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We discuss the recently proposed LDA’+DMFT approach providing a consistent parameter-free treatment of
the so-called double counting problem arising within the LDA4+DMFT hybrid computational method for realistic
strongly correlated materials. In this approach, the local exchange-correlation portion of the electron—electron in-
teraction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e. g., d-states
of transition metal compounds. Then, the corresponding double-counting term in the LDA’+DMFT Hamilto-
nian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction
term. We present the results of extensive LDA'+DMFT calculations of densities of states, spectral densities,
and optical conductivity for most typical representatives of two wide classes of strongly correlated systems
in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals
(SrVO3 and SraRuQy). It is shown that for NiO and CoO systems, the LDA'+DMFT approach qualitatively
improves the conventional LDA+DMPFT results with the FLL type of double counting, where CoO and NiO were
obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level,
missed in previous LDA+DMFT studies of these monooxides. General agreement with optical and the X-ray
experiments is obtained. For strongly correlated metals, the LDA’+DMFT results agree well with the earlier
LDA+DMFT calculations and existing experiments. However, in general, LDA'+DMFT results give better
quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the
conventional LDA+DMFT method.
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1. INTRODUCTION

During last decade, the LDA+DMFT method (lo-
cal density approximation + dynamical mean-field the-
ory) became probably the most powerful tool for cal-
culating electronic structure of real strongly correlated
materials [1-7]. This approach typically consists of
two computation steps. First, LDA calculations are
used to obtain the noninteracting Hamiltonian HLDA
that rather accurately describes the kinetic energy (and
to some extent takes electronic interactions into ac-
count). Second, the local Coulomb (Hubbard) inter-
action HHb is introduced into the lattice problem de-

* . .
E-mail: nekrasov@iep.uran.ru

713

fined by HIDPA for those electronic shells that are sup-
posed to be strongly correlated. A generalized Hub-
bard model thus obtained is solved numerically using
DMFT. Some attempts to organize a feedback from the
DMFT step to LDA calculations to achieve a fully self-
consistent LDA+DMFT method are also known and
may be important for some physical problems [8].

The double counting problem arises in the stan-
dard LDA+DMFT method because some part of the
local electron—electron interaction for correlated shells
is actually accounted for by HLDA  To avoid this
double counting, it is necessary to subtract a certain
correction term HPC from HEPA. Then, the formal

LDA4+DMFT Hamiltonian is written as
]f[ _ IfILDA + ]fIHub _ ]fIDC‘ (1)

In orbital space, HDPC s the diagonal matrix with
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nonzero and equal matrix elements Ey. for the atomic
shells that are assumed to be strongly correlated (e. g.,
d or f shells or their subshells). This becomes more
transparent if we consider the corresponding Green’s
function for the Hubbard model:

Gij(kE) = |(E — )T — HPA(k) -

— (S(KE) — Eqc) 6iada) "', (2)

where I is the unit matrix in the orbital space, u is
the chemical potential, X(kE) is the self-energy corre-
sponding to the local Coulomb (Hubbard) interaction,
[...]7! denotes matrix inversion, and the index d de-
notes correlated states for which the Coulomb (Hub-
bard) interaction is taken into account.

It follows from Eq. (2) that if HXP4 contains only
the contribution of interacting d-orbitals, E4. reduces
to a trivial renormalization of the chemical potential
. Then, strictly speaking, there is no double counting
problem at all. Because of this many of the early works
(listed, e.g., in reviews [2,4-7]), except, probably, the
first paper on LDA+DMFT [1] and a few others, just
dropped the double-counting correction term. Only af-
ter the LDA+DMFT community started active stud-
ies of multiband HP4 Hamiltonians with both corre-
lated and noncorrelated states included, the problem of
the correct implementation of H”¢ became important.
Now, there are dozens of works devoted to multiband
LDA+DMFT studies. Important classes of materials
investigated can be listed as follows.

1. Transition metal oxides (LaTiOs, (Sr,Ca)VOs3,
V203, VO2, CI‘OQ, LaMH03, NIO, MHO, COO, FeO,
LaCOOg7 TIOCI7 T12Mn2077 LaNi03, (Ca,Sr)gRuO4,
and Na0_30002).

2. Elemental transition metals and nonoxide transi-
tion metal compounds (Cr, Mn, Fe, Ni, Co, multilayers
(CrAs)/(GaAs), NiMnSh, CosMnSi, CrAs, VAs, ErAs,
Ni(S,Se)2, and KCuF3).

3. Elemental f-electron materials and their com-
pounds (Ce, Pu, Am, Ce203, PusO3, USe, UTe, PuSe,
PuTe, PuCoGas, URusSip, Celrlns, CeColns, and

CeRhlng).

4. Nanomaterials (Ni-Cu nanocontacts and nano-
electrodes).

5. High-temperature copper superconductors

((Sr,La)yCuQy, (Pr,Ce)2Cu0y4, BiyCaySrCuOs, ete.).
6.  Superconducting iron pnictides (LaFeAsO,

CeFeAsP, LiFeAs, BaFeyAs, etc.).

These systems show a large variety of physical ef-

fects. Among them, there are strongly correlated met-

als, Mott and charge transfer insulators, ferromagnets

and antiferromagnets, superconductors, etc. However,
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there is currently no universal and unambiguous ex-
pression for HPY and different formulations are used
for different classes of materials.

In this paper, we present the results of extensive
application of our recently proposed LDA'+DMFT ap-
proach [13] to charge-transfer insulators MnO, CoO,
and NiO and strongly correlated metals SrVOs; and
SroRuQy, confronted to conventional LDA+DMEFET re-
sults and some experiments. The paper has the fol-
lowing structure. In Sec. 2, we present an overview
of different definitions of HPC. The novel consistent
LDA’4+DMFT method is described in Sec. 3. LDA and
LDA’ band structures, total and partial densities of
states, and spectral density maps and optical conduc-
tivity LDA'+DMFT results for prototype charge trans-
fer insulators MnQ, NiO, and CoO are presented in
Sec. 4 and are compared with the results of the conven-
tional LDA-+DMFT approach. These results are fur-
ther compared with experimental data on X-ray spec-
troscopy and optical conductivity. In Sec. 5, we discuss
LDA and LDA’ band structures for correlated metal-
lic system prototypes SrVO3 and SroRuQOy4. Then, the
LDA+DMFT and LDA’+DMFT results are compared
with each other and with experimental photoemission
and absorption spectra. We end with the conclusions
in Sec. 6.

2. REVIEW OF DIFFERENT FORMULATIONS
FOR HPC

To derive an expression for HPC | we examine the
HLPA and HY" terms in Eq. (1). The LDA part of
Hamiltonian (1) is given by
h2

e

+ /dsr'p(r')l/;e(r —-r')+

Hipa = ~3 A+ Vion(r) +
SELPA(p)
ap(r)

where A is the Laplace operator, m. the electron mass,
e the electron charge, and

7
Vin(r) = =23~ =g

, e? 1
Vee(r —1') = 5 Z Ty
r#r’

(3)

(4)

are respectively the one-particle potential due to all
ions ¢ with charges eZ; at given positions R4, and the
electron—electron interaction.

The ELPA(p(r)) term in Eq. (3) is a function of
the local charge density and approximates the true
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exchange correlation functional E,.[p] of the density
functional theory within the local density approxima-
tion [9]. The explicit expression for EEP4(p(r)) is usu-
ally derived from the perturbation theory [10] or nu-
merical simulations [11] of the “jellium” model with
Vien(r) = const. Obtaining the value of the local
charge density requires choosing some basis set of one-
particle wave functions p; (e.g., performing practical
calculations and explicitly expressing matrix elements
of Hamiltonian (3)), in terms of which p(r) is written
as

N
=Y lpim)? (5)
i=1
The Hubbard-like (local) interaction term including
the direct Coulomb interaction and exchange Coulomb
interaction contributions in the density—density form is
written as

HHub

UZananmw +
2 Z > W

i m#m' oo’

(6)

— Opor J nszrnzm )

where the index ¢ enumerates lattice sites, m denotes
orbitals, and o the spin; U represents the local intra-
orbital Coulomb repulsion and J is the z-component
of Hund’s rule coupling between the strongly corre-
lated electrons (e.g., d-states, enumerated by i = ig4
and [ = [g). Rotational invariance then fixes the lo-
cal inter-orbital Coulomb repulsion U’ = U — 2.J [12].
The values of U and J are usually obtained from con-
strained LDA [16] or constrained RPA (random phase
approximation) [17] procedures. A numerically exact
solution of the Hubbard Hamiltonian (a simplified ki-
netic term plus the HHub term) can be obtained within
the DMFT approximation.

The Hamiltonian H Lpa contains local electron—
electron correlations through the exchange correlation
energy (taken in the form valid for a homogeneous elec-
tronic gas) and the density—density contribution of the
Hartree term. In its turn, DMFT provides the numer-
ical solution of the Hubbard model (exact in infinitely
many dimensions). It is therefore clear that before sub-
stituting H;pa in DMFT lattice problem (2), we must
subtract certain double-counting correction term HPC
from Hzpa. The double counting problem arises be-
cause there is no explicit microscopic or diagrammatic
relation between the model (Hubbard-like) Hamilto-
nian approach and the LDA. There is apparently no
possibility to give a rigorous expression for HPC ip
terms of U, J, and p. Several ad hoc expressions
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for HPC and approaches to treat the double count-
ing problem exist in the current literature. Below, we
briefly discuss some of these derivations.

Perhaps for the first time, the problem of double
counting occurred in an attempt to merge the LDA and
the Hubbard model within the LDA+U method [14],
where the so-called “around mean-field” (AMF) defini-
tion of HPC was initially postulated. This definition
comes from the assumption that the LDA is a kind of
“mean-field” solution of the Hubbard-like problem in
Eq. (6). The definition in Ref. [14] was subsequently
generalized to the spin-dependent (LSDA) case (and
even more generally to the matrix form of Coulomb
interaction). After this, the spin-dependent generaliza-
tion of the corresponding AMF expression can be given
as

H{Nir = _Uzndo' ng — ng

- 51] ; ndo’(ndo'

with the average occupancies
1 1
0 _
BPIESS) ngnm”’ 20+ 1) zm:”m”

and the total number of electrons on interacting or-
bitals (per spin projection)

Nde = Znildm(r = Z<ﬁildmfr>
m

m

—ng) (7)

Ng =

and ng = ) n4s, originally supposed to be found from
LDA calculations. The drawback of the AMF is the
equal occupancy of all orbitals, which is not correct
even for weakly correlated systems because, e.g., of
crystal field splitting. However, a couple of the modern
LDA+DMFT works reported reasonable results with
an AMF-like double-counting correction term. Ap-
parently, the AMF double counting correction works
rather well for moderately correlated metallic systems.
Some modifications of Eq. (7) were given in Refs. [18]
and applied to LDA+DMFT calculations for charge-
transfer insulators.

Later on, the fully localized (or atomic) limit (FLL)
expression for HPC was introduced in Refs. [15,19]
(with the first application to LDA+DMFT calculations
in Ref. [1]):

HPf, = Und(nd —1) - %J;nd,,(nda —1). (8)
Equation (8) actually represents the Hartree decou-
pling of Hubbard-model interaction term (6): the de-
coupling of the density—density term 7;n; and not the
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full four-operator term élé}éoél. Hence, strictly speak-
ing, there is no Fock-type contribution in Eq. (8) be-
cause Hund exchange is represented in Eq. (6) in the
density—density form, although Hund coupling value .J
has the “exchange nature”. It is quite often misinter-
preted as being due to the “true” Hartree—Fock decou-
pling of the élé}éoé, term.

The FLL expression in the context of LDA+DMFT
calculations was used in the majority of modern works.
It works reasonably well for both metallic and insulat-
ing strongly correlated materials. Recently, some mod-
ifications of the FLL were proposed in Refs. [20,21].
These modifications are typically used for quantitative
improvements of LDA+DMFT results for particular
compounds. Some kind of an AMF and FLL “hybrid
scheme” was used in Ref. [22] for a-Fe.

An alternative way to derive or guess the HPC term
is to express it through the characteristics of an in-
trinsic DMFT single-impurity problem, such as the im-

purity self-energy Eznrg, or the impurity Green’s func-
tion G,"",. A popular way is to define the doubly

counted energy as the static part of the impurity self-
energy [23]:

Iy, (sime(0))

; )
Some LDA+DMFT papers used this definition in calcu-
lations of metallic magnetic and nonmagnetic systems.
From the very beginning, this type of double counting
correction was also exploited within the GW+DMFT
approach [24].

The Hartree energy can be determined from the
LDA+DMFT self-energy as its real part in the high-
frequency limit. In Ref. [27], it was proposed to use
the Hartree energy thus defined as a double counting
correction, using the constraint

Edc =

imp
Emm’

Re Tt ( (mN)) =0, (10)
where wy is the highest Matsubara frequency used in
calculations. A physically similar definition of the dou-
ble counting term E;. = Y(w — 00) was successfully
applied to metallic ferromagnet SrCoOj in Ref. [25].
For metallic systems, it was suggested to fix the
double counting correction by equating the numbers
of particles in the noninteracting problem and in the
impurity problem, expressed via the corresponding

Green’s functions [26]:

Te G (3) = Tr Gl

mm/

(B), (11)

where G?,;l,fﬁ is the local noninteracting Green’s func-
tion. Some LDA-+DMFT works treated the double
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counting energy Fgy. as a free parameter. The authors
of Ref. [27] found that most of the HPC terms proposed
in the literature are not completely satisfactory in the
case of charge transfer insulator NiO and proposed a
numerical way to define the necessary double counting
correction.

Another possible solution of the double counting
problem is to perform Hartree+DMFT or Hartree—
Fock+DMFT calculations [28]. In performing Hartree—
Fock band-structure calculations for real materials, we
do exactly know what portion of interaction is included.
Because diagrammatic expressions for the Hartree or
Hartree—Fock terms are well known, one can calculate
them directly and obtain the double counting correc-
tion energy explicitly. However, we are unaware of any
Hartree+DMFT or Hartree-Fock+DMFT calculations
for real materials.

A totally independent branch of ab initio DMFT
calculations is the GW+DMFT method, where, instead
of the density functional theory, the so called chain of
Hedin equations is used, truncated in a simplest man-
ner by neglecting vertex corrections (see Ref. [24, 29] for
a review). Because of the purely diagrammatic nature
of the GW method, there is a natural way to calcu-
late the local part of the corresponding Hartree con-
tribution, which can be used as the double counting
correction term for GW+DMFT [29].

3. CONSISTENT LDA'+DMFT APPROACH

Recently, we proposed the LDA'+DMFT approach,
which defines a consistent parameter-free way to avoid
the double counting problem [13]. The main idea is
to explicitly exclude the exchange-correlation energy
from self-consistent LDA calculations only for corre-
lated bands. As described above, the main obstacle
to expressing the double counting term exactly is the
exchange-correlation EXP4(p(r)) portion of interaction
within the LDA. It therefore seems somehow inconsis-
tent to use it to describe correlation effects in narrow
(strongly correlated) bands from the very beginning,
because these should be treated via more elaborate
schemes like DMFT. To overcome this difficulty for
these states, we propose to redefine charge density (5)
in ELPA as

) =" lpi(r)P,
i#iq
excluding the contribution of the density of strongly
correlated electrons.

In principle, EXP4 is not an additive function of
charge density. Hence, splitting the charge density into

(12)
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two parts may lead to some loss of hybridization be-
tween correlated and uncorrelated states. However, as
we show below, this approximation is rather good. We
see in what follows that LDA’ bands practically do not
change their shape with respect to LDA ones for all
considered systems. This suggests that “hybridization”
is almost unaffected by LDA’. The main effect is an in-
crease in the splitting between oxygen 2p and metal 3d
states. It comes from the more repulsive potential ap-
pearing in the LDA’ case because part of the exchange
correlation energy is then excluded.

The redefined p'(r) in Eq. (12) is next used to
obtain ELPA and perform self-consistent LDA’ band
structure calculations for correlated bands. Just the
Hartree contribution, Eq. (3), to the interaction for cor-
related states is then left at the LDA’ stage. The dou-
ble counting correction term should therefore be con-
sistently taken in the form of the Hartree-like term in
Eq. (8). This definition of HES, also does not have any
free parameters. Actually, our approach is in precise
correspondence with the standard definition of corre-
lations as interaction corrections “above” the Hartree—
Fock level. At the same time, all other states (not
counted as strongly correlated) are to be treated with
the full power of DFT/LDA and the full p in ELPA,

Although the LDA’+DMFT method is apparently
most consistent with the use of the FLL type of dou-
ble counting, in principle all definitions of H”¢ men-
tioned above can also be used within LDA’+DMFT.
Also, there is another “degree of freedom left”: the oc-
cupancy ng used in the FLL equation, either can be
obtained from LDA or LDA’ results, or can be cal-
culated self consistently during the DMFT loop. We
used all these variants in our calculations for differ-
ent compounds presented below. The corresponding
values of Fg. are listed in Table. We use the nota-
tion FLL(SC) for the self-consistently calculated ng
and FLL(LDA) for ng calculated from LDA or LDA'.
In general, the FLL(SC) and FLL(LDA) results do
not differ very much from each other, except for the
case of CoO (see below). However, the FLL(SC) cal-
culation gives a slightly better agreement with exper-
iments. Most Figures presented below are plotted for
the FLL(SC) case. We observed that FLL(SC) calcula-
tions require more computational time than FLL(LDA)
ones.

Therefore, our consistent LDA’--DMFT approach
is a kind of compromise between Hartree—Fock and
DFT/LDA starting points to be followed by DMFT
calculations. It was demonstrated in Ref. [13] that this
LDA’+DMFT method works perfectly for the insulat-
ing NiO system, directly producing the charge-transfer
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Fig.1. LDA (dashed lines) and LDA’ (solid lines) den-
sities of states (DOS) and band dispersions for MnO
(a), CoO (b), and NiO (c). The Fermi level is zero

insulator solution, while the conventional LDA+DMFT
method (with FLL) gives a metallic solution (cf.
Ref. [27]).

4. CHARGE-TRANSFER INSULATORS

4.1. LDA and LDA’ band structures

Typical examples of charge-transfer insulator (CTT)
materials are transition metal monoxides MnQO, CoO,
and NiO. These oxides have a rock salt crystal struc-
ture with the respective lattice parameters a = 4.426 A,
4.2615A, 4.1768 A. To obtain LDA and LDA’ band
structures for MnO, CoO, and NiQ, the basis set, of lin-
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Table. LDA and LDA’ occupancies and the corresponding values of the LDA+DMFT and LDA’+DMFT double-counting
terms (eV) for systems under consideration

LDA+DMFT LDA+DMFT LDA’+DMFT LDA'+DMFT
Compound NrLpA n7spA
FLL(LDA) FLL(SC) FLL(LDA) FLL(SC)

SrVOs; 2.61 2.44 12.33 11.99 10.35 10.92
SraRuOy 5.65 5.39 14.32 14.60 12.92 13.73
MnO 5.59 5.43 39.05 35.49 36.62 35.30
CoO 7.60 7.41 54.28 50.90 51.42 50.49
NiO 8.54 8.34 60.90 62.01 57.91 58.13

earized muffin-tin orbitals (LMTO) [30] was used. In
the corresponding program package TB-LMTO v.47,
ELPA was taken in the von Barth-Hedin form [10].
Total and partial densities of states (DOS) together
with band dispersions can be seen in Fig. 1 for LDA
(dashed lines) and LDA’ (solid lines). Figure 1 shows
MnO, CoO, and NiO systems from top down. As re-
ported earlier for NiO [13], the LDA’ approach changes
the charge transfer energy |Ey — Ep|, where E4 and E,
are, roughly speaking, one-electron energy positions of
transition-metal 3d and O-2p bands. In Fig. 1, the
same tendency for MnO and CoO oxides can be seen.
For MnO, it increases by about 0.5 eV and for CoO,
by about 1 eV, similar to NiO. An almost rigid shift of
the O-2p bands down in energy is observed here, while
transition-metal 3d states remain almost the same near
the Fermi level.

We note that to our knowledge, transition-metal
4s states have never been included into LDA+DMFT
calculations for these transition metal oxides. Appar-
ently, this was because they were reasonably assumed
to be weakly correlated and thus projected out from the
corresponding LDA Hamiltonian. But the transition-
metal 4s states are rather close to the Fermi level for
LDA bands and even closer for LDA’ ones. They can
be seen in Fig. 1 as lowest unoccupied states that touch
the Fermi level near the T point for MnO and less than
1 eV above the Fermi level for CoO and NiO.

4.2. LDA+DMFT and LDA’'4+DMFT spectral

functions

Everywhere in this paper, we use the Hirsh—Fye
quantum Monte Carlo algorithm [31] as the impurity
solver for DMFT equations. To set up a DMFT lattice
problem, we use corresponding LDA and LDA’ Hamil-
tonians, which include all states (without any projec-

tion, as was done, e.g., in Ref. [26]). The inverse tem-
perature was chosen as 3 = 5 eV~!, with 80 time slices
for NiO, and 3 = 10 eV~! with 120 and 160 time slices
for MnO and CoO respectively. Monte Carlo sampling
was done with 10® sweeps. The use of rather high tem-
peratures does not lead to any qualitative effects in
the results, which allows avoiding unnecessary compu-
tational efforts. The Coulomb interaction parameters
were chosen typical for MnO, CoO, and NiO [18,27]:
U =8¢V and J =1¢V. Both FLL(SC) and FLL(LDA)
double counting definitions were applied for all mate-
rials. The corresponding FEg4. values are given in the
Table.

To obtain DMFT(QMC) densities of states (DOS)
at real energies, we used the maximum-entropy method
(MEM) [32]. The DMFT self-energy can then be ob-
tained on the real frequency axis by using Pade ap-
proximants for the analytical continuation. We subse-
quently checked that “Pade” DOS are identical to the
“MEM” ones. Once X(w) is obtained, we can input it
into Eq. (2) and obtain the spectral density function

Ak, w) = ! Im G(k,w).
i

The corresponding maps of spectral density functions,
representing the effective band structure of these com-
pounds, are given in Fig. 2.

The left column in Fig. 2 presents LDA+DMFT
results and the right one presents the LDA’+DMFT
results for MnO (upper panels), CoO (middle panels),
and NiO (lower panels).

4.3. LDA4+DMFT and LDA’+DMFT DOS

In Fig. 3, we present densities of states obtained
by the LDA+DMFT (dashed lines) and LDA’+DMFT
(solid lines) methods. The left panel corresponds to
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" LDA + DMFT

e

FLL(SC)

Fig.2. Comparison of LDA+DMFT (left column) and LDA’+DMFT (right column) calculated spectral density functions
for MnO (upper row), CoO (middle row), and NiO (lower row), with the FLL(SC) double-counting correction. The Fermi
level is zero

MnO, the middle one to CoO, and the left one to NiO.
The top row shows total densities of states, while other
rows show the contributions of the most important elec-
tron states, the t5, and e, subshells for a 3d transition
metal, oxygen 2p states, and transition-metal 4s states.

We first focus on the MnO case, which is per-
haps the simplest among these three. The O-2p states
are located between —9 eV and —4 eV (see Figs. 2
and 3). Then comes the lower Hubbard band (LHB),
which consists of the respective Mn-3d t», and e, con-
tributions at —4 eV and —2.3 eV. On the plots of
the spectral-function, LHB is a rather wide nondis-
persive band at these energies. Then we see the so-
called Zhang-Race band — the bound state that ap-
pears when a strongly interacting band is hybridized
with the charge reservoir. This band can be seen as a
peak at —1.5 eV in O-2p states together with Mn-3d e,

states. Then, between the Zhang—Race band and the
upper Hubbard band (UHB), there is a gap for Mn-
3d states of about 3.5 eV in both LDA+DMFT and
LDA’+DMFT lases, which agrees quite well with ex-
perimental spectra (see below). The UHB is located
above 4 eV, where the t5, and e, contributions cannot
be separated in energy.

The spectral density map in Fig. 2 (upper row)
shows some rather well-defined band of MnO, which
touches the Fermi level at the I' point. This band is
nothing else but Mn-4s. It can be seen from Fig. 3
that most of the Mn-4s spectral weight is actually well
above 5 eV. Below, there is some rather low-intensity
tail, which goes through the gap between the upper
Hubbard band and the Zhang—Rice band. Its inten-
sity is at least one order of magnitude lower than the
intensities of other contributions to the DOS.
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Fig.3. Comparison of LDA+DMFT (dashed lines) and LDA’+DMFT (solid lines) densities of states for MnO (a), CoO
(b), and NiO (c), with the FLL(SC) double-counting correction. The Fermi level is zero

We next consider CoO (the middle row in Fig. 2
and the middle panel in Fig. 3). We see that both
LDA+DMFT and LDA’+DMFT results are quite sim-
ilar. There is some difference in the UHB, where Co-3d
tag and e, contributions can now be separated, and
two almost nondispersive bands around 2 eV and 3 eV
above the Fermi level are clearly seen in Fig. 3. The gap
between the Zhang—Rice band and the UHB is approx-
imately 0.5 eV larger (about 4 V) for LDA’+DMFT
results.

We note that the LDA+DMFT calculation with
FLL(LDA) double counting produces the metallic so-
lution for CoO, as can be seen from Fig. 4, which qual-
itatively contradicts the experiments. On the contrary,
the LDA’+DMFT calculation gives the correct insulat-
ing state.

We note that in both CoO and NiO, the behavior
of 4s bands is similar to that discussed above for MnO.
Spectral density maps in Fig. 2 show the presence of
these bands within the charge-transfer gap, although
the partial density of states due to these bands within
the gap is almost negligible (cf. Fig. 3).

To summarize, we stress that within the LDA’+
+DMFT method, both MnO and CoO are consistently
demonstrated to be charge-transfer insulators (in con-
trast to the conventional LDA+DMFT method in the

case of CoQ). A similar behavior was obtained earlier
for NiO in Ref. [13]. Here, we presented more complete
LDA’4+DMFT results for NiO, with both FLL(LDA)
and FLL(SC) double-counting corrections. Conven-
tional LDA+DMFT calculations predict NiO to be
metallic in contrast to experiment, while LDA’+DMFT
gives a charge-transfer insulating solution for NiO for
both FLL(LDA) and FLL(SC) double-counting correc-
tions. All other features of the NiO LDA’+DMFT band
structure are quite similar to those of the MnO and
CoO compounds described above.

4.4. LDA+DMFT and LDA’4+DMFT optical
conductivities

Metallic or insulating behavior can be explicitly
demonstrated by calculations of optical conductivity.
Below, we present our results for the optical conduc-
tivity behavior of MnO, CoO, and NiO in the LDA+
+DMFT and LDA’'+DMFT approaches, which also al-
lows us also to analyze the influence of transition-metal
4s states on dielectric properties of these oxides. We
used the expression for the optical conductivity, valid
in DMFT [33],
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where e is electron charge, a is the lattice constant of
the corresponding compound, f(¢) is the Fermi func-
tion, €x is the band dispersion, and Af(j (¢) is the cor-
responding (LDA+DMFT or LDA'+DMFT) spectral
density function matrix (i,j are the band indices). In
the calculations, we found that the main contribution
to optical conductivity is due to intra-orbital optical
transitions. Inter-orbital optical transitions give less
than 5% of the optical conductivity intensity in the
frequency range used in our calculations. We neglect
possible effects due to optical matrix elements. The
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Fig.5. Comparison of experimental (circles, stars)

and calculated LDA+DMFT (dashed lines) and LDA’+
+DMFT (solid lines) optical conductivities for MnO
(a), CoO (b, « — [34]), and NiO (¢, o — [35])

calculated theoretical curves obtained in conventional
LDA-+DMFT (dashed line) and LDA’+DMFT (solid
line) approaches are presented in Fig. 5 for MnO (left
panel), CoO (middle panel), and NiO (right panel).
We see from Fig. 5 that in the LDA’+DMFT
method (solid line), all materials are insulators. De-
spite the presence of transition-metal 4s states close
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to the Fermi level, a possible Drude peak due to these
states is not observed. The conventional LDA+DMFT
optical conductivity for NiO shows a typical metallic
behavior, as discussed above in the context of DOS be-
havior.

We now compare our theoretical results with avail-
able experimental data (with the exception of MnO,
where we are not aware of any experimental results)
[34,35]. In Ref. [34], only experimental data for the
optical constants n(w) and k(w) were presented. The
optical conductivity in units of e?/ha (which is about
5.8-103 Q"1 em™! for the selected monooxides) can be
recalculated from these data as

qa
wa =,

where « is fine structure constant, a is the lattice con-
stant, and ¢ is the speed of light. The corresponding
curves are shown in Fig. 5 by stars. For NiQO, there are
more recent experimental data in Ref. [35], shown with
circles. We observe that below the leading absorption
edge for CoO and NiO, there exist rather long absorp-
tion tails with low intensity. We associate these tails
with the contribution of Co and Ni 4s states. For NiO,
the overall agreement of LDA’+DMFT results with ex-
perimental data is quite satisfactory. For CoQ, the the-
oretical absorption edge is about 1 eV lower than the
experimental one. However, this can probably be cor-
rected by introducing a larger value of the Coulomb
interaction U. A recent constrained RPA study pro-
duced it to be 10.8 eV [25], in contrast to 8 eV used in
our calculations.

4.5. Comparison of LDA+DMFT and
LDA'4+DMFT results with X-ray experiments

We now compare our results for the DOS with
XPS and BIS experiments in Refs. [36-39]. In Fig. 6,
LDA-+DMFT (dashed lines) and LDA’+DMFT (solid
lines) valence and conduction bands spectra are directly
compared with spectra for MnO (upper panel), CoO
(middle panel), and NiO (lower panel). The theoretical
spectra were obtained by multiplication of the DOS by
the Fermi distribution and Gaussian broadening with
experimental temperature and resolution.

The general structure of spectra is similar for all
three compounds. From —14 eV to —4 eV, there are
O-2p states, then comes the lower Hubbard band at
about —3 eV. On the high-energy slope of the LHB, we
can see a shoulder-like structure, which is nothing else
but the Zhang-Rice band. An insulating gap is near the
Fermi level. The size of the gap is very well reproduced
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for MnO by both LDA+DMFT and LDA’+DMFT cal-
culations. For CoQ, it looks like the U value chosen is a
bit too small (as discussed above), but LDA’+DMFT
spectra gives the gap size closer to the experimental
one. For NiO, the conventional LDA+DMFT calcula-
tion gives a metallic solution, while LDA’+DMFT pro-
duces a CTT solution with the correct energy gap size.
Experimental positions of the upper Hubbard bands
are rather well described by LDA’+DMFT. Because
the experimental data for NiO go far above the Fermi
level, we can identify these high-energy structures as
contributions of Ni-4s and Ni-4p states.

In Fig. 6, the experimental conduction band low-
energy threshold has a rather long low-intensity tail
that goes down to the Fermi level. Therefore, there
is some asymmetry of the gap. We suggest that this
asymmetry of the gap originates from transition-metal
4s states, which touch the Fermi level from above, as
described in the foregoing.

5. STRONGLY CORRELATED METALS

5.1. LDA and LDA’ band structures

Strontium vanadate SrVOgs is perhaps one of the
simplest paramagnetic strongly correlated metallic sys-
tems. Not surprisingly, it is widely used as a test
system for various LDA+DMFT-based numerical tech-
niques [40-43]. SrVOs has the ideal cubic perovskite
structure with one d-electron in the V-3d shell within a
triply degenerate ts, subshell. LDA and LDA' band
structure calculations are performed as described in
Refs. [40-43] via the LMTO method with the von
Barth-Hedin exchange correlation energy [10].

The 3d bands of vanadium cross the Fermi level,
while oxygen 2p states are at —8-—2 €V, i.e., much
lower than the Fermi level (see Fig. 7, left panel, dashed
lines). If we exclude the ELP4 contribution for V-3d
states as described in Sec. 3, we obtain the LDA’ band
structure shown in Fig. 7 (left panel, solid lines). In the
LDA’ approach, similarly to Ref. [13], the energy split-
ting |Eq — E,| between V-3d and O-2p bands becomes
larger than in the conventional LDA approach. Because
the total number of electrons is fixed, the LDA’ in-
crease in | Eq — E,| is related to O-2p bands going down
in energy by about 0.5 eV, with V-3d states remaining
almost unchanged. We also note that the overall band-
shapes are practically unchanged in comparison with
the conventional LDA bands. The same is of course
true for densities of states presented in the left panel
of Fig. 7.
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Another example of a paramagnetic strongly cor-
related metallic system widely treated by the LDA+
+DMFT approach is SrsRuO, with the Ru-4d* t2g
subshell (see Ref. [44] and the references therein).
SroRuQy is a layered perovskite with an ideal body-
centered tetragonal crystal structure. For LDA and
LDA’ calculations, we used settings described in
Ref. [44]. LDA (dashed lines) and LDA’ (solid lines)
band dispersions and DOS are plotted in Fig. 7 (right
panel). The picture here is not as simple as for SrVOs;.
The Ru-4d states, crossing the Fermi level, almost
preserve their energy positions and dispersions within
LDA’. However LDA’ leads to the |Eq — E,| splitting
because of a nonuniform narrowing of O1-2p and 02-2p
states, together with a slight shift of O2-2p states. In
total, the |Ey — E,| energy splitting is about 0.5 eV
larger in LDA’ than in conventional LDA.

5.2. LDA4+DMFT and LDA'4+DMFT DOS

In contrast to previous works (Refs. [40-44]), we
here used the full TB-LMTO-ASA-calculated LDA and
LDA’ Hamiltonians, not invoking any of the widely
used projection techniques. In QMC calculations, the

8*
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Fig.8. Densities of states calculated with LDA+DMFT
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SrVOs. The Fermi level is zero

inverse temperature was taken to be f = 10 eV ™!,
with 80 time slices for SrVQOs; for SroRuO4, we used
B =15 eV ! with 64 time slices. The Coulomb param-
eters were taken to be U = 6.0 ¢V and J = 0.7 eV [26]
for SrVO3 and 3.2 eV and 0.7 €V for SroRuO4 [14]. The
number of Monte Carlo sweeps was of the order of 10°.
To obtain DMFT(QMC) densities of states [31] at real
energies, we again used the maximum entropy method
[32]. To obtain the corresponding DMFT O-2p densi-
ties of states, the method of Pade approximants was
applied to perform the analytic continuation for the
DMET self-energy from Matsubara to real frequencies,
with a subsequent crosschecking of “MEM” and “Pade”
DOS to ensure the quality of the restored self-energy
for real frequencies.

In Figs. 8 and 9, we present the total and partial
densities of states for StVO3 and SraRuQOy4 calculated
in the conventional LDA+DMFT (dashed lines) and
LDA’4+DMFT (solid lines approaches). For both sys-
tems, the LDA’+DMFT results show lower positions
of O-2p states in comparison with LDA+DMFT. How-
ever, for SroRuQy, this does not reduce just to a rigid
shift of oxygen states by about 0.5 eV, as in the case of
SrVOs, but is a combination of some small shift with
nonuniform narrowing of oxygen bands. For SroRuQOy,
only the high-energy threshold of O-2p states moves
down by 0.5 eV.
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In consrast to Refs. [40-43], we observe very smooth
upper and lower Hubbard bands in V-3d DOS in both
calculations for SrVOjs (upper panel of Fig. 8). This
agrees well with the full orbital calculations reported
in Ref. [26]. Also in Ref. [26] it is shown that a smaller
value of E4. (if Eq4. is treated as a free parameter)
moves oxygen states down in energy, which leads to
better agreement with experiment (see the next para-
graph).

5.3. Comparison of LDA+DMFT and
LDA'+DMFT results with X-ray experiments

In Figs. 10 and 11, the LDA+DMFT (dashed lines)
and LDA’+DMFT (solid lines) calculated spectra for
SrVO;3; and SroRuOy4 are drawn. To obtain theoreti-
cal spectra from the total DOS, Gaussian broadening
to simulate the experimental resolution and Lorentzian
broadening to simulate lifetime effects, together with
multiplication with the Fermi distribution function,
were performed as described elsewhere [40-44]. In the
figures, emission (left side) and absorption (right side)
spectra are plotted.
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contributions. The Fermi level is zero

For both systems, we have reasonable agreement
with experimental data (circles) for valence and con-
ducting bands [41,45-47]. But the strength of the
quasiparticle peak is somewhat overestimated for the
valence band and underestimated for the conduction
band in both LDA+DMFT and LDA’+DMFT meth-
ods. The LDA’+DMFT results give a slightly bet-
ter energy position of O-2p states in comparison with
LDA+DMFT. In general, the results obtained by the
LDA’+DMFT method are in agreement with the pre-
vious LDA+DMFT works (see Refs. [40-44]).

To demonstrate the presence of the well-known
lower Hubbard band at —1.5 eV for SrtVOj3 [40-43] the
V-3d ty, contribution is shown by the thin line in the
left panel of Fig. 10. In Fig. 10 (right panel) for SrVOs3,
the LDA’+DMFT calculation shows a rather broad
shoulder around 2.5 eV instead of the upper Hubbard
band. This shoulder is formed by the ¢, (solid thin
line) and e, (dot-dashed thin line) V-3d contributions
that corresponds to previous works [40—43]. However,
the e, subband is also modified by correlations in our
case. It is shifted by about 1 eV (as should be the
case for completely empty states) and it has a smaller
width compared to the LDA one. For SroRuQy, it is
known that correlations lead to formation of a lower-
Hubbard-band satellite near —3 eV [44]. This satellite
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is also seen in the LDA’+DMFT results in the right
panel of Fig. 11 and is formed essentially by Ru-4d ta,
states (thin line).

6. CONCLUSION

This work continues our research of the double-
counting problem arising within the LDA+DMFT com-
putational scheme. The problem appears because some
portion of local electron—electron interaction is already
present in LDA calculations. Because DMFT method
gives an exact local solution of the Hubbard-like model,
double counting between the LDA and DMFT local
electronic interactions must be avoided. Despite 15
years of developing the LDA+DMFT method, there
is still no unique definition of this double-counting
term. This is because the LDA contribution to the
exchange correlation energy has no diagrammatic ex-
pression. Several different ad hoc definitions that are
currently available work well only in some particular
cases, for some particular compounds. Sometimes the
LDA+DMFT solution is wrong even qualitatively if the
double-counting term is chosen not carefully enough.
To overcome this problem, we proposed a consistent
LDA'+DMFT approach [13]. It uses a natural as-
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sumption of the explicit exclusion of the LDA exchange
correlation potential for correlated electronic shells be-
cause exchange-correlation effects are anyway taken
into account later by the DMFT computation. Then
the local interactions left out for correlated states in
the LDA' computation are only Hartree ones. After
that, the corresponding double-counting term of the
LDA’+DMFT Hamiltonian must be consistently taken
in the local Hartree form (FLL form).

In this paper, we present an extensive LDA’+
+DMFT investigation of typical representatives of two
wide classes of strongly correlated systems in the para-
magnetic phase: strongly correlated metals (StVO3 and
SraRu04) and charge-transfer insulators (MnO, CoO,
and NiO). For strongly correlated metals, where double
counting is not that severe, the LDA’+DMFT method
agrees well with traditional LDA+DMFT results with
an FLL double-counting type. The LDA’+DMFT
method gives a slightly better position of O-2p states
in comparison with experiment. The LDA’+DMFT re-
sults for charge-transfer insulators MnO, CoO, and NiO

are more interesting. CoO and NiO systems are found
to be metals in the conventional LDA+DMFT calcu-
lations, while LDA’+DMFT gives a proper insulating
solution. Transition-metal 4s-states missed in previous
LDA+DMFT works on these monooxides are found to
be responsible for the charge gap asymmetry around
the Fermi level.

Finally, we can conclude that the proposed con-
sistent LDA’+DMFT method works well for both
metallic and insulating systems. We believe that our
LDA’+DMFT method provides a reasonable parame-
ter-free treatment of the double-counting problem.
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