ЭЛЕКТРОННЫЕ ПОДВИЖНОСТИ В ИЗОМОРФНЫХ КВАНТОВЫХ ЯМАХ $In_{0.53}Ga_{0.47}As$ НА InP

В. А. Кульбачинский а*, Р. А. Лунин а, Н. А. Юзеева а.с,

И. С. Васильевский^b, Г. Б. Галиев^c, Е. А. Климов^c

^а Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

> ^b Национальный ядерный университет «МИФИ» 115409, Москва, Россия

^с Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук 117105, Москва, Россия

> Статья написана по материалам доклада на 36-м Совещании по физике низких температур (Санкт-Петербург, 2-6 июля 2012 г.)

Исследовано влияние уровня легирования, освещения и ширины изоморфных квантовых ям $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$, выращенных на подложках InP, на подвижность электронов. Обнаружена замороженная фотопроводимость при низких температурах. Рассчитаны зонные диаграммы и найдены оптимальные параметры для получения максимальной электронной подвижности. Из данных по эффекту Шубникова – де Гааза получены квантовые и транспортные величины подвижности электронов в подзонах размерного квантования. Рассчитаны подвижности электронов в подзонах размерного квантования при рассеянии на ионизованных примесях с учетом межподзонных переходов. Показано, что рассеяние на ионизованных примесях в исследуемых образцах является при низких температурах доминирующим.

DOI: 10.7868/S0044451013050066

1. ВВЕДЕНИЕ

В последнее время возник большой интерес к исследованию и применению в CBЧ-электронике гетероструктур InAlAs/InGaAs на подложках InP. Такие структуры можно использовать в более широком интервале частот, и они меньше шумят [1,2]. В этих структурах можно увеличить мольную долю InAs в слоях InGaAs до 70 % и даже выше, что в принципе увеличивает не только подвижности и концентрации электронов, но и их дрейфовые скорости. Такие структуры называются HEMT (High Electron Mobility Transistor) и они исследуются особенно для слоев InAlAs/InGaAs. Для разных целей используются как псевдоморфные, так и изоморфные структуры на подложках InP. Предельная частота усиления по току и коэффициент шума НЕМТ зависят как от геометрических параметров прибора (ширины затвора, расстояния от затвора до канала), так и от параметров двумерного электронного газа (подвижности и концентрации носителей заряда). Высокая предельная частота (до 2.5 ТГц [3]) и низкий коэффициент шума достигаются, преимущественно, в HEMT на гетероструктурах InAlAs/InGaAs, так как электроны в них имеют меньшую эффективную массу, существует больший разрыв зоны проводимости и большее пространственное разделение долин Г и L по сравнению с другими гетероструктурами. Гетероструктуры InAlAs/InGaAs HEMT могут изготавливаться как на подложке GaAs — псевдоморфные (pseudomorphic HEMT, или PHEMT) и метаморфные (metamorphic HEMT, или MHEMT) —, так и на подложке InP — согласованные по параметру решетки (изоморфные) и псевдоморфные. На подложках InP возможно создать структуры с согласованными с подложкой параметрами решет-

^{*}E-mail: kulb@mig.phys.msu.ru

ки для барьерных слоев $\ln_y Al_{1-y} As$ и квантовой ямы $\ln_x Ga_{1-x} As$. Это достигается при составах слоев со значениями y = 0.52 и x = 0.53. Отсутствие напряжения между слоями снимает ограничения на толщину выращиваемых слоев в таких НЕМТ-структурах [4].

Несмотря на большое число публикаций по НЕМТ-структурам, до настоящего времени не исследовались подвижности электронов в разных зонах размерного квантования и их зависимости от уровня легирования и ширины квантовых ям (КЯ). Нет данных по эффекту Шубникова-де Гааза (ШдГ) в изоморфных НЕМТ-структурах In_{0.52}Al_{0.48}As//In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As.

В этой работе теоретически и экспериментально исследуются зонный спектр и подвижности электронов в подзонах размерного квантования в изоморфных квантовых ямах $In_{0.53}Ga_{0.47}$ As на подложках InP в зависимости от уровня легирования, освещения ($\lambda = 668$ нм) и ширины квантовой ямы. Для получения численных значений концентраций и подвижностей электронов использовался эффект ШдГ. Кроме того, рассчитаны подвижности электронов в подзонах размерного квантования при рассеянии на ионизованных примесях с учетом межподзонных переходов.

2. ОБРАЗЦЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Образцы выращивались молекулярно-пучковой эпитаксией на подложках InP (100). Использовался изоморфный к InP буфер In_{0.52}Al_{0.48}As. С одной стороны образцы легировались дельта-слоем кремния. Дельта-слой отделялся от КЯ спейсером размером 4.3–6.0 нм. Покровным слоем был нелегированный In_{0.53}Ga_{0.47}As. Схематическая структура образцов представлена ниже:

i-In _{0.53} Ga _{0.47} As
$In_{0.52}Al_{0.48}As$, барьер
δ -Si
<i>i</i> -In _{0.52} Al _{0.48} As, спейсер
$i-In_{0.53}Ga_{0.47}As, 145-260 \text{ Å}$
КЯ
$i-In_{0.52}Al_{0.48}As, 2400 \text{ Å}, 6y \text{dep}$
InP (100)

Температурные зависимости сопротивления и эффект Холла измерялись при температурах 4.2 K < T < 300 K. При T = 4.2 K во всех структурах исследовался эффект ШдГ в магнитных полях

Таблица 1.	Параметры	образцов	: ширина	KЯ
<i>d</i> , холловские к	онцентрации	n_H и под	цвижности	μ_H
при $T=4.2\ \mathrm{K},$	концентраци	и электро	онов n_1 (n	2) в
двух подзонах р	размерного к	вантовани	я из эффе	екта
	ШдГ			

N⁰	<i>d</i> , нм	$n_H,$ 10^{12} cm^{-2}	$\mu_H, \ \mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$	$n_1(n_2), \ 10^{12} \ { m cm}^{-2}$
1	26	3.2	40000	2.49 (0.70)
2	18.5	2.6	45800	2.00 (0.59)
3	16	1.95	53500	1.67 (0.26)
4	14.5	1.6	45000	1.55(-)

до 6 Тл, создаваемых с помощью сверхпроводящего соленоида. Некоторые параметры образцов приведены в табл. 1.

Уменьшение легирования связано с тем, что при уменьшении ширины КЯ верхняя подзона размерного квантования имеет более высокую энергию, и волновая функция сильнее проникает в барьер, увеличивая рассеяние электронов верхней подзоны на удаленных ионизованных примесях кремния. По той же причине в образцах с наиболее узкой КЯ спейсер был несколько увеличен.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И ИХ ОБСУЖДЕНИЕ

Во всех образцах кроме № 4 (в нем наименьшая концентрация электронов) в эффекте ШдГ наблюдаются две частоты, соответствующие двум заполненным электронами подзонам размерного квантования (рис. 1*a*). Концентрации электронов в подзонах размерного квантования *n_i* получены из частот осцилляций. Фурье-спектры осцилляций для образца № 2 приведены на рис. 1*б*. При освещении частоты осцилляций увеличиваются (см. рис. 1) и, следовательно, концентрации электронов в двух заполненных подзонах размерного квантования также растут.

При низких температурах во всех образцах наблюдается замороженная фотопроводимость, которая исчезает при T > 160 К. На рис. 2 в качестве примера приведены температурные зависимости сопротивления для образцов № 2 и № 4.

Рис. 1. а) Осцилляции магнитосопротивления образца № 2 при T = 4.2 К в темноте (сплошная линия) и при освещении (штриховая линия); б) фурье-спектр осцилляций в темноте (сплошная линия) и при освещении (штриховая линия), f -частота в Тл

Рис. 2. Температурная зависимость сопротивления на квадрат для образцов № 2, № 4 в темноте (сплошные линии) и при освещении (штриховые линии)

Замороженная фотопроводимость связана с пространственным разделением носителей заряда, что подтверждается ее логарифмическим затуханием в начальный момент времени по закону $\sigma(0) - \sigma(t) =$ = $A \ln(1 + t/\tau)$ [5, 6] с величиной τ порядка десятков секунд.

Из осцилляций магнитосопротивления можно рассчитать квантовые μ_q и транспортные μ_t подвижности электронов в каждой подзоне размерного квантования. Из осциллирующей части плотности состояний $\Delta g(E)$

Рис.3. Экспериментальный и подогнанный фурье-спектры осцилляций Шубникова-де Гааза образца № 3

$$\begin{split} \frac{\Delta g(\varepsilon_F)}{g_0} &= 2\sum_{s=1}^{\infty} \exp\left(-\frac{\pi s}{\mu_q B}\right) \times \\ &\times \cos\left[\frac{2\pi s(E_F-E_i)}{\hbar\omega_c} - s\pi\right] \frac{2\pi^2 sk_B T/\hbar\omega_c}{\mathrm{sh}(2\pi^2 sk_B T/\hbar\omega_c)} \end{split}$$

можно написать компоненты тензора проводимости

$$\begin{split} \sigma_{xx} &= \frac{en_s\mu_t}{1+\mu_t^2B^2} \left[1 + \frac{2\mu_t^2B^2}{1+\mu_t^2B^2} \, \frac{\Delta g(\varepsilon_F)}{g_0} \right], \\ \sigma_{xy} &= -\frac{en_s\mu_t^2B}{1+\mu_t^2B^2} \left[1 - \frac{3\mu_t^2B^2 + 1}{\mu_t^2B^2(1+\mu_t^2B^2)} \, \frac{\Delta g(\varepsilon_F)}{g_0} \right], \end{split}$$

где g_0 — плотность состояний в нулевом магнитном поле, n_s — концентрация двумерных электронов.

Таблица 2. Сопротивление на квадрат ρ ; квантовая μ_q и транспортная μ_t подвижности электронов при T = 4.2 К в подзонах размерного квантования в исследованных образцах

N⁰	$\rho, \Omega/\Box$	$\mu_q,\mathrm{cm}^2/\mathrm{B}$ с	$\mu_t,\mathrm{cm}^2/\mathrm{B}{\cdot}\mathrm{c}$
1	47.4	4300	23000
		8300	21000
0	59.5	2200	28000
	02.0	4400	25000
2	59.9	3200	35000
ა		3200	30000
4	88.7	2100	22000

Подгонка фурье-спектра осцилляций с использованием в качестве параметров μ_q и μ_t позволяет получить обе подвижности в каждой подзоне. В качестве примера на рис. З приведены экспериментальные и расчетные кривые для образца № 3. Полученные при такой подгонке подвижности приведены в табл. 2. Как видно в табл. 2, транспортные подвижности существенно больше квантовых, что свидетельствует о малоугловом характере рассеяния, характерном для рассеяния на заряженных центрах, из-за пространственного разделения электронов в квантовой яме от ионизованной примеси дельта-слоя. Освещение образцов увеличивает не только концентрации электронов в подзонах, но и подвижности.

Был проведен также расчет подвижностей в подзонах размерного квантования при рассеянии электронов на ионизованных примесях при учете межподзонных переходов, по теории, развитой в работах [7–10].

Когда несколько подзон размерного квантования заполнены, τ_t определяется системой линейных уравнений

$$P_n(E)\tau_n(E) - \sum_{n \neq n'} P_{nn'}(E)\tau_{n'}(E) = 1,$$

где коэффициенты $P_n(E)$ суть вероятности соответствующих межзонных переходов:

$$P_n(E) = \frac{m^*}{\pi\hbar^3} \int_0^{\pi} d\varphi (1 - \cos\varphi) \left| \tilde{V}_{nn}(q) \right|^2 + \frac{m^*}{\pi\hbar^3} \sum_{n \neq n'} \theta(E - E_{n'}) \int_0^{\pi} d\varphi \left| \tilde{V}_{nn'}(q') \right|^2,$$

$$P_{nn'}(E) = \frac{m^*}{\pi\hbar^3} \theta(E - E_{n'}) \left(\frac{E - E_{n'}}{E - E_n}\right)^{1/2} \times \int_0^{\pi} d\varphi \cos\varphi \left|\tilde{V}_{nn'}(q')\right|^2,$$

где $q = 2k(1 - \cos \varphi)^{1/2}, q' = (k^2 - 2kk' \cos \varphi + k'^2)^{1/2},$
 $k = \left[2m^*(E - E_n)/\hbar^2\right]^{1/2}, k' = \left[2m^*(E - E_{n'})/\hbar^2\right]^{1/2}$ и $\theta(x) - ф$ ункция Хевисайда.

В эффективном рассеивающем потенциале $\tilde{V}_{nn'}(q')$ учитывается распределение ионизованных примесей:

$$\left|\tilde{V}_{nn'}(q)\right|^2 = \int dz_i N(z_i) \left|\tilde{V}_{nn'}(q, z_i)\right|^2,$$

где $N(z_i)$ — трехмерная плотность примесей в точке z_i . Поскольку заряженные примеси экранируются свободными электронами всех заполненных подзон, матричный элемент неэкранированного кулоновского потенциала

$$V_{ll'}(q, z_i) = \frac{e^2}{2\varepsilon\varepsilon_0 q} \int \psi_l(z) \exp\left(-q|z - z_i|\right) \psi_r(z) \, dz$$

связан с экранирующим потенциалом $\tilde{V}_{nn'}(q, z_i)$ через диэлектрическую функцию

$$\tilde{V}_{nn'}(q, z_i) = \sum_{l,l'} \varepsilon_{nn', ll'}^{-1}(q) V_{ll'}(q, z_i),$$

где ε_0 — диэлектрическая проницаемость вакуума, ε — диэлектрическая проницаемость среды, а $\psi_l(z)$ — волновые функции подзон, считавшиеся одновременно с зонной диаграммой. В приближении случайных фаз функция диэлектрической проницаемости имеет вид

$$\varepsilon_{ll',nn'}(q) = \delta_{ln}\delta_{l'n'} + \frac{e^2}{2\varepsilon\varepsilon_0 q} F_{ll',nn'}(q)\Pi_{nn'}(q),$$

где формфактор $F_{ll',nn'}$ определяется из уравнения

$$F_{ll',nn'}(q) = \int dz \int dz' \psi_l(z) \psi_{l'}(z) \times \\ \times \exp\left(-q|z-z'|\right) \psi_n(z') \psi_{n'}(z'),$$

$$\Pi_{nn'}(q, E_F) = \frac{m^*}{\pi\hbar^2} \left[1 - \frac{C_+}{2} \left\{ \left(\frac{E_{ij}}{E_q} + 1\right)^2 - \left(\frac{2k_{F_i}}{q}\right)^2 \right\}^{1/2} + \frac{C_-}{2} \left\{ \left(\frac{E_{ij}}{E_q} - 1\right)^2 - \left(\frac{2k_{F_i}}{q}\right)^2 \right\}^{1/2} \right]$$

№ 786	№ подзоны	$N_{SdH}, 10^{12} \text{ см}^{-2}$ эксп.	$\mu_q,\mathrm{cm}^2/\mathrm{B}$ с	$\mu_t,\mathrm{cm}^2/\mathrm{B}{\cdot}\mathrm{c}$
В темноте	2 1	0.26 1.67	$\frac{3900}{2100}$	72000 86900
При освещении	2 1	0.53 1.87	6700 2700	183000 138000

Таблица 3. Теоретические квантовая μ_q и транспортная μ_t подвижности для образца \mathbb{N} 3 при T = 4.2 К в темноте и при освещении

— поляризационные компоненты при T = 0, где $E_{ij} = E_i - E_j$, $E_q = \hbar^2 q^2 / 2m^*$, $C_{\pm} = \text{sign}(E_{ij} \pm E_q)$, k_{F_i} — волновой вектор, соответствующий энергии Ферми *i*-й подзоны [11].

Транспортная подвижность *n*-й подзоны выражается формулой

$$\mu_t = \frac{e}{m^*} \langle \tau_n(E) \rangle,$$
$$\langle \tau_n(E) \rangle = \int \tau_n(E) E \frac{\partial f_0(E)}{\partial E} dE \left\{ \int E \frac{\partial f_0(E)}{\partial E} dE \right\}^{-1},$$

где f_0 — функция распределения Ферми – Дирака. Квантовая подвижность *n*-й подзоны $\mu_q = e\tau_n^q/m^*$, где τ_n^q — квантовое время жизни на уровне Ферми, величина, обратная сумме всех вероятностей рассеяния с соответствующими весами:

$$\frac{1}{\tau_n^q} = \frac{m^*}{\pi\hbar^3} \sum_{n'} \int_0^{\pi} d\varphi \left| \tilde{V}_{nn'}(q') \right|^2.$$

В качестве примера в табл. 3 представлены результаты прямых расчетов квантовой и транспортной подвижностей для образца № 3 при рассеянии на ионизованных примесях и при учете межзонных переходов. При расчете брались значения концентраций в подзонах, определенные по эффекту Шубникова-де Гааза. Как видно в табл. 3, под освещением электронные концентрации, как и подвижности заметно возросли. Видно, что подвижность электронов в нижней подзоне выше электронных подвижностей в верхней подзоне, что связано с большим распространением волновой функции в дельта-слой для подзон с большими номерами. Транспортные подвижности существенно превышают квантовые, что свидетельствует о малоугловом характере рассеяния электронов на ионизованных примесях из-за пространственного разделения электронов в квантовой яме от ионизованной примеси дельта-слоя. Прямые расчеты хорошо согласуются с экспериментально определенными по эффекту ШдГ подвижностями. Максимальные подвижности получены при ширине квантовой ямы 16 нм.

Таким образом, в работе были исследованы электронные подвижности в изоморфных квантовых ямах In_{0.53}Ga_{0.47}As на подложках InP. Максимальная подвижность электронов наблюдается в квантовых ямах шириной d = 16 нм. Из данных по эффекту ШдГ получены квантовые и транспортные подвижности электронов в подзонах размерного квантования. Рассчитаны зонные диаграммы и подвижности электронов в подзонах размерного квантования при рассеянии на ионизованных примесях с учетом межподзонных переходов. Расчеты хорошо совпадают с экспериментальными данными. Показано, что рассеяние на ионизованных примесях является основным в исследованных структурах. При низких температурах обнаружена замороженная фотопроводимость. Исследование релаксации фотопроводимости показывает, что она обусловлена пространственным разделением носителей заряда.

ЛИТЕРАТУРА

- T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, Jpn. J. Appl. Phys. 19, L225 (1980).
- Dong Xu, H. G. Hei
 ß, S. A. Kraus et al., IEEE Trans. Electron Dev. 45, 21 (1998).
- A. E. Fatimy, N. Dyakonova, Y. Meziani et al., J. App. Phys. 107, 024504 (2010).
- P. R. Berger, P. K. Bhattacharya, and J. Singh, J. Appl. Phys. 61, 2856 (1987).
- В. А. Кульбачинский, Р. А. Лунин, В. Г. Кытин и др., ЖЭТФ 120, 933 (2001).
- H. J. Queisser and D. E. Theodorou, Phys. Rev. B 33, 4027 (1986).
- E. D. Siggia and P. C. Kwok, Phys. Rev. B 2, 1024 (1970).
- В. А. Кульбачинский, Р. А. Лунин, В. Г. Кытин и др., ЖЭТФ 110, 1517 (1996).
- 9. P. T. Coleridge, Phys. Rev. B 44, 3793 (1991).
- 10. G. Fishman and D. Calecki, Phys. Rev. B 29, 5778 (1984).
- K. Inoue and T. Matsuno, Phys. Rev. B 47, 3771 (1993).