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DYNAMICAL INSTABILITY OF COLLAPSING RADIATING FLUID
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We take the collapsing radiative fluid to investigate the dynamical instability with cylindrical symmetry. We
match the interior and exterior cylindrical geometries. Dynamical instability is explored at radiative and non-
radiative perturbations. We conclude that the dynamical instability of the collapsing cylinder depends on the
critical value Y < 1 for both radiative and nonradiative perturbations.
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1. INTRODUCTION

The subject of dynamical instability of self-gravita-
ting objects has attracted many astrophysicists due to
explosions and evolution of these objects. The evolu-
tion of different self-gravitating objects during gravita-
tional collapse for different ranges of instability is an
important feature of dynamical instability. The static
stellar model would be interesting if it remains stable
under fluctuations. In this scenario, Chandrasekhar [1]
found the instability range Y < 4/3 for the spherically
symmetric spacetime with isotropic fluid. After that,
many people investigated the effects of physical prop-
erties of the fluid in the onset of dynamical instability
with spherical symmetry.

In [2], it was found that dissipation at Newtonian
(N) limit reduces the stability of the sphere and boosts
at post-Newtonian (pN) limit. The conclusion in [3]
was that the effects of radiation appears similar to dissi-
pation in the N and pN limits. The same authors [4] ex-
amined the instability of a spherically symmetric space-
time with shear viscosity and found that it decreases
the instability of the fluid. The dynamical instability
of a collapsing radiating star would be increased due to
the presence of anisotropic pressure and shear viscos-
ity [5].

Cylindrically symmetric spacetimes are idealized
models in general relativity. The study of gravitational
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collapse of these astrophysical objects is an important
problem. Some recent work [6-10] indicate great inte-
rest in cylindrical gravitational collapse with different
fluids with and without an electromagnetic field. Re-
cently, Sharif and his collaborators [11] investigated the
dynamical instability for spherically and cylindrically
symmetric spacetimes in general relativity and f(R)
gravity in the N and pN regimes, respectively. They
have shown that the electromagnetic field, pressure
anisotropy, dissipation, and f(R) models have great
relevance in the range of instability. The same au-
thors [12] have also explored this problem for the thin-
shell wormholes in nonlinear electrodynamics.

In this paper, we explore the dynamical instability
of a collapsing radiating cylinder in the N and pN ap-
proximations. The paper is organized as follows. In
Sec. 2, the field equations and matching conditions are
developed. In Sec. 3, we formulate the dynamical in-
stability at nonradiative and radiative perturbations.
Finally, we discuss our results in Sec. 4.

2. FIELD EQUATIONS AND MATCHING
CONDITIONS

The matter under consideration is assumed to be
locally isotropic with pure radiation inside a cylindri-
cal surface ¥. The energy—momentum tensor for such
a fluid has the form

Top = (u+ P)waws + pgas + €lals, (1)
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and the following conditions are satisfied in comoving
coordinates:

w® = A5, 1° = A58 +B 1,

[ 1% =0.

wrw, = —1,

Here p, p, w,, €, and [, are the energy density, the
isotropic pressure, the four-velocity, the radiation den-
sity, and the null four-vector of the fluid. We consider
the nonstatic cylindrically symmetric spacetime inside
the hypersurface ¥ with

ds® = —W?2(t,r)dt* + X2(t,r)dr® +
+Y2(t,r)df? + dz2, (2)

where

—o<t<oo, 0<r<oo,

—0o<z<0o0, 0<o< 2.

Using Eqgs. (1) and (2), we can write the Einstein field
equations

RTQBZGQB
as
wN\? /XY Y"\ XV
2 _ o _ R
o= (%) -7 ) v ©
yo Yyw' XY’
WAe=3 - Tw T )
X\ [(Wwy VY w'y'
X2 = (= - MALES
+9 = (77) (WY Y>+WY, )
w" WX X w'x'

W= e T ey wex - e O

w X WX wXx' Wy YV

Kp =
Xy oy owy o Xy

X3y XY  WX2Y W2XY’
The mass function proposed by Thorne [13] in the

form of gravitational C-energy per unit specific length
is defined as

1 1 .
m(t,r) = 3 @VBTVBT, (®)

and satisfies the relations

p2 = 77(9)&”57 l2 = n(z)angv r= pla

where [, p, T, ng, and n, are the specific length, circum-
ference radius, areal radius, and two Killing vectors for
the cylindrical geometry. Hence, the specific energy of
the collapsing cylinder becomes [14]

3 ZKOT®, Bein. 6

WXZ WX WX WXE Wiy w2y

m(r,t)zé 1+<%>2—(§>2 ()

For the radiative fluid, the conservation of the stress—
energy tensor,

(T(w);ﬁzov
yields
1+ E+ 2W’+YI+EI W+( +p+e) x
prerv\w Ty TE)fy TwTRTE
X Vv X
4 = 1
><<X+Y>+5X 0, (10)

! !

'+é£+( + +25)m+6—+
p eyt lntp w tey

X v\ x |
+<2}+?> EW-I-E =0. (].].)
We use the Darmois conditions [15] for the conti-
nuity of inner and outer manifolds. The cylindrical
manifold in the exterior region is [16]

ds? = — <—%> dv® — 2dv dR +

+ R*(d9* + v°dz2?), (12)

where v is known as the retarded time coordinate and
v has the dimension of 1/r. From the Darmois condi-
tions, as discussed in [11], it follows that
1

m— M g §7 g
This shows that the difference of interior and exterior
masses is equal to 1/8 at the boundary surface and the
isotropic pressure vanishes.

0. (13)

3. THE PERTURBATION SCHEME AND
DYNAMICAL INSTABILITY

We perturb the field equations, conservation equa-
tions, and physical functions of the fluid (initially
in hydrostatic equilibrium) up to the first order in
0 < A <« 1. We use the perturbation scheme [11]

W(t,r) = Wo(r) + AT (t)w(r), (14)
X(t,r) = Xo(r) + AT (t)a(r), (15)
Y(t,r) =rX(t,r)[1+ AT (t)y(r)) (16)
pu(t,r) = po(r) + Mt r), (17)
p(t,r) = po(r) + AB(t,7), (18)
e(t,r) = A\&(t,r), (19)
m(t,r) = mo(r) + Am(t,r) (20)
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The static (unperturbed) and perturbed forms of
Egs. (3)—(5) are given by

1| /x0\ 1Xx, Xy
= ___|(Z2°2) 20 _ 0 21
Rto X2 [( Y[)) r Y[) XO ’ ( )
1wy (X1
204 - 22
"0 X2, (X0+r ’ (22)

1 _ (ra")' 2/(_, ry’
= XI ! A = ! A _
+X0((y°)+ T)+r(y+2

Y AN N R N A TP (A
T =TT ) we TR | TR
! !
w wy [z Tx
Bl IR N —2%kZpo. (25
() i (5 +0) | -2 @9

0) and (11
W Po

Zo____Po 26
Wo (po + po) (26)

et (2 XI+1+§I o,
" Wo Xo 1 Xo

Similarly, Egs. (1 ) turn out to be

+ (1o + po) <2Xio +y> T=0, (27)

& EZS 4 (o + po)T [ I+
I W Ho T Po Wo
w4
p+28)—=0. (28
re(3+3d) +@epragt =0 ey
Inserting Eq. (24) in (27) and integrating, we obtain

f=- (X— +y> (o +po)T —
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where
T ! g li
d(r) = —
) [(WOXO) +(WO> -

SRR e

The unperturbed form of the mass function becomes

1 1 X\?
=—[1-(-+% 31
mo 8[ (+X)] (31)
which can be rewritten as
X} 1
fz—;+\/1—8m0. (32)
0

Now we can write the differential equation by con-
sidering Eqs. (24) and (25) and using the condition

D
po =0
as

OT — 26T 2T, (33)

ORI

The solution of the above equation yields

70 = —exp (-0 + i+t )i . @0

where we choose

¢E>07 ¢E<0

for the solution to be real. According to the above
equation, the cylinder proceeds to collapse at t = —o0
and continues with the increase in .

To find dynamical instability, we introduce the adi-
abatic index Y defined in [2]:

p=x <M0]:?po> & (87)
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where quantities with a bar represent the perturbed
energy density and isotropic pressure. Substituting
Eq. (29) in the above equation, we obtain

2x
p=—-0" — +qg|T
P poKX0+y> -
1 w: X, 1 T
P’ N4+ 1213 . (38
+RX§( +(W0+W0+7'> )M0+p0] (38)

Equation (25) with the matching condition leads to

w\'_ (1, X o
WO B r Xo
A (2 NT W (N
we \ Xo )T Wo \ Xo Y
2x WI XU 1
— | =47 ) kYpo X2 — [ '+ [ 24— +- |
KXO-HJ)H oo ( +<W0+W0+7“) ) )
Do Xo T
x T + =0+ Xop- (39
(3m)] + oo +omerol . o0
Next, we develop the main equation used for the
instability range at nonradiative and radiative pertur-

bations. It follows by inserting Eqs. (24), (29), (38),
and (39) in (28) that

2r Y Do
poY (22 - x
[ o (Xo +y) kX5 <Mo +p0>

W, X, 1 !
+(L2+ 2419
( +(WO+WO+1~> )p

1 1 " Xo.T 1
= Pl =+ 2p + =
+ - {WOXO ] + +

T " Wo T ®°
1 xX)\ 1 _T 1 x)\7!
2420 b 2420
8 <r+X0> Woxg L HHotpo) <r+X0 8
(A (2 NT W (e N
we\Xo V)T T (X Y
2x B
- | (55 +7) et -
Wy Xo 1 Do
—~ <I>'+<—°+—+—)<I>>T( +
< Wo Wo r Ko + Po

Xo. T 2
+ —0‘I>—+mp0xXo} — <_x+y> (ro+Ppo+Tpo) X

WO T XO

Wy 1 Wy Xo 1
0 __- (@ 0,29 4" p
XWO RX0< +<W0+W0+1“ x
« IWy < Do
Wo \ o +po

+ 1) =0. (40)

3.1. Nonradiative perturbation

For a nonradiative perturbation, we assume that
¢ = 0. Then the integration of Eq. (24) leads to

+m). (41)

_ Py
l’—W[)XO, y =-y

Ho + Do
Using this fact, we see from Egs. (30) and (35) that
®(r) =0, ¢(r)=0.

Substituting these results in Eq. (40), we obtain the
instability equation as

x B ! 1 X} -1
[— <2y0 + y) Tpo} + (pto + po) <; + fo) X

X2 T T
X, 20 2 sy -
Kpox 0+W02 <X0+y>T

x We [ x
—k(2— 47 ) Tpo X2 -2 =—+7
o2 +0) T - it (5 +)
!

_ 2_ 7 T —0 —
( X +y> (to +po + po)WO

X

3.1.1. Newtonian approximation

To find the instability range in the N approxima-

tion, we use that
Wo=1, Xp=1,

and ignore terms like po/po that are of the order of
mo/r in Eq. (42), which gives

—2pp Y + 2p + Ys o = 0, (43)

assuming pf, < 0 for the collapsing fluid. Consequently,
the instability condition turns out to be

T<1. (44)

This equation shows that the instability of the collaps-
ing fluid depends on the critical value 1.

3.1.2. Post-Newtonian approximation

In the pN approximation, we assume that

mo

W[):]_——7 X0:1+@,
r r

and take the terms of the order of mg/r. Consequently,
Eq. (42) becomes

— 2+ PPOY + 2+ Too +vs(1+9)5 -

— k(2 + §)Yuopo + kpopo =0,  (45)
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and the instability range in this limit turns out to be

1 |1 Mo _
T<1+4+— |= —- 0 . 46
< +Ip6| 5 OO 27,( +)¢s (46)

In the above inequality, the third term, which comes
from the static background of energy density, enhances
the instability and is decreased by the last term.

3.2. Radiative perturbation

In the radiative case, we take € # 0, and hence we
can write the perturbed solution of Eq. (41) as

x(r) = WoXo [14+£f(r)], (47)

where £ > 0 is an arbitrary function. Substituting this
result in Eqgs. (30) and (35), we find that ®(r) and ¢(r)
are of the relativistic order mg/r.

3.2.1. Newtonian approximation

Considering the restrictions similar to those used in
the above case, we have the instability condition for the
radiative perturbation in the N approximation in the
form

— (2426 )pp Y+(2+28f)ph+(1+Ef ) pohs = 0. (48)

It is known that for a collapsing fluid, T <0and & >0,
leading to § < 0 and f’ < 0 in accordance with Eq. (24).
In this limit, the corresponding range is

Ho¢zf|f|]

49
200 (49)

T<1+[

which shows that the radiation density increases the
instability range in the Newtonian limit. This result is
analogous for the heat conduction [6].

3.2.2. Post-Newtonian approximation

The instability equation in the pN approximation
turns out to be

—(2+26f +9)po L + (2+2f +T)pp —
— (24 2¢f + 7)Y popo + (1 + &f + §pots +
+ kpopo + ol f'py + 26 f'pe Y =0,  (50)

where we use

mo

W():l__7 )(():14—@7
r r

and the relativistic correction terms. We require pf, < 0
for the instability condition. Therefore, we can write

K
T <14 [FHo0 +uowz§|f| B
2|pp| 2[pp|
ol (A4 Prots (51)
2|pg| 2r|pg|

Here, we see that relativistic correction terms due to
radiation increase and decrease the instability range.
These results show the effect that different matter
terms have on the instability of the system.

4. CONCLUSION

We have explored the dynamical instability of a col-
lapsing fluid producing pure radiation with cylindrical
symmetry. We have used the N and pN approximations
for nonradiative and radiative perturbations. The crit-
ical value (instability range) is found to be 1 for the
isotropic perfect fluid in the N regime. Thus, the sta-
bility or instability of the system corresponds to the
respective value of adiabatic index T >1or T < 1.

We have seen from Eqs. (44) and (46) that the in-
stability range is 1 for the isotropic perfect fluid and
is increased by the relativistic correction terms of the
static background configuration. Also, the free stream-
ing radiation increases the instability of the system as
shown in Egs. (49) and (51). We note that the effects of
radiation look qualitatively similar to the one obtained
for the radial heat flux.
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