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The possibility in principle of determining the circular polarization of a high-energy photon by measuring the
created electron polarization in the process of triplet photoproduction v + e~ — ete™ 4 e~ is investigated.
The respective event number, which depends on polarization states of the photon and the created electron,
does not decrease as the photon energy increases, and this circumstance can ensure the high efficiency in such
experiments. We study different double and single distributions of the created electron (or positron), which
allow probing the photon circular polarization and measuring its magnitude (the Stokes parameter £3) using the
technique of Sudakov variables. Some experimental setups with different rules for event selection are studied
and the corresponding numerical estimations are presented.
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1. INTRODUCTION

It is well known that the process of triplet produc-
tion
(k) +em(p) = e (k1) + e (k) +e” () (1)
by high-energy photons on atomic electrons can be used
to measure the photon linear polarization degree [1-3].
This possibility arises due to the azimuthal asymme-
try of the corresponding cross section, i.e., due to its
dependence on the angle between the plane in which
the photon is polarized and the plane (k, p;) where the
recoil electron 3-momentum lies. The detailed descrip-
tion of the various differential distributions, such as the
dependence on the momentum value, on the polar an-
gle and the minimal recorded momentum of the recoil
electron, on the invariant mass of the created electron—
positron pair, on the positron energy, and others, was
investigated in Ref. [4]. This single-spin effect is the
theoretical background of polarimeters, where different
angular and energy distributions are used [5].
The exact expressions for differential and partly in-
tegrated cross sections of process (1) are very cum-
bersome and exist in the complete form only in the
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unpolarized case [6]. At a high collision energy, only
two (from eight) diagrams contribute with the lead-
ing accuracy (neglecting terms of the order of m?/s,
where s 2(kp) and m is the electron mass) and
the corresponding expressions are essentially simplified.
These diagrams (the so-called Borselino diagrams [7])
are shown in Fig. 1. Nevertheless, at the boundaries of
the final-particle phase space, the nonleading terms can
be enhanced, and some of such effects were investigated
in Ref. [8] in the case of linearly polarized photons.

As regards the photon circular polarization, it can
be probed by double-spin effects at least. In the region
of small and intermediate photon energies, the circular
polarization can be measured using double-spin corre-
lation in Compton scattering. For example, in Ref. [9],
the corresponding possibility was considered for the
Compton cross section asymmetry in the scattering of
a photon on polarized electrons. In principle, the po-
larization of the recoil electron can also be measured.
The double-spin effects can be used to create polarized
electron beams using laser photons [10].

At high energies of photon beams, the use of Comp-
ton scattering is not effective because the Compton
cross section decreases very fast as the photon energy
increases. If the photon energy is large, the cross sec-
tion of the electron—positron pair production, which
does not decrease as the energy increases, becomes
larger than the Compton scattering one. To estimate
the relevant energy, we can use the asymptotic formulas
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Fig.1. Borselino diagrams that make a nondecreasing contribution to the cross section at high energies and small transferred
momenta

for the total cross sections [11]
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where 7o = a/m is the classical radius of the electron.
In the rest frame of the initial electron (s = 2wm), the
photon energy w has to be larger than about 80 MeV.
Hence, to measure the circular polarization of photons
with the energies more than 100 MeV, it is advanta-
geous to use process (1) rather than the Compton scat-
tering.

The above estimate of the pair production cross sec-
tion is made taking only the Borselino diagrams into
account. The events described by these diagrams have
very specific kinematics in the rest frame of the ini-
tial electron, namely, the recoil electron has a small
3-momentum (of the order of m), whereas the created
electron—positron pair carries all the photon energy and
moves along the photon momentum direction. In the
reaction c.m.s., the scattered (recoil) electron has a
small perpendicular momentum transfer (of the order
of m) and a very small longitudinal one (of the order
of m3/s). Just such events contribute to the nonde-
creasing cross section. The contribution of the other
diagrams, describing the direct capture of the photon
by the initial electron and exchange effects due to the
identity of the final electrons, decreases at least as m/w.

There are a few possibilities to measure the photon
circular polarization in process (1): i) to use longitudi-
nally polarized electrons and measure the asymmetry
of the cross section at two opposite directions of the
polarization, ii) to measure the polarization of recoil
electrons, iii) to measure the polarization of the created
electrons or positrons. The double-spin correlation ef-
fects in the first two cases decrease as the photon energy
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increases, and are not therefore effective for measuring
the photon circular polarization at high energies. In
this paper, we therefore concentrate on the third exper-
imental setup, which can be realized in the scattering
of photons on unpolarized atomic electrons or an elec-
tron beam. In some aspects, our study is close to the
approach in Ref. [12], where process (1) with circularly
polarized photons was suggested to create high-energy
polarized electrons; in the last section, we discuss the
corresponding similarities and differences in more de-
tail.

2. FOUR-RANK COMPTON TENSOR

In the approximation considered here, the squared
matrix element of process (1) is defined by a contrac-
tion of two second-rank Lorentz tensors V), and B,
and the differential cross section of this process can be
written in the form

WVHVBHVd(I)’ (3)

o d3k1 d3k2 d3p1

d® =
2E1 2E2 251

dk+p—p1— ki — ko),

where ¢ = k — ky — ko = p1 — p, E1 (E2) is the energy
of the created electron (positron), and 1 is the energy
of the recoil electron with the 4-momentum p;. The
tensor B, is defined by the electron current j,,

(4)

Buy = juiy,  Ju = w(p1)vuu(p),

and in the case of a polarized initial electron,

1 R . N
B,, = B Tr(pr + m)"yu(p +m)(1 = W)y,
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where W, is its polarization 4-vector. Taking the trace
over the spinor indices, we have

By = gy + 2(pp1) pw — 2im(puvgW),  (5)

where we set

(ab)pw = apby +ayby,  (uvgW) = €uurp Wy,

€1230 = L.

If the initial electron is unpolarized and we want to
measure the recoil electron polarization, we must sub-
stitute

W — W1

pSp, Sy,

in the right hand side of Eq. (5), which results simply
in the change W — W, where W is the polarization
4-vector of the recoil electron.

For events with an arbitrarily polarized photon
beam, the tensor V), in Eq. (3) can be written in terms
of its Stokes parameters & (i = 1,2,3) and the four-
rank Compton tensor T},,5, (such that its contractions
with ¢,,q, and ky, k, are equal to zero and which is
defined below) as

1
Viw = B ([61>\61p + eaneap]| + E3leiner, — eaneap] +
(6)

where the mutually orthogonal space-like 4-vectors e;
and e, relative to which the photon polarization prop-
erties are defined, satisfy the relations

+&i[eneapteanerp)—ilaleinezp—eane1n]) Tuvaps

el

=e3=—1, (eik) = (esk) = (e1es) =0.

The first term inside the parentheses in the right-
hand side of Eq. (6) is responsible for the events with
an unpolarized photon, the second and third terms are
responsible for the events with the linear photon po-
larization, and the last term, for the events with the
circular polarization. The parameters & and &3, which
define the linear polarization degree of the photon, de-
pend on the choice of the 4-vectors e; and ez, whereas
& is independent of them. Because we want to inves-
tigate events with the circular photon polarization, we
can choose these 4-vectors in the most convenient way,
namely,

(A ki ks)
N

_ X1kax — x2kia
N 9

€1\ €2\ (7)

with the short notation
N =2yx1x2 — m*(X] + x3),

X1,2 = (kk12), x = (kik2).
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The 4-vector e; appears in the expression for the
fourth-rank Compton tensor T),,,, see Eq. (8) below.

The polarization properties of a real photon are de-
fined by two orthogonal 3-vectors n; and ns. Each of
these two vectors is also orthogonal to the photon mo-
mentum 3-vector k, and the 4-vectors e; and es are
their covariant generalizations. It follows from the def-
inition of e; and e, that they have both time and space
components. Adding the 4-vector k& with appropriate
factors to them (which is, in fact, a gauge transfor-
mation), we can eliminate the time and longitudinal
(parallel to k) components. In an arbitrary Lorentz
system with the z axis directed along the vector k and
the 3-momentum lying in the zz plane, where

kz(w,0,0,w), kl :(Elaklxvoaklz)v

k2 = (E27 k2x7 k2y7 kQZ)a
the corresponding transformation has the form

Erks, — Esky .

N k}n

(0,n1) = e1x —

klx k2y k)\

(0,n2) = €15 — N

where
n; = (nmanya 0)»

W[(Er — ki1z)kog — (B2 — kaz)kiz]
N )
W(El — klz)ka
N b

n; = (nya —TLz,O),

Ny =

ny:

N? = w2{[(E1 — ki2)koo — (Bo — ko2)kig)” +
+ (B, — k13)2k§y}.

Under this transformation, no observables are changed
due to the gauge invariance, which manifests itself by
means of the above-mentioned constraints on the tensor
Tut/)\pa

ExTuvnp = kpTpuvrp = 0.

That is why the description of all polarization phenom-
ena in process (1) by means of the 4-vectors e; and ey
is completely equivalent to the description in terms of
the 3-vectors n; and ns. The evident advantage of
the covariant description is the independence from the
Lorentz system.

For the events in which the created electron polar-
ization states in process (1) must be determined, the
Borselino diagrams lead to the following expression for
the tensor T),,x,:



MIT®, Tom 144, Bemn. 1(7), 2013

Analysis of triplet production ...

1 ~ .
Tuu)\p = 5 Tr {(kl + m)(l - ’758’) X
X Q/\u(k2 - m)Qup}a (8)
A N whve vk
= e + _
Qo X1X2 A 2x1 2x2

where S is the electron spin 4-vector, with the proper-
ties S2 = —1 and (Sky) =

We divide T}, into two parts: the first part de-
pends on the 4-vector S and the second one does not,

78

(0)
uMp+T

TMVAP vAp®

Then we can write

)

Tuvrp = Ttuynp) + Thuviing s )
S) _ .

Tyore = [T no) + Tiuvlan) )

where we use the index notation (af) ([af]) to indicate
the symmetry (antisymmetry) under the permutation
of indices a and 8. These symmetry properties (9) and
form (5) for the tensor By, allow discussing some fea-
tures of process (1) with a high-energy polarized photon
on the qualitative level.

As noted in the Introduction, the cross section of
process (1) (when all particles are unpolarized) does
not decrease as the photon energy increases. Such be-
havior is caused by terms proportional to s> in the
contraction T},,,B,, that enters differential cross sec-
tion (3). On the other hand, only the symmetric com-
ponent 2(pp1),y in Eq. (5) can ensure the appearance
of such terms. This simple observation suggests that
the nondecreasing spin correlations in the differential
cross section in the considered case are connected only
with the tensors T(,,)(xp) and T,,)[x, that are sym-
metric under the y S v permutation. The first one de-
scribes single-spin correlations that depend on Stokes
parameters & and &3 caused by the linear photon po-
larization [1]. The second tensor can contribute under
the condition that the polarization of the created elec-
tron (or positron) is measured, or in other words, it
describes double-spin correlation dependent on Stokes
parameter & that is the circular polarization degree.
In what follows, we concentrate just on this double-
spin correlation, which can be used to measure the &
parameter.

The tensors 7,15, and Tj,,)(xp) that are antisym-
metric under the p < v permutation do not have much
physical significance in the considered problem because
they can describe spin correlations in differential cross
sections that decrease at least as s~ with the increase
in energy. For the full description in such an approxi-
mation, it is not enough to consider only the Borselino
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diagrams, and the other six diagrams must be taken
into account. But these tensors are connected by the
cross symmetry with the corresponding tensors in the
annihilation channel that are suitable for the descrip-
tion of the subprocess et + e~ — v + 7*, which is im-
portant in different radiative return measurements [13]
and which does not acquire contributions of any other
diagrams. That is why we give all the corresponding
expressions in very compact form

2
Tury(xp) = e
2 N2 2
X {guu[(Xl +X2) grp — ! elAelp] -

= 2v1X2(1+ Prp) GG — 2(krks) sk +

(1+P>\p+Puv+P>\p I“/)g'/l?[ u

+ N(k1y — kop) ev\]

klel))\p(ka)[u/ _ (k2€1)
X1

— 9xp [(Xl + x2) (k12k)

X2kia+xikan)+

(kkl)/w] _

X2
= 2(m® + k] b, (10)

+N[(

—
=

where ki = ki + ko, 15,15 is the o
operator, and

[ permutation

Tlwlirg) = T {(1 — Pu) [(x? + X3)9urgvp +
+ (XThay — X%klu)ku[k1k2])\p] n
X1X2

N . PO N
+(1=Puy—Prp+PuPrp) {Egﬂelp(xgklu_xgk%)"‘

2 2
- - +
+ X1 (Xl Xz)(m X)gupkykl/\ +
X1
2 _ _ m? +
_l_ X2 (X2 Xl)( X) gupk,,kz,\] }7 (11)
X2

where we use the notation [ablas = aabs — agba.

The spin-dependent parts of T),, 5, are given by

Ti)(xp) = —2(urvqS)hah, +
vqk
(l;zm) [(X2 —x1)(kS)gxnp — XlX?(Sh))\p] -
1
kS
- —(Xl) [Pa(uvpg) + hp(pvAg)],  (12)
where
ok B
X2 X17
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and
Tuinel = [(klkl)“;;imﬂw
- (xi% + Xi%)(klkz)uu +
L Cha - Xz;(;;;(x? - x%)] (ApkS) +
+ %[(Sh ) + (Sks) (x )g,w] +
+{ o (22 - )(’“2" )+
%(q + 20 +20)8| + (s v} (13)

3. DIFFERENTIAL CROSS SECTION

When calculating the contribution to the unpo-
larized part of the cross section that does not de-
crease as the energy increases, we ought to ac-
count for terms proportional to s° in the contraction
Tuvap(e1rerp+eanes,) By, which arise due to the scalar
products (kip), (kep), and (kp). For this, it suffices
to use the approximation By, = 4p,p, (see Ref. [3]).
Then we have

2

4m?
TMV}\p(el}\elp+e2)\62p)B,uV = _16[ (klp)(k2p)+
X1X2
2 2 2
q 2m?> of q 2m
+(k1p)? +(k -—=|. (14
( 1]9) <X1X2 X2 ) ( 2]9) <X1X2 X% )} ( )

The leading contribution to the differential cross
section, within the chosen accuracy, is given by the
region of small transferred momenta |¢?| ~ m?. In
this case, it is useful to introduce the so-called Sudakov
variables [14], which are suitable for the calculation at
high energies and small transferred momenta. These
variables, in fact, define a decomposition of the final-
state 4-momenta into longitudinal and transverse com-
ponents relative to the 4-momenta of the initial parti-
cles. For process (1), we have (also see [12])

ko =ap' + Bk + k.,
2

q= aqpl + qu +q1,

P=p—""k s=2kp), p>=0,
5 (15)
(kip) = (kLk) = (q1p) = (¢Lk) =0,
Ak = %da dBdl2ky, diq= %daq B, d2q.,

where the 4-vectors k| and ¢, are space-like, and hence
k? = —k? ¢ = —q?, and k and q are two-dimensional
Euclidean vectors.
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The phase space of the final particles with the over-
all d-function (see Eq. (3)) can be written as

2
ad = Szda dB Pk dagdf,dqL x

X 5(k§ — m2)6(k% — m2)6(p% —m?).

Using the conservation laws, we derive

B = 5012, K = —s(1-§)(a+ag)~(k+a)?,
m? + k>
p%:36q+m2_q27 Sa:Ta Sﬂq:qza
m?2+k? m?+ (k+q)?
sa; = — - ,
g 1-5

and after the integration over a,ay, and [, with the
help of three d-functions, the phase space reduces to
the very simple expression

dd =

dp dk dq. (17)

_
458(1 - B)

The variable f = E/w is the photon energy fraction
that is carried away by the positron (the created elec-
tron energy is £y = (1 —f)w). In terms of the Sudakov
variables, the independent invariants are expressed as

~m?+ (k+q)? _ m? +k?

X1 = 20-5) X2 = 25 )
s s mE(m?+K2)?
7=~ =

In what follows, we consider two possible experi-
mental situations: i) both the scattered (recoil) and
created electron are recorded, ii) only the created elec-
tron is recorded. In the first case, we assume that
events with |¢?| < |¢3] are not detected, where the
minimal selected momentum transfer squared |¢3| is of
the order of m2. In the second case, all events with
|4?| > 1¢2,;,,| are included, where |¢2,;,| is the minimal
possible value of |¢?|, which is defined by the second
term in the expression for —¢? in Eq. (18). It is just
the longitudinal transferred momentum squared.

These two event selections give very different values
for the differential cross section. If |¢?| is of the order
of m?, we can everywhere neglect ¢2,;,,. Such a proce-
dure leads to the cross section that depends on ¢g, but
does not depend on the collision energy (the s invari-
ant). On the other hand, when values of |¢?| for the
selected events begin from ¢2,;,, the integration over
dq leads to a logarithmic increase in the correspond-
ing cross section as the collision energy increases. This
leading logarithmic contribution can be derived by the
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equivalent photon method [15], but our goal is to also
calculate the next-to-leading (constant) contribution.

We begin with discussing the first experimental
setup. Using the definition of the differential cross sec-
tion (Eq. (3)) and relation (14), taking phase space
factor (17) and expressions for independent invariants
(18) into account and recalling that

2(kip) = (1 — B)s, 2(ksp) = Bs, ¢ =—q°
in the case under study, we obtain
2 3
do = 7
™q
1 1

)+

]d,@ dkdq. (19)

8 2m26(1_ﬂ)<m?+(k+q)2 Cm? 4K

o’[1 —25(1 — B)]
[m? + (k + q)?][m? + k?]

Our goal is to derive the distribution on the electron
(positron) energy  and the perpendicular transferred
momentum squared (q?). We therefore have to inte-
grate the right-hand side of Eq. (19) over dk, and the
effective values of |k| are of the order of m. Because
the integral rapidly converges, we can take 0 and oo as
the limits of integration over |k|. After the integration,
the differential cross section becomes

do! _4a3
i~ ot
{1 =281 - B)] T +25(1 - )T, },

2m?2 (20)
@

1 1
\pl:_mi’
r—1

4m?2
q

In the limit g2/m? > 1, ¥; = In(q?/m?) and ¥, =
= 1. In the opposite limit q?/m? < 1, the expression
in the braces in the right-hand side of Eq. (20) must
be proportional to q? due to gauge invariance. In this

case,
_d (o a g, O
2m?2 6m2)’ 7 6m?®
Elementary integration of this cross section over the
positron energy fraction /3,

l 3 2
do_ Ao [1+2<1—m—2> fol],
q

da® ~ 3q*
allows finding the distribution over the recoil momen-
tum [ in the rest frame of the initial electron (formula
(16) in Ref. [16]) which is related to q> as

q +2m? = 2mv/m? + 12,

5 ZKOT®, Bem. 1(7)

Py =1-—

¥y

(21)
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This is a test of our calculation. But we do not inte-
grate over [ in what follows because we have to keep
information about the created pair.

For the pair creation via process (1) by a high-
energy photon on a relativistic initial electron with
the energy E > m in back-to-back collision, the scat-
tered (recoil) electron can be detected, in principle, by
means of a circular detector that sums all events with
Omin < 0 < Omaz, where the scattering electron angle
is @ = |q|/E. Here, we bear in mind that the scattered
electron energy ; is virtually the same as the initial
electron energy E. In such an experimental setup, dif-
ferential cross section (20) is to be integrated over the
detector aperture. The maximum and minimum val-
ues of q? are defined by the angular dimensions of the
detector,

Qe = E20%,..

For analytic integration, it is convenient to intro-

duce the new variable q2/m? = 4sh? z, whence

z

dq®  chzdz
shzchz’

Uy =2zthz, ="
! qt 2m2 sh? 2

Ty =1-
and the integration of Eq. (20) with respect to the az-
imuthal angle and the new variable z leads to the elec-
tron (positron) spectrum in the unpolarized case

do

0 = 2ard{Ale0) — A1) + 51— ) x

X [B(zo) — B(Z1)] }7 (22)

where zg and z; are the minimal and maximal values
of z, z = Arsh(0E/2m), and

A(z) =2zcthz —21In(2shz), (23)

2
B(z) = ——
() 3sh? z

We fixed the integration constant such that A(z),
B(z) — 0 as z — o0o. This choice is determined by
the behavior of cross section (16) at large g®/m?.

The total cross section in such an experimental
setup can be derived by elementary integration over
the positron energy fraction:

2
—2zchz — gzch32+ gln(Zshz).

o =2ar[C(z) — C(z1)],
1 (24)
C(z)=A(z) + EB(z)
We note that in the e*e™ pair production by a pho-
ton on a stationary target with an arbitrary mass M,
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q? is related to the target mass M and the energy W
of the recoil particle in the labaratory system as

W =+vM?2+12,

where [ is the absolute value of the recoil momentum.
This means that in the case of an atomic electron tar-
get, | = msh(2z), M = m, and for a very heavy target,
[ = 2msh(z), M > m. For a stationary target, it is
possible to investigate this experimental setup when the
detector records all events with [ > g, lp ~ m. In this
case, we can formally set the upper integration limit in
Eq. (16) equal to infinity. To write the corresponding
results, it suffices to eliminate A(z1), B(z1), and C(z1)
from Eqs. (22) and (24).

On the other hand, we can study the angular distri-
bution of the recoil electrons. It is easy to see that in
this case, the angle ¢ between the photon 3-momentum
and the recoil electron momentum p; is defined by the
relation [2]

q2:2M(W_M)a

4m?

.2
sin“ ) = ———.
4m2 + q2

It means that large q2 correspond to small recoil angles
1 and vice versa. In this case, shz = ctg.

We consider the situation where the recoil electron
is not detected. In this case, we must integrate over all
possible range of the variable q?, beginning from zero.
At very small g2, such that
mb / 2 <o <m?,

0<q’®<o, (25)

2.2
m~sy

the differential cross section can be modified by the
A ) k2 + m2
a = (¢ + 55 =

substitution
)2
) S1 = ooy
NI

in the denominator in the right-hand side of Eq. (19)
(in accordance with the definition of cross section (3)
and relation (18) for ¢%), where s; is the invariant mass
squared of the created electron—positron pair in process
(1) at @ = 0. In the numerator, we can neglect terms of
the order of ¢ with n > 2. In the region o < g < o0,
we can use expression (19).

In region (25), gauge invariance requires the q2-de-
pendence of the cross section to be of the form [14]

q2

(a2 + m2s2/s2)”

We can therefore perform elementary integration over
dq in this region and over the azimuthal angle of the
two-dimensional vector k and derive
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do® 203
dBd ~ (mZ+ k22
48(1 — BYm2k>
X <1—25(1—6)+((m2_|_—2{?)2> X

245201 _ )2

() o8- )
m2(m2 + k2)2

To obtain the electron (positron) spectrum in re-

gion (25), we have to integrate Eq. (26) over dk?. The
result is

- 1) . (26)

do?
dp

= 2ar] { (1 - gﬂ(l - ,3)) X
X (m w—1> —2+2—96ﬂ(1—6)}. (27)

mo
The total electron (positron) spectrum also contains
a contribution from the region o < g2 < oo. To derive
it, we integrate Eq. (20) over q> and obtain

l
%:2ar§x
o 2 o 13

The electron spectrum in the case of the undetected
recoil electron is the sum of do® /df and do' /dj3, which
is given by the well known expression

do

i 2ar3 <1 - gﬂ(l - ﬂ)) X
X <lr18262571174_ﬂ)2 - 1) . (29)

It describes the corresponding differential cross section
for ete™ pair production by a high-energy photon on
an elementary electric charge. It is also suitable for pair
production in the nonscreening Coulomb field (with the
substitution a® — a?2?).

If the recoil electron is not detected, we can also
study the double distribution of the positron over the
energy wf and the perpendicular momentum k, which
are related to its scattering angle 6 as 0 = 2|k|(3+/s) L.
For this, we have to integrate differential cross section
(19) over dq in the region q> > ¢ and add the result
to contribution (26) from the region > < o. Such
integration of the expression (19) gives
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do? 2a3
B’ (m2 + K22
x 1n%}. (30)

The term In (om?/(m? + k?)?) cancels in the total
distribution, and we obtain

do 203
dBd2 ~ (mE+ k22
2k2
X {Zﬂ(l - ﬂ)(l - (7752”171{2)2) +
Am*K2B(1 —
+ [I_Qﬂ(l_ﬂ)+n(l771+(11<2)26):|

X <21n5’6(;72_6)—1>}. (31)

When integrating (31) with respect to dk?, the first
term in the curly brackets vanishes and we come to
spectrum (29). On the other hand, we can also inte-
grate (31) over 8 and obtain

do 2a° m2k? s
LA R VY T ) ML
dk?  3(m2+k2)2 (m2+k?)2 m?2
2 44 m2k2
— _9 __mmmx . (32)
3 3(m?+k2)?

4. POLARIZATION OF THE CREATED
ELECTRON

The created (fast) electron polarization in process
(1) depends on all kinematic variables and at high en-
ergies can be written as

P(ﬂvkv q) =mé& X
o« Ttu)irel(Craezp — e1p20)4 pupyd®/q*
Tiuv)(rp) (€1x€1p + €2x€2,) 4 puprd® /gt

(33)

We note that we can eliminate the factor d®/¢* from
this equation, but if our aim is, for example, to obtain
the quantities P(3,q), P(8), and so on, then we have
to first integrate both the numerator and the denomi-
nator over the corresponding variables and only then to
take their ratio. It is obvious that the denominator is
defined by the cross section and we have to investigate
the numerator (or the part of the cross section that de-
pends on the circular polarization of the photon and

the longitudinal polarization of the created electron) in
different experimental setups.

In terms of the invariants used, the numerator in
Eq. (33) is expressed as (without the factor d®/q*)

o[ [22-22] -

X1 X2
X1+ X2 (kp) (ko)
X {W((kzp)(ks) +x1(pS)) — T] +
q2(X2 —x1)(kp)(pS)
+ T } . (34)

We next use the covariant form of the electron polar-
ization 4-vector, namely,

kkl)kl — m2k

_
S = (35)

It means that in the rest frame of the created electron,
S = (0, —n), where n is the unit vector along the pho-
ton 3-momentum.

The used invariants are expressed in terms of the
Sudakov variables as

2m(pS):s(1—B—m—2>,
X1

m(kS) = x1, m(ksS) = (kiks) — m2§,
1
and the expression in the braces in the right-hand side
of Eq. (34) becomes very simple:

52> [I—Zﬂ m2<1 1)}
8x2 X1 Xt \ Xt X2 '
We can now write the polarization-dependent part
of the cross section

dog 2036, q>

_ X
dfdkda ~  m2qt(m? + k2)[m? + (k + q)°]

1-5 B
x {l_w_QmZ (m2+(k+q)2 _m2+k2)} » (36)

where, as in the unpolarized case, we have to set
q* = q* in the region q® > o and ¢* = [q® + m?s?/s]?
in the region q2 < 0.

For events with the scattered (or recoil) electron de-
tected, we can integrate over dk? and obtain the part of
the double differential cross section in the simple form

dog _ 40°6(1 - 2)
dBdq

We note that this distribution is antisymmetric un-
der the replacement of 5 with 1 — [, whereas the

rqla? [\1’2 - ‘1’1]' (37)

5*
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polarization-independent part of the cross section (see
Eq. (20)) is symmetric. Besides, at very small values
of g2, cross section (37) does not depend on g due to
the factor 22 in the denominator, whereas cross section
(20) has a pole at q*> — 0. The last feature implies
that the polarization-dependent part of the spectrum
in the region q> < ¢ cannot have terms that contain
the large logarithm In(s/m?) that arises in the case of
a pole-like behavior as g% — 0.

The created electron polarization along the direc-
tion —n, in its rest frame, is defined by the relation

P =&P(8,q%) = dog/do’,
whence the polarization transfer coefficient is

(1-28) (T —¥y)
22[(1-2B8(1-8))T1+28(1-B)T>]

The quantity P(8,q2) is antisymmetric under
B — 1 — 3, and its magnitude is of the order of unity
inside a wide region of the kinematic variables. This
allows measuring even rather small values of circular
polarizations.

If the scattered electrons are recorded by a narrow
circular detector, we have to integrate over the detec-
tor aperture as described above in the unpolarized case.
This procedure results in

(1-28)[D(20)—D(21)]
A(z0)=A(21)+8(1=B)[B(20)—B(21)]’
D(z) = 2z[th(z) — cth(22)].

P(B,q%) = (38)

P(B) = (30)

If all recoil momenta with [ > [ are recorded, then the
polarization P(/) can be derived with the same rules as
described at the end of Sec. 3, namely, we have to elim-
inate A(z1), B(z1), and D(z1) from Eq. (39) and use
lp = 2msh zy. If the angular distribution of the recoil
electron is measured, then we have to use sh z = ctg ¢

We now consider the experimental setup without
detection of the scattered (or recoil) electron. Our goal
is to obtain the double distribution of the created elec-
tron polarization P(3,k?) and the spectrum-like one
P(3) by analogy with Eqs. (38) and (39). Besides, we
can also investigate the corresponding distribution over
k2. In these cases, we must take the contributions of
both regions > > ¢ and g2 < ¢ into account.

Integrating the right-hand side of Eq. (36) with re-
spect to d’>q over the region g > ¢ and the azimuthal
angle of k gives

dog 2076 (k* — m?)
dgdk® —  (m2 +k2)3
0'm2

CeEse

x |In 1—28) +2(1—p5)|. (40)
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We see that this part of the cross section has no def-
inite symmetry under f — 1 — 5. The corresponding
contribution of the region q? < ¢ is

dog 2036 (k?

_ —m?)(1-25)
dp dk?

(m2 + k2)3

x [1—1In . (41
( ). @

In the sum of (40) and (41), the auxiliary param-
eter o cancels in the same manner as it did for the
unpolarized part of the cross section, and we have

0s®B*(1 - B)?

m?2 (m2 + k2)2

doe  2a°&(k* —m?)
BdE —  (m? 1)

X { (1—21n W) (1—26)+2(1—,6’)} . (42)

We can now write the total distributions over 5 and
over k2. Elementary integrations give

X

dog _
dﬁ_’

Having different distributions for both polarization-
dependent and polarization-independent, parts of the
cross section, we can define the respective polariza-
tions of the created electron P(3), P(k?), and P(f3,k?),
by taking the corresponding ratios. We first note that
P(B) goes to zero because dog¢/df = 0. The polariza-
tion P(k?), which is the ratio of the right-hand sides
of Egs. (43) and (32) without the factor &>, decreases
logarithmically as the photon energy increases because
do¢ /dk* does not contain a logarithmic contribution.
The polarization P(3,k2) (the ratio of the right-hand
sides of Eqgs. (42) and (31)) at very high energies tends
to the limit that is independent of energy,

(m* — 1)(1 - 29)
(K2 =25 (1—5) (mA k)

dog  20%6(k* —m?)

k>~ (m2+ K23 (43)

P(67k2)|s—>oo = . (44)

The quantity P(/3) vanishes (with the accuracy of
m/w) if we take all events with 0 < k? < oo into ac-
count. But eliminating the region of very small values
of k? increases (in absolute value) the number of events
that depend on the photon circular polarization and de-
creases the unpolarized event number. Therefore, the
created-electron polarization can be determined with
high efficiency by the spectrum distribution of the cre-
ated electron (or positron) using the constraint

k* > k3

on the event selection, where k3 is of the order of a

few m?. This constraint means that events with very
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Fig.2. (a,b) Double differential cross section defined in Eq. (20) and (c) the respective distribution for the electron polar-
ization given by Eq. (38). The energy fraction of the electron is w(1 — 3) and ¢z, = q*/m”

da'/dﬁ 0
T ' I | | 0

600 -
~0.1
- ] ~0.2
~0.3

400} -
~0.4
“ ] ~0.5
"l _ ~0.6
------------------------- —0.7
0 01 02 03 04 05

Fig.3. The unpolarized part of the cross section and polarization of the created electron given by Egs. (22) and (39) in the
reaction c.m.s. (with zop = Arsh(@minE/2m) and z; = Arsh(fma. E/2m)) at E = 100 MeV for events with the minimal
electron scattering angles 6, = 1° (solid curves) and 6.,i, = 2° (dotted curves), and with 6,4 = 6° in both cases

small angles of the created electron and positron are Als —9201 < sB(1 — ﬂ))
,B) = B+ (1-2ln———=) (1 -20),
excluded. (5, 5) -5 2 ( B)

A simple calculation gives the electron polarization
in such an experimental setup in the form

2
5 B(y,s,B) = |(14+y)*—=B(1-5)(24+3y+3y>)

B(y,S,B) 2 % 21n 85(1—5)

4
where m2 —(1+y)? +§5(1—ﬂ)(1+3y2).
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do’ /d3 P

= - - - - - 0

3500 |- 005

3000 F~ e 1 oo
2500 b \\\\~: ------------------ h —0.15 + /,/ i
2000 | Tt 1 —o020p _ -~ } -
1500 [ 1 ook - ]
0 01 02 03 04 0; 0 0.1 02 03 04 oé

Fig.4. The same as in Fig. 3 but for events in the rest frame of the initial electron with zp = Arsh(ctg¥ma=) and
z1 = Arsh(ctg ¥ min) in Eqs. (22) and (39). We use Omar = 75° and Omin = 60° (solid lines), 30° (dashed lines), and 5°
(dotted lines)

do’ /dB

2500 _o1
2000 - 4 02
-0.3

1500 - _
—0.4
1000 1 -05
—0.6

500 — — — _ _ _ _ :
e LTI TS —0.7

0 0.1 0.2 0.3 0.4 0.5

B

Fig.5. The same as in Fig. 4 but at zo = Arsh(lo/m)/2 and A(z1) = B(z1) = D(z1) = 0 in Egs. (22) and (39); lo =m
(solid curves), 10 m (dashed curves), 20 m (dotted curves)

5. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we demonstrate some numerical es-
timates for the created-electron polarization (along the
photon 3-momentum direction in the rest frame) for
different, experimental situations. Together with polar-
izations, we show the corresponding unpolarized parts
of the cross section for which we always use units pb
or ub/MeV2. The results for different experimental se-
tups with detection of the recoil (or scattered) electron
are shown in Figs. 2-5 and those without detection, in
Figs. 6-8. All curves in these figures are correct when
the condition s > q2,k?,m? is satisfied, and we as-
sume that the minimal value of the recoil 3-momentum
is always of the order of m. In this case, different unpo-
larized differential cross sections are symmetric under
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the change f — 1 — 3, whereas the polarizations are
antisymmetric.

We note that all curves in Figs. 2, 4, 5 are indepen-
dent of the collision energy (only the above-mentioned
constraints on the values of s, g2, and m? are supposed
to hold), and the curves in Fig. 3 depend on energy.
The reason is that in Fig. 3, we give the corresponding
distributions for events in the c.m.s. with fixed scat-
tered-electron angles (but not q?). Within the used
accuracy, these angles are expressed via the perpen-
dicular transferred momentum and the initial electron
energy by the simple relation q> = #?E?, E = \/s/2. It
means that at a fixed 6, the value of g2 increases as the
energy squared, but, as follows from Fig. 2, the cross
section decreases very rapidly as g increases.

To estimate the energy dependence of the curves in
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Fig.6. (a,b) Double differential cross section defined by Eq. (31) and (c) the respective distribution for the electron po-
larization that is the ratio of the right-hand side of Eq. (42) at {&» = 1 to cross section (31), at s = 300 MeV? with
k2 = Kk*/m?

Fig. 3, we perform the corresponding calculations also
at £ =1 GeV and 10 GeV and observe that polariza-
tion is practically independent of energy, whereas the
cross section loses more than three orders of magnitude
as the energy increases from 100 MeV to 10 GeV.

An entirely different picture of the angular distribu-
tion of recoil electrons is observed for events in the rest
frame. In this case, the relation between the scatter-
ing angle and the perpendicular transferred momentum
does not contain the collision energy. Therefore, the
curves in Fig. 4 are the same at the above-mentioned
energies. Because

q® =4m?ctg’ 0

in the rest frame, the cross section decreases as the
recoil electron scattering angle @ increases.

In Fig. 5, to complete the description of events with
the recorded scattered (or recoil) electron, we also give
the unpolarized cross section and polarization at dif-
ferent values of the minimal magnitude of the recoil
electron 3-momentum.

As regards the experimental setup without detec-
tion of the recoil (or scattered) electron, the corre-
sponding events, by definition, include all values of g2
starting from zero. In this case, the dependence of the
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differential cross section do/df dk dq on the collision
energy arises due to the 1/¢* factor in Eq. (3). Af-
ter the integration of the cross section with respect to
dq, this dependence leaves a trace as a term enhanced
by the logarithmic factor in Eq. (31). This integrated
cross section is said to increase logarithmically as the
energy increases.

In Fig. 7, we show the differential cross section
and polarization of the electron as functions of the
positron perpendicular momentum only. As noted
above, the cross section increases logarithmically with
energy, whereas the polarization decreases. The po-
larization can nevertheless be measured using such a
distribution up to energies s = 1 GeV? because the
corresponding event number is sufficiently large. A
more advantageous situation occurs when events with
0 < k? < k3 are excluded and the polarization in-
creases with the collision energy (as it is demonstrated
in Fig. 8). The unpolarized cross section is not given
in this figure, but can be derived by integrating cross
section (31) with respect to k? from k32 up to oo.

We compare our approach and the obtained re-
sults with the corresponding investigations in Ref. [12].
We first note that in both papers, only the Borselino
diagrams are taken into account for theoretical de-
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do /dk?

15000 | ]
10000

5000

40 50
2
—0.2 I I I I ]
0 10 20 30 40 50
k2
Fig.7. Differential cross section defined by Eq. (32)

and the corresponding polarization, which is the ratio

of the right-hand side of Eq. (43) at &> = 1 to cross sec-

tion (32), at s = 100 MeV? (solid curves), 300 MeV?
(dashed curves), 1 GeV? (dotted curves)

scription of process (1) and the Sudakov variables are
used. In Ref. [12], the polarization of both compo-
nents of the created pair is considered, but we concen-
trated on the polarization of the fast electron only. In
Ref. [12], the calculations were performed in the leading
logarithmic approximation using the equivalent-photon
method, whereas our results also include a contribution
that does not depend on energy. We consider differ-
ent, event selections, particularly distributions over the
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recoil-electron variables, which cannot be studied by
the method used in Ref. [12].

We must therefore compare formula (14) in Ref. [12]
with the coefficient at In(s/m?) in our unpolarized
(Eq. (26)) and polarized (Eq. (41)) cross sections
caused by small values of q> < 0. We see that our
unpolarized cross section is twice the one in Ref. [12].
This means that we perform the spin summation. We
also use the polarized cross section, which should be
twice the one in Ref. [12] (if we set £ = X and 6_ = 1).
But we see that this is not so. The reason is that our
parameterization for the electron polarization 4-vector
(see Eq. (35)) is different from the one in Eq. (12) in
Ref. [12]. Let S be the polarization 4-vector used in
Ref. [12]. Then in our notation, we have

2

om(pS) = s(1 — B), m(kS) = y1 — 17—5,
2
m(ks8) = (kiks) — 1’”_%.

These relations are different from the corresponding
ones with the 4-vector S instead of S (see formulas
after Eq. (35)). Just this difference is the source of
different forms of the polarization-dependent parts of
differential cross sections. We also note that in ac-
cordance with Eq. (43), our spectral distribution van-
ishes for both contributions, the leading logarithmic
and constant ones, whereas the logarithmic contribu-
tion is nonzero in Ref. [12] (Eq. (16)).

The unpolarized cross section, within the adopted
accuracy, is symmetric under the change f =2 1 — .
With our choice of the 4-vector S, the created-electron
polarization is antisymmetric if the recoil (or scattered)
electron is recorded. Otherwise, there are nonlogarith-
mic contributions that have no definite symmetry un-
der this change (see Eqs. (42) and (45)).

The accuracy of our calculations is restricted by ne-
glected terms of the order of m?/s and by the radia-
tive corrections. The former can be essential near the
boundaries of the electron spectrum [§], and therefore
our calculations are valid in the region 0.1 < 8 < 0.9.
As regards the radiative corrections, they violate the
above-mentioned symmetries at the level of several per-
cent in this region of electron energies, at least for un-
polarized events, due to the possibility of a hard photon
emission [17].

6. CONCLUSION

The process of ete™-pair production in the scatter-
ing of a circularly polarized photon beam on electrons
gives rise to polarization of the produced electron and
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Fig.8. (a,b) Differential cross section and (c) the created-electron polarization (Eq. (45)) as functions of the energy fraction
B and the parameter y at s = 300 MeV?

positron. At high energy of the photon beam, this ef-
fect can be used both for the production of high-energy
polarized electrons (and positrons) (see Ref. [12]) and
for the measurement of the photon circular polariza-
tion degree, because the differential cross section and
polarization transfer coefficient do not decrease as the
photon energy increases. The leading contribution to
these physical quantities is made by events with small
transferred momenta squared (|¢%|/s < 1), when the
ete™ pair carries away all the photon energy. This
contribution is determined by the Borselino diagrams
(Fig. 1).

We calculated this contribution for different distri-
butions of the final particles using the technique of Su-
dakov variables. We considered two essentially differ-
ent physical situations. The first one is concerned with
the detection of not only the produced electron but
also the scattered (recoil) electron. That kind of de-
tection is quite possible because the final electrons be-
long to different (nonoverlapping) phase-space regions.
The results of our numerical calculations are presented
in Figs. 2-5 in the case where the minimal transverse
transferred momentum is of the order of the electron
mass (|q%|min & m?).
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The typical differential cross sections turn out to be
of the order of 1 mb and the polarization transfer coef-
ficients are of the order of unity and are antisymmetric
under the replacement 3 — 1 — 3. Our calculations
imply integration over the entire interval of the elec-
tron azimuthal angles. In principle, they can be done
for any detector geometry because the differential cross
section (the formulas (19) and (36)) is easy to integrate
numerically.

The results of calculations in the case where the
scattered electron is not detected are presented in
Figs. 6-8. In these calculations, the contributions of all
events with |q?| > 0 are added. The differential cross
sections (formulas (31) and (42)) acquire a contribu-
tion that increases logarithmically with energy. At the
cost of this, the cross sections turn out to be somewhat
larger than in the first case. The polarization transfer
coefficient is also of the order of unity if the electron
energy is measured, but is essentially smaller if the
integration over energy is done in the entire range of
values (Fig. 7). It is important to note that such an
experimental setup is possible in the interaction of
photons with an electron beam because during the
interaction of photons with matter, scattering on the
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atomic electrons with ete~-pair production (without
the recoil electron detection) is only a background
process relative to the Bethe—Heitler process.

The authors thank A. Glamazdin for the useful dis-
cussion.
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