ТРАНСЛЯЦИОННО-ИНВАРИАНТНАЯ ТЕОРИЯ ПОЛЯРОНА (БИПОЛЯРОНА) И ПРОБЛЕМА КВАНТОВАНИЯ В ОКРЕСТНОСТИ КЛАССИЧЕСКОГО РЕШЕНИЯ

В. Д. Лахно*

Институт математических проблем биологии Российской академии наук 142290, Пущино, Московская обл., Россия

Поступила в редакцию 12 ноября 2012 г.

Дается физическая интерпретация трансляционно-инвариантных поляронов и биполяронов и анализируются различные следствия, вытекающие из их существования. Получена самая низкая вариационная оценка для энергии биполярона $E(\eta)$ с $E(0) = -0.440636 \alpha^2$, где α — константа электрон-фононной связи, η — параметр ионной связи. Обсуждается проблема квантования в окрестности классического решения в квантовой теории поля.

DOI: 10.7868/S0044451013060025

1. ВВЕДЕНИЕ

В основе квантовой теории поля лежит представление о существовании классических решений, в окрестности которых осуществляется квантование полей [1]. Такими классическими решениями могут быть обычные плоские волны, солитоны, кинки и др. В частности, квантовополевые теории частицы, взаимодействующей с полем, исходят из предположения о существовании полуклассического решения (т. е. когда квантовая частица движется в классическом поле), к которому должно сходиться решение квантовополевой задачи в пределе, когда константа взаимодействия α → ∞. В окрестности такого решения можно проводить квантование поля и искать решения получаемой таким образом квантовой задачи.

В работе [2] на примере квантовополевой теории полярона сильной связи было продемонстрировано невыполнение такого соответствия, т.е. отсутствие перехода к полуклассическому описанию при предельном переходе. Этот результат влечет за собой многочисленные следствия, наиболее важные из которых обсуждаются в данной работе.

2. ИНТЕРПРЕТАЦИЯ И ФИЗИЧЕСКИЕ СВОЙСТВА ТРАНСЛЯЦИОННО-ИНВАРИАНТНЫХ ПОЛЯРОНОВ

Квантовополевая трансляционно-инвариантная (ТИ) теория полярона была построена в работе [3]. Согласно [3], основное состояние ТИ-полярона представляет собой делокализованное состояние электрон-фононной системы: вероятность нахождения электрона в любой точке пространства одинакова. Делокализованы как электронная плотность, так и амплитуды фононных мод (перенормированные взаимодействием с электроном). Понятие поляронная потенциальная яма (образованная локальными фононами [4]), в которой локализован электрон, т.е. самозахваченное состояние, в ТИ-теории отсутствует. Соответственно, индуцированный поляризационный заряд для ТИ-полярона равен нулю. Отсутствие локализованной «фононной шубы» у ТИ-полярона позволяет предположить, что его эффективная масса не слишком сильно отличается от эффективной массы электрона. Энергия основного состояния ТИ-полярона меньше энергии полярона Пекара и равна $E_0 = -0.1257520\alpha^2$ [2] (для полярона Пекара $E_0 = -0.10851128\alpha^2$ [5]).

Таким образом, при P = 0, где P — полный импульс полярона, имеется энергетическая щель между ТИ-поляронным состоянием и пекаровским состоянием (т. е. состоянием с нарушенной трансля-

^{*}E-mail: lak@impb.psn.ru

ционной инвариантностью). ТИ-полярон является бесструктурной частицей (результаты исследований структуры пекаровского полярона суммированы в работе [4]). Согласно ТИ-теории полярона, термины полярон большого радиуса (ПБР) и полярон малого радиуса (ПМР) являются условными, так как в обоих случаях состояние электрона делокализовано по кристаллу. Различие между ПБР и ПМР в ТИ-теории состоит в том, что для ПБР выполняется неравенство $k_{char}a < \pi$, а для ПМР $k_{char}a > \pi$, где *а* — постоянная решетки, *k*_{char} — характерное значение фононных волновых векторов, которые дают основной вклад в энергию полярона. Сделанное утверждение справедливо не только для полярона Пекара – Фрёлиха, но и для всего класса поляронов, у которых константа связи не зависит от волнового вектора электрона, как это имеет место, например, в случае холстейновского полярона. В классе поляронов с константой связи, зависящей от волнового вектора электрона, указанные критерии могут не выполняться (как это имеет место, например, в модели Си-Шрифера-Хигера [6]).

Указанные особенности ТИ-поляронов определяют их физические свойства, качественно отличные от свойств пекаровских поляронов. При наличии в кристалле небольших локальных нарушений ТИ-полярон остается в делокализованном состоянии. Так, например, в ионном кристалле с вакансиями образование *F*-центров делокализованными поляронными состояниями будет происходить только при некотором критическом значении статической диэлектрической постоянной ϵ_{0c} . При $\epsilon_0 > \epsilon_{0c}$ в кристалле будут присутствовать делокализованные ТИ-поляроны и свободные вакансии. При ϵ_0 = $= \epsilon_{0c}$ будет происходить переход из делокализованного состояния в локализованное на вакансии состояние (коллапс волновой функции). Такое поведение ТИ-поляронов качественно отличается от поведения пекаровских поляронов, которые локализуются на вакансиях при любом значении ϵ_0 . Это объясняет, в частности, отсутствие наблюдений поглощения (т. е. структуры) свободным поляроном Пекара, так как в этом случае реализуется ТИ-полярон. Поглощение появляется только при образовании связанного полярона Пекара, т. е. F-центра. Сделанные утверждения подтверждаются также рядом последних работ, рассматривающих полярон Холстейна [7-9].

Отметим, что изменениям должна подвергнуться только физическая интерпретация свободных поляронов сильной связи. Подавляющее большинство результатов по физике поляронов сильной связи относятся к связанным (на вакансиях или дефектах решетки) поляронным состояниям пекаровского типа и не требуют какой-либо коррекции.

Учет трансляционной инвариантности в случае полярона приводит к небольшому изменению в оценке основного состояния и, на первый взгляд, кажется неактуальным для физических приложений. Такому выводу, однако, препятствуют два обстоятельства. Во-первых, оценка энергии, полученная для ТИ-полярона, будучи вариационной, дает лишь верхнее значение для энергии основного состояния. Во-вторых, известны случаи, когда учет трансляционной инвариантности приводит к гораздо большим изменениям энергии основного состояния. К их числу относится важный в практическом отношении случай биполярона, рассмотренный в следующем разделе. В качестве наглядной иллюстрации к сказанному можно привести пример оценки для энергий ТИ-состояния, автолокализованного состояния и состояния, локализованного на статическом дефекте, которые могут быть близкими, что, однако, совсем не свидетельствует о тождественности этих состояний. Подтверждением является сравнение свойств локализованного на статическом дефекте полярона и свойств легкого электрон-полярона, локализованного на тяжелой дырке (рис. 6 в [10]). Свойства двух таких состояний очень похожи, но одно из них является трансляционно-инвариантным, а другое — нет.

3. ТРАНСЛЯЦИОННО-ИНВАРИАНТНЫЕ БИПОЛЯРОНЫ

Квантовополевая ТИ-теория биполярона была построена в работе [11] на основе поляронной ТИ-теории [3]. Согласно [11], основное состояние ТИ-биполярона представляет собой делокализованное состояние. В этом разделе мы покажем, что оценка основного состояния, найденная в работах [11,12] с использованием одно- и двухпараметрических пробных волновых функций, может быть улучшена, если использовать трехпараметрическую волновую функцию, и обсудим вытекающие из такой оценки следствия.

Согласно [11], гамильтониан Фрёлиха для биполярона имеет вид

$$\hat{H} = -\frac{\hbar^2}{2M_e} \Delta_R - \frac{\hbar^2}{2\mu_e} \Delta_r + U(|\mathbf{r}|) + \sum_k \hbar \omega a_k^{\dagger} a_k + \sum_k 2 \cos \frac{kr}{2} (V_k a_k e^{ikR} + \text{H.c.}), \quad (1)$$

где **R**, **r** — координаты соответственно центра масс

и относительного движения электронов; $M_e = 2m$, $\mu_e = m/2$, m — масса электрона; a_k^{\dagger} , a_k — операторы фононного поля; $V_k = (e/k)\sqrt{2\pi\hbar\omega/\tilde{\epsilon}V}$, $\tilde{\epsilon}^{-1} = \epsilon_{\infty}^{-1} - \epsilon_0^{-1}$, ω — фононная частота, e — заряд электрона, ϵ_{∞} и ϵ_0 — высокочастотная и статическая диэлектрические постоянные, V — объем системы, $U(r) = e^2/\epsilon_{\infty} |\mathbf{r}|$. Для минимизации полной энергии $E = \left\langle \Psi_0 | \hat{H} | \Psi_0 \right\rangle$ в [11] была выбрана волновая функция

$$\Psi_{0} = \Psi(r) \exp\left\{-i\sum_{k} \mathbf{k} a_{k}^{\dagger} a_{k} \mathbf{R}\right\} \times \\ \times \exp\left\{\sum_{k} f_{k} (a_{k} - a_{k}^{\dagger})\right\} \Lambda_{0}. \quad (2)$$

Явный вид $\Lambda_0 = \Lambda_0(f_k, a_k)$ приведен в работе [11]. Выберем пробную волновую функцию $\Psi(r)$ и вариационные параметры f_k в виде

$$f_{k} = -N\bar{V}_{k} \exp\left(-\frac{k^{2}}{2\mu}\right),$$

$$\psi(r) = \left(\frac{2}{\pi l^{2}}\right)^{3/4} \exp\left(-\frac{r^{2}}{l^{2}}\right),$$

$$\bar{V}_{k} = 2V_{k} \langle \Psi | \cos\frac{\mathbf{k} \cdot \mathbf{r}}{2} | \Psi \rangle,$$
(3)

где N, μ , l — вариационные параметры. При N = 1 выражение (3) воспроизводит результаты работы [12], а при N = 1 и $\mu \to \infty$ — результаты работы [11].

Подстановка (2), (3) в выражение для полной энергии после минимизации по параметру N приводит к следующему выражению для E:

$$E(x, y; \eta) = \phi(x, y; \eta) \alpha^2, \qquad (4)$$

$$\begin{split} \phi(x,y;\eta) &= \frac{6}{x^2} + \frac{20.25}{x^2 + 16y} - \\ &- \frac{16\sqrt{x^2 + 16y}}{\sqrt{\pi}(x^2 + 8y)} + \frac{4\sqrt{2/\pi}}{x(1-\eta)}. \end{split}$$

Здесь x, y — варьируемые параметры: $x = l\alpha, y = \alpha^2/\mu, \alpha = (e^2/\hbar \tilde{\epsilon})\sqrt{m/2\hbar\omega}$ — константа электрон-фононной связи, $\eta = \epsilon_{\infty}/\epsilon_0$ и положено, что $\hbar = 1, \omega = 1, M_e = 1$ (соответственно $\mu_e = 1/4$). Обозначим Φ_{min} минимальное значение функции ϕ от параметров x и y. На рис. 1 приведена зависимость Φ_{min} от параметра η . На рис. 2 показана зависимость x_{min}, y_{min} от параметра η .

Из рис. 1 следует, что $E_{min}(\eta = 0) = -0.440636\alpha^2$ — самое низкое из всех ранее

Рис.1. Функция $\Phi_{min}(\eta) = \min_{x,y} \phi(x, y, \eta)$ и горизонтальные линии $-0.217, -0.2515; \Phi_{min}(0) = -0.440636$

Рис.2. Координаты $x_{min}(\eta)$, $y_{min}(\eta)$, на которых достигается минимум ϕ при $0 \le \eta \le 0.4$

полученных вариационным способом значение энергии основного состояния биполярона. Горизонтальные линии на рис. 1 соответствуют энергиям: $E_1 = -0.217 \alpha^2$ и $E_2 = -0.2515 \alpha^2$, где $E_1 = 2E_{P1}$, E_{P1} — энергия основного состояния Пекара [5]; $E_2 = 2E_{P2}, E_{P2}$ — энергия основного состояния ТИ-полярона [2]. Пересечение этих линий с кривой $E_{min}(\eta)$ дает критические значения параметров η = η_{C1} = 0.3325 и η = η_{C2} = 0.289. При η > η_{C2} происходит распад биполярона на два ТИ-полярона, при $\eta > \eta_{C1}$ происходит распад биполярона на пекаровские поляроны. Значения минимизирующих параметров x_{min} и y_{min} для этих значений η равны: $x_{min}(0) = 5.87561; y_{min}(0) = 2.58537,$ $x_{min}(0.289) = 8.16266, y_{min}(0.289) = 3.68098,$ $x_{min}(0.3325) = 8.88739, y_{min}(0.3325) = 4.03682.$

Критическое значение константы электрон-фо-

нонной связи α для образования ТИ-биполярона равно $\alpha_C = 4.54$ и является самым низким из оценок, сделанных вариационным методом.

Отметим, что для полученного основного состояния ТИ-биполярона выполняется теорема вириала [13]:

$$\frac{\phi_{kin}}{\phi} = -1, \quad \frac{\tilde{\phi}_{el}}{\phi} = 3, \quad \frac{\tilde{\phi}_{int}}{\phi} = 4, \tag{5}$$

где

$$\phi_{kin} = \frac{20.25}{x^2 + 16y} + \frac{6}{x^2}, \quad \phi_{int} = -\frac{32}{\sqrt{\pi}} \frac{\sqrt{x^2 + 16y}}{x^2 + 8y},$$

$$\tilde{\phi}_{int} = \phi_{int} + 2\bar{U}, \quad \bar{U} = 4\frac{\sqrt{2/\pi}}{x(1-\eta)}, \quad \tilde{\phi}_{el} = \phi_{kin} + \tilde{\phi}_{int}.$$

Входящие в (5) величины

$$E_{kin} = \phi_{kin} \alpha^2, \quad E_{int} = \phi_{int} \alpha^2,$$
$$E_{el} = (\phi_{kin} + \phi_{int} + \bar{U})\alpha^2$$

имеют смысл соответственно кинетической энергии, энергии взаимодействия электрона с фононным полем и электронной энергии:

$$E_{kin} = \sum_{i=1,2} \left\langle \Psi \left| -\frac{\hbar}{2m} \Delta_i \right| \Psi \right\rangle,$$
$$E_{int} = \sum_{k,i=1,2} \left\langle \Psi \left| \sum_k \left[V_k a_k e^{ikr_i} + \text{H.c.} \right] \right| \Psi \right\rangle,$$
$$E_{el} = E_{kin} + E_{int} + \left\langle \Psi \left| U(r) \right| \Psi \right\rangle, \quad \bar{U} = \frac{\left\langle \Psi \left| U(r) \right| \Psi \right\rangle}{\alpha^2}.$$

Соотношения (5) выполняются с точностью до шести знаков. Большая энергия связи ТИ-биполярона приводит к важным физическим следствиям. В частности, при наличии в кристалле небольших локальных нарушений ТИ-биполярон будет оставаться в делокализованном состоянии. Так, например, в ионном кристалле с вакансиями образование F'-центров делокализованными биполяронными состояниями будет происходить только при некотором критическом значении статической диэлектрической постоянной ϵ_{0c} . При значении $\epsilon_0 > \epsilon_{0c}$ в кристалле будут делокализованные ТИ-биполяроны и свободные вакансии.

При $\epsilon_0 = \epsilon_{0c}$ будет происходить переход из делокализованного состояния ТИ-биполярона в локализованное на вакансии состояние, т. е. в *F*'-центр. Такое поведение ТИ-биполяронов качественно отличается от поведения биполяронов со спонтанно нарушенной симметрией пекаровского типа [13], которые локализуются на вакансиях при любом значении ϵ_0 .

Делокализованные при P = 0 ТИ-биполяроны, где Р — полный импульс биполярона, будут отделены энергетической щелью от биполяронных состояний с нарушенной трансляционной инвариантностью, которые описываются локализованной волновой функцией. В работе [12] было высказано предположение, что трансляционно-инвариантные поляронные и биполяронные состояния являются сверхпроводящими. Как и в случае ТИ-полярона, в случае ТИ-биполярона нет никаких оснований считать его массу сильно отличающейся от удвоенной массы спаренных электронов. Как известно, объяснение высокотемпературной сверхпроводимости на основе биполяронного механизма бозе-конденсации сталкивается с трудностью, связанной с большой массой биполяронов и, как следствие, низкой температурой бозе-конденсации. Возможность малости массы ТИ-биполяронов разрешает эту проблему. Следует подчеркнуть, что отмеченные выше свойства ТИ-биполяронов придают им сверхпроводящие качества даже в отсутствие их бозе-конденсации.

4. ДИСКУССИЯ О ПОЛНОТЕ ТЕОРИИ ТУЛУБА

В работах [14, 15] был поставлен вопрос о неполноте теории Тулуба [3]. Возражения авторов работ [14,15] основываются на работе Порша и Роселера [16], которая воспроизводит результаты теории Тулуба. Однако в последнем разделе своей статьи Порш и Роселер рассмотрели вопрос о том, что произойдет, если в теории Тулуба заменить бесконечный предел интегрирования на конечный, а затем перейти к бесконечному пределу. Сюрпризом оказалось то, что в этом случае одновременно с обрезанием интегрирования по фононным волновым векторам в функционале полной энергии полярона к последнему необходимо добавить член δE^{PR} , который не исчезает, если верхний предел устремить к бесконечности [15, 17]. На основании этого результата авторы работ [14,15] пришли к выводу, что Тулуб не учел эту добавку и, таким образом, его теория неполна.

Чтобы разрешить парадокс с вкладом в энергию полярона «плазменной частоты», приводящей к добавке δE^{PR} [16], рассмотрим функцию $\Pi_q(s)$, определяемую формулой (37с) работы [16]. Нули этой функции дают вклад в энергию «отдачи полярона» и, согласно [16], определяются из решения уравнения

$$1 = \lambda \frac{2}{3m} \sum_{q} \frac{q^2 f_q^2 \hbar \omega_q}{s - \omega_q^2},\tag{6}$$

где мы сохранили обозначения, использованные в работе [16].

Если обрезание в сумме, фигурирующей в правой части (6), отсутствует, то решение уравнения (6) дает спектр значений *s*, определяемый частотами Ω_{q_i} , лежащими между соседними значениями ω_{q_i} и $\omega_{q_{i+1}}$ для всех волновых векторов q_i . Эти частоты определяют значение энергии «отдачи»:

$$\Delta E = \frac{\hbar}{2} \sum_{q_i} (\Omega_{q_i} - \omega_{q_i}). \tag{7}$$

Посмотрим, что происходит с вкладом частот Ω_{q_i} в ΔE в той области волновых векторов q, в которой f_q стремится к нулю, но нигде в точности не обращается в нуль. Из (6) следует, что при $f_q \to 0$ решения уравнения (6) Ω_{q_i} будут стремиться к $\omega_{q_i} \colon \Omega_{q_i} \to \omega_{q_i}$. Соответственно, вклад в ΔE области волновых векторов, в которой $f_q \to 0$, будет также стремиться к нулю.

В частности, если мы введем некоторое q^0 , такое что в области $q > q^0$ величины f_q будут малы, мы получим для ΔE выражение

$$\Delta E = \frac{\hbar}{2} \sum_{q_i \le q^0} (\Omega_{q_i} - \omega_{q_i}), \qquad (8)$$

не содержащее никаких добавочных членов. Это соответствует тому, что в функционале Тулуба мы можем поставить верхний предел q^0 и никаких добавочных членов при этом не возникнет.

Например, если для исследования минимума функционала Тулуба выбрать пробную функцию f_q , не содержащую обрезание, в виде

$$f_q = -V_q \exp(-q^2/2a^2(q)),$$

$$a(q) = \frac{a}{2} \left[1 + \operatorname{th}\left(\frac{q_b - q}{a}\right) \right],$$
(9)

где a — параметр пробной функции Тулуба [3], q_b удовлетворяет условию $a \ll q_b \ll q_{0c}$, q_{0c} — величина волнового вектора, при котором интеграл Тулуба $q(1/\lambda)$ имеет максимум [3,17], то с использованием (9) в пределе $\alpha \to \infty$ получим для интеграла $q(1/\lambda)$ выражение

$$q\left(\frac{1}{\lambda}\right) \approx 5.75 + 6\left(\frac{a}{q_b}\right)^3 \exp\left(-\frac{q_b^2}{a^2}\right).$$
 (10)

Второй член в правой части (10) исчезает при $q_b/a \to \infty$ и мы получаем, как и следовало ожидать, результат Тулуба: $q(1/\lambda) \approx 5.75$.

Уравнение (6), однако, имеет особенность. Даже в случае непрерывного спектра, при $f_q = 0$, если $q > q^0$, оно имеет изолированное решение Ω_{q^0} , отличающееся от максимальной частоты ω_{q^0} на конечную величину. Это изолированное решение приводит к дополнительному вкладу в ΔE :

$$\Delta E = \frac{1}{2} \sum_{q_i < q^0} (\Omega_{q_i} - \omega_{q_i}) + \delta E^{PR},$$

$$\delta E^{PR} = \frac{1}{2} (\Omega_{q^0} - \omega_{q^0}),$$
(11)

где Ω_{q^0} имеет смысл «плазменной частоты». Таким образом, здесь отсутствует непрерывный переход от случая $f_q \rightarrow 0$ при $q > q^0$ к случаю $f_q = 0$ при $q > q^0$. Как показано прямым вычислением [17] вклада в (11) слагаемого с «плазменной частотой» δE^{PR} , даже при $q^0 \rightarrow \infty$ теория Порша и Роселера не переходит в теорию Тулуба.

В теории Тулуба мы выбираем такие f_q , которые приводят к минимуму функционала полной энергии полярона. В частности, выбор пробной функции в виде (9) гарантирует нам отсутствие вклада «плазменной частоты» в величину полной энергии и при практических расчетах можно выбирать обрезанную f_q , не вводя при этом в функционал Тулуба никаких дополнительных членов [18].

5. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

В работах [14,15] были высказаны критические замечания в адрес теории Тулуба [3] и основанных на этой теории работ автора [11,12]. Несостоятельность этих критических замечаний была показана в работах [17,18] и в данной работе. В настоящее время теория Тулуба и полученные на ее основе количественные результаты [11,12] не вызывают сомнений.

Важную роль в проверке правильности теории играют вириальные соотношения. В работе [2] было показано, что в теории Тулуба эти соотношения строго выполняются в случае полярона. В данной работе показано их строгое выполнение в случае биполярона. Отметим, что выражения, полученные в работах [14,15] для полной энергии полярона и биполярона, не удовлетворяют вириальным соотношениям.

Построенная в работе [3] квантовополевая теория является непертурбативной. Предел сильной связи достигается в ней посредством выбора пробной функции, и при более сложном выборе эта теория может воспроизводить режим промежуточной и слабой силы связи [19]. В настоящее время одним из наиболее эффективных методов расчета поляронов и биполяронов в этом диапазоне силы связи считается метод интегралов по траекториям. Этот подход без должной модификации не является трансляционно-инвариантным, поскольку в этом методе главный вклад в уровни энергии дают классические решения (т. е. экстремумы экспоненты от классического действия, входящей в интеграл по траекториям). При этом такие решения в силу трансляционной инвариантности являются не изолированными стационарными точками, а принадлежат непрерывному семейству классических решений, получаемых в результате действия на исходное классическое решение оператора трансляций. Соответственно, приближение стационарной фазы в ТИ-системе без соответствующей модификации неприменимо. В квантовой теории поля для восстановления трансляционной инвариантности разработаны подходы, основанные на введении коллективных координат в функциональный интеграл [1], которые, однако, вплоть до настоящего времени в теории полярона не использовались. По этой причине неудивительно, что использованный в теории полярона метод интегралов по траекториям приводит к результату, совпадающему с полуклассической теорией полярона сильной связи [20].

В заключение автор выражает благодарность А. В. Тулубу и Н. И. Кашириной за обсуждение различных аспектов затронутых в работе вопросов.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 11-07-12054, 13-07-00256).

ЛИТЕРАТУРА

 Р. Раджараман, Солитоны и инстантоны в квантовой теории поля, Мир, Москва (1985) [R. Rajaraman, An Introduction to Solitons and Instantons in Quantum Field Theory, North-Holland Publ. Comp., Amsterdam, New York, Oxford (1982)].

- Н. И. Каширина, В. Д. Лахно, А. В. Тулуб, ЖЭТФ 141, 994 (2012).
- 3. А. В. Тулуб, ЖЭТФ 41, 1828 (1961).
- 4. B. Д. Лахно, Γ. Н. Чуев, УΦΗ 165, 285 (1995) [V. D. Lakhno and G. N. Chuev, Phys. Uspekhi 38, 273 (1995)].
- 5. S. J. Miyake, J. Phys. Soc. Jpn. 38, 181 (1975).
- D. J. J. Marchand et al., Phys. Rev. Lett. 105, 266605 (2010).
- 7. J. P. Hague et al., Phys. Rev. B 78, 092302 (2008).
- A. S. Mishchenko et al., Phys. Rev. B 79, 180301 (2009).
- H. Ebrahimnejad and M. Berciu, Phys. Rev. B 85, 165117 (2012).
- 10. E. Burovski et al., Phys. Rev. Lett. 101, 116403 (2008).
- 11. В. Д. Лахно, ЖЭТФ 137, 926 (2010).
- 12. В. Д. Лахно, Sol. St. Comm. 152, 621 (2012).
- 13. Н. И. Каширина, В. Д. Лахно, УФН 180, 449 (2010)
 [N. I. Kashirina and V. D. Lakhno, Phys. Uspekhi 53, 431 (2010)].
- 14. S. N. Klimin and J. T. Devreese, Sol. St. Comm. 152, 1601 (2012).
- S. N. Klimin and J. T. Devreese, Sol. St. Comm. 153, 58 (2013).
- M. Porsch and J. Röseler, J. Phys. Stat. Sol.(b) 23, 365 (1967).
- 17. V. D. Lakhno, arXiv:1211.0382.
- 18. V. D. Lakhno, Sol. St. Comm. 152, 1855 (2012).
- 19. А. В. Тулуб, Вестник ЛГУ 22, 104 (1960).
- 20. B. Gerlach and H. Löwen, Phys. Rev. B 37, 8042 (1988).