1; (28)where h = Ha=pmH
1. Hen
e, a small break in theHa-dependen
e of the magneti
 moment should o

urat Ha = HBLp in the se
ond 
ase, p < p
. Be
ause theparameter p in
reases with in
reasing the temperature

T due to the in
rease in �(T ), the se
ond type of thevortex penetration transforms into the �rst type within
reasing T . In this situation, if the temperature de-penden
e of the magneti
 momentMy is measured at a
onstant Ha, a break in this dependen
e M(T ) shouldalso o

ur.When Ha ex
eeds Hp, the vortex dome in the 
en-ter of the strip begins to form. The boundary b of thisdome is found from the 
ondition that the 
urrent den-sity J=� at the distan
e � from the 
orner is equal to the
urrent density de�ned by Eq. (10), whereas the shapeof the vortex dome at jxj � b is determined by theequation J(x; d=2) = J(x;�d=2) = 0. The di�eren
ebetween the 
ases p > p
 and p < p
 is only in that the
urrents generated by the domes of the tilted vorti
esmust be taken into a

ount in the se
ond 
ase. But ifHp < Ha � H
1, then the domes near the edges of thestrip and at its 
enter are far from ea
h other, and we
an negle
t their mutual in�uen
e in the �rst approx-imation. In this situation, the domes near the edgesof the sample do not 
hange with in
reasing Ha, andthe distin
tion between the 
entral domes for p > p
and p < p
 is small. Using formula (34), we 
an showthat these 
entral domes are approximately des
ribedby the appropriate formula in [2℄. When Ha � H
1, the
entral dome and the domes near the edges of the stripare 
lose to ea
h other, and any of them should be 
al-
ulated self-
onsistently, taking the e�e
t of the otherdomes into a

ount. This situation will be 
onsideredelsewhere.So far, we have 
onsidered the vortex penetra-tion into an isotropi
 super
ondu
ting strip. We nowbrie�y dis
uss the 
ase of an anisotropi
 super
ondu
-tor, where the anisotropy parameter " � �ab=�
 is lessthan unity, " < 1. Here, �ab and �
 are the respe
-tive London penetration depths in the plane of thestrip and in the dire
tion perpendi
ular to this plane.Be
ause the �eld HBLp is determined by the depair-ing 
urrent density (see Se
. 3.1), we 
an expe
t thatthis �eld is pra
ti
ally independent of ". With formu-las of Ref. [47℄, it 
an be shown that the anisotropy" leads to the respe
tive additional fa
tors 1=�� and"2=�� in the left-hand sides of Eqs. (14) and (15), where�� � p
os2 � + "2 sin2 �. As a result, the �eld HGBpfound in Se
. 3.2 depends on ". But this dependen
eproves to be relatively weak, and hen
e the 
riti
alvalue p
 introdu
ed in Se
. 3.3 as the ratio HBLp =HGBpalso depends on " weakly (Fig. 7). Therefore, p
(")is of the same order of magnitude as in the isotropi

ase " = 1. This result means that we have p > p
 foranisotropi
 super
ondu
tors with � � 1 at reasonableratios �ab=d.515 5*
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Fig. 7. The dependen
e of the 
riti
al value p
 on theanisotropy parameter " under 
ondition thatHBLp is in-dependent of ". Here, m = 1=36, i. e., w=d � 22:96. SUMMARYWe analyzed the pro
ess of vortex penetration intoa thin super
ondu
ting strip of a re
tangular 
ross se
-tion, with the width and the thi
kness of the strip be-ing mu
h larger than the London penetration depth. Itis shown that in the absen
e of �ux-line pinning, thepro
ess of penetration is governed by the parameter p,Eq. (19), 
hara
terizing an interplay between the Bean�Livingston and geometri
 barriers. If this parameter islarger than the 
riti
al value p
 � 0:52, the magnitudeHp of the external magneti
 �eld at whi
h the vor-tex penetration into the 
entral region of the samplestarts is determined by the Bean�Livingston barrier inthe 
orners of the strip, Hp = HBLp , and is given byEq. (11) or, equivalently, by Eq. (20). At an externalmagneti
 �eld Ha � Hp, the vortex dome in the 
enterof the strip forms, and its shape is 
lose to that de-s
ribed previously [2℄. In the opposite situation wherep < p
, we obtain Hp > HBLp (see Fig. 3), and the vor-tex penetration is a two-stage pro
ess. In the intervalHBLp < Ha < Hp, the tilted vorti
es penetrate onlyinto the edge regions of the strip, and vortex domesof unusual shape appear there (see Figs. 4 and 6). AtHa � Hp, the edge domes pra
ti
ally do not 
hange,whereas the vortex dome in the 
enter of the strip de-velops. The shape of this 
entral dome is again 
loseto that des
ribed previously [2℄. Hen
e, two types ofvortex domes exist in the sample in this 
ase.In prin
iple, the predi
ted new edge domes shouldbe observable experimentally by de
orations, magneto-opti
s, and s
anning SQUID mi
ros
opy. These domes
hange 
urrents 
ir
ulating in the sample. Hen
e,if the edge vortex domes appear or disappear in asuper
ondu
tor under 
hanges of the external magneti
�eld Ha or the temperature T , the magneti
 moment

M of the sample should exhibit a small break in theappropriate Ha- or T -dependen
es of M .We thank I. M. Babi
h for the helpful dis
ussions.This work was supported by the German�Israeli Foun-dation for S
ienti�
 Resear
h and Development (GIF).APPENDIXCurrents generated by �layers� of tiltedvorti
es in a stripWe 
onsider two thin �layers� of tilted vorti
es in thelower part of the strip (Fig. 8a). These two layers arelo
ated symmetri
ally with respe
t to the axis x = 0,and extend to in�nity in the z dire
tion. Let the endsof the right layer be at the points (w,y0) and (x0,�d=2)des
ribed by the respe
tive parameters t0 and t01. Thewidth of the layer is determined by the small intervaldt0 or by the appropriate dy0, and the layer 
arries themagneti
 �ux d� = Hx(y0) dy0. The surfa
e 
urrentsgenerated by the two layers 
an be found using the re-sults of Se
. 2 and a 
onformal map that transformsthe upper half-plane of the 
omplex plane onto the in-terior of the re
tangle shown in Fig. 8b. The lower andupper sides of this re
tangle 
orrespond to the parts ofthe magneti
 �eld lines A = 0 and A = �d� that lieoutside the strip and that are shown in Fig. 8a, while
a

b

y
d/2

A = 0

A = 0

A = −dΦ

w x
t′

t′1

ϕ

dΦ
−AFig. 8. a) Two thin symmetri
 layers of tilted vor-ti
es penetrating the lower part of the strip are showns
hemati
ally as the dashed lines. The ends of theright layer 
arrying the �ux d� are marked by t0 andt01. Arrows indi
ate dire
tions of the magneti
 �eld linesA = 0 and A = �d� that leave and enter the rightlayer and that adjoin the surfa
e of the strip (the lineA = 0 also passes through the in�nite point). b ) There
tangle in the 
omplex plane '� iA (see the text)516
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tangle 
orrespond to the in-�nitesimal intervals dy0 and dx0 
arrying the �ux d�.Eventually, we �nd that the surfa
e 
urrent generatedby the layers at a point t is given by4�
 J(t) = G(t0)�1�mt21� t2 �1=2 (t01 � t0)[t01 � t℄[t� t0℄ (29)if �1 � t � 1, and by4�
 J(t) == sign(t)G(t0)�1�mt2t2 � 1 �1=2 (t01 � t0)[t01 � t℄[t� t0℄ (30)if 1 � jtj � 1=pm. Here, sign(t) = 1 for t > 0 andsign(t) = �1 for t < 0, the fa
tor G(t0) isG(t0) = Hx(t0) dt0� � 1� (t0)21�m(t0)2�1=2 ; (31)and Hx(t0) = Hx(y0).If two similar layers are in the upper part of thestrip, i. e., if the right layer has the 
oordinates �t0 and�t01 and 
arries the �ux Hx(�t0) dy0 = �Hx(t0) dy0 == �d�, then we �nd4�
 J(t) = �G(t0)�1�mt21� t2 �1=2 (t01 � t0)[t01 + t℄[t+ t0℄ (32)for �1 � t � 1 and4�
 J(t) == �sign(t)G(t0)�1�mt2t2 � 1 �1=2 (t01 � t0)[t01 + t℄[t+ t0℄ (33)for 1 � jtj � 1=pm. Formula (23) is the sum of theexpressions (29) and (32) and also (30) and (33) fort > 0.In a similar manner, we 
an obtain the surfa
e
urrents generated by two verti
al layers of vorti
esthat are lo
ated symmetri
ally with respe
t to the axisx = 0. Let the ends of the right layer be at thepoints (x0,�d=2) and (x0,d=2) des
ribed by the respe
-tive parameters t01 and �t01. The width of the layeris determined by the small interval dt01 or by the ap-propriate dx0, and the layer 
arries the magneti
 �uxd� = Hy(x0) dx0. Eventually, we �nd the followingsurfa
e 
urrents generated by the layers at a point t1 onthe upper or lower surfa
es of the strip, 1 � jt1j � pm,4�
 J(u) = � 2�Hy(u0) du0�1� (u0)21� u2 �1=2 �� uu2 � (u0)2 ; (34)

where u � p1�mt21=p1�m, u0 � u(t01) andHy(u0) = Hy(t01) = Hy(x0). When x0 is not 
lose tothe edge of the strip (w � x0 � d), we have u � x0=w(see Se
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