ZK9T®, 2013, rom 143, BoIm. 3, cTp. 476-485

© 2013

DIRAC TENSOR WITH HEAVY PHOTON

V. V. Bytev®, E. A. Kuraev®, E. S. Scherbakova®""

® Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research
141980, Dubna, Moscow Region, Russia

b Hamburg University
22767, Hamburg, Germany

Received January 26, 2012

For the large-angle hard-photon emission by initial leptons in the process of high-energy annihilation of ete™
to hadrons, the Dirac tensor is obtained by taking the lowest-order radiative corrections into account. The case
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case of collinear hard-photons emission and soft virtual and real photons is included; it can be used for the

construction of Monte-Carlo generators.
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1. INTRODUCTION

In the experiments with ete™ annihilation to
hadrons, the important role is played by the so-called
“returning to resonance” mechanism. It consists in the
emission of a hard real photon by initial leptons [1].

The Born contribution and the one-loop correction
are taken into account in the Dirac tensor (the cross-
symmetry partner of the Compton tensor — a bilinear
combination of the hard photon emission currents aver-
aged over lepton spin states and summed over photon
polarization states). Infrared divergences are param-
eterized by introducing the “photon mass” A. In the
final expression, it is removed in a usual way by adding
the contribution from additional soft photon emission.

We do not consider photon emission by the final
charged particles and the effects of charge-odd inter-
ference of virtual or real photon emission from leptons
and hadrons. Therefore, the Dirac tensor obtained in
this way is universal.

The paper is organized as follow. In Sec. 2, the
relation of the Dirac tensor to the cross section of ra-
diative annihilation of a lepton pair to hadrons is clar-
ified. We give the Born-level expression for the Dirac
tensor and derive the general form of the radiative cor-
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rection to it using the symmetry relation. In Sec. 3,
we obtain the contribution arising from the mass op-
erator of the positron and vertex function in the case
where a positron and a photon are on the mass shell.
In Sec. 4, we consider the contribution from the vertex
function to the case of an on-shell electron and the box-
type Feynman amplitude with an electron, positron,
and one of the photons on the mass shell. In Sec. 5, we
analyze the total result for the Dirac tensor, adding the
emission of additional soft photon contributions, which
provide the final result that is free from the infrared
divergences. The limit case of an almost collinear hard
photon emission is considered and some numerical es-
timates are given.

We give the hadronic tensor for several final states:

AN AT A

In Appendices A and B, the details of the calculation
are presented. In Appendix C, the contribution to the
Dirac tensor in the case of the emission of two hard

N

photons is given.

2. GENERAL ANALYSIS

The Born-level matrix element of hard-photon emis-
sion by initial leptons in the process of e*e™ annihila-
tion to hadrons via a single virtual photon intermediate
state

(1)

et (pr)+e (p=) = v (@) +v(p1) = v(p1)+h(q)
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k1

Fig. 1. Diagrams contributing at the Born level

has the form (see Fig. 1)

(4ma)3/?
= ———0(p4)0P u(p-)H,(q),
P— —P1 —P+ + D ®
OE,B) = e+e Yo
—X- —X+

where é(p;) is the polarization vector of the real pho-
ton and H,(g) is the current describing the conversion
of a virtual photon with momentum ¢ to a hadronic
state. We restrict ourselves to the kinematic conditions
of large-angle scattering,

p; =0,
>0,

s = 2p+p—7 X+ = 2p1pﬂ:7
pi=m? s—x4—x-=¢,

s~ ¢~ Xy~ X > mE

(3)

In the expressions below, we set m 0 everywhere
except the denominators of loop integrals.

The cross section can be expressed in terms of the
modulus of a squared matrix element summed over spin

states:
Z |M|2 — (471_ ) 4B001HPP1
et (¢%)?
1. . A ¥
By, = Z’I‘rp+0pp70p1, Hyp, = Z H,(9)H

spin
The differential cross section can be written as

Z |M

spm

+e_—va 2 d pl

do® de,

Uy = (2m)*" [ pr +p- —p1 — Z%’ X (4)
f

! Eerom

For the differential hard-photon cross section, we ob-
tain

d3q;
2¢;(2m)3

_ 203
- s(q?)?

4 -
w1 do¢ " ¢ —vX

H,
Ppydly

PP

B

(5)

PP

ATT

where

Bpp1 = ngpm + B++ﬁ+p]5—p1 +B__p_ pP—py +
+B4_ (p p~+)pp17
(p+p7)pp1 = P4+pP—py +P4pD—p-

(6)

The quantities with the “tilde” are defined as

piq
P

gpm = Ypp1 — q_2qup17 ﬁip =DP+p —4p (7)

In the Born approximation (see Fig. 1), we have

Bl = ——(2s¢ + X +X°),
X+ X~
(8)
B B 4¢? B
BY, =B =——, BI=0.
X+X-
For ¢> = 0, we reproduce the Dirac cross section of
e"et — e
dl’ 2a x + x_
— (9)
dO, s YeX—

Below, we concentrate on the calculation of the one-
loop radiative correction to the Dirac tensor.

We show that in considering the corrections, only a
half of the full set of Feynman diagrams for process (2)
can be used. We set

- O- +

0,=0,+0,,
separating the contribution of emission from the elec-
tron leg O, and the positron one O; (see Fig. 1 for
the Born case and Fig. 2 for the one-loop corrections).

It can be shown that using the cyclic property of
the trace and the mirror property

Tr&1&2 .. .&Qn = T‘I’&Qn .. .dg&l,
the total contribution to the Dirac leptonic tensor can
be written as

TrpOMp_0F + Trp,0Pp 0L =

— (1+ 8,y )(1+P) e 05 p_0P. (10)
Here, the exchange operators act as
ApplFPm - FP1P?
IPF(p+,p,,p1) = F(—p,, —D+, _pl)a (11)

PF(S7q27X+7X—) = F(37q27X—7X+) = F.

Here and hereafter, we imply only the real part of the
leptonic tensor.
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Fig.2. Diagrams contributing at the one-loop level

3. ONE-LOOP CORRECTIONS. REAL
PHOTON VERTEX AND SELF-ENERGY
CONTRIBUTION

The virtual correction in the lowest order is de-
scribed by 8 Feynman diagrams shown in Fig. 2.

We segregate the contribution of the Feynman dia-
grams in Fig. 2e—h to the three classes

~ + AB _ b t 3
Trp+Op p*Om _Tpgf +T5§f +Tpplv

(12)

with 7% and TV corresponding to Fig. 2h, g and T~
to Fig. 2e, f.

We first consider the contribution to the matrix ele-
ment arising from the Feynman diagram in Fig. 2e, f.
The matrix element of the Feynman diagram in Fig. 2e
contains the mass operator of the electron X(p). In the
kinematics of our problem (y1 3> m?), we obtain [4]

(0% 3 1
M, = — | = - _
€ 2m <2 21 lA) x

_ L (—P++ D
ST
—X+
2
X+ m
lizlnw7 l)\zlnv7
where )\ is the so-called “photon mass”.
The matrix elements of the Feynman diagram in
Fig. 2f contain the vertex function with a real pho-

ton [4],

a d*k
My=vlps) [ ——
o b = B) (e + D1 = )P (P + D0
(0)(2)(a)
1
X u(p—
—X+

We here use the notation in (36).

Using the relevant loop integrals obtained in [3] (see
the Appendix), we have matrix elements of the Feyn-
man diagram in Fig. 2f, which contain the vertex func-
tion with a real photon [4]

a 1 1
My=—0 —— |l — = ) pré
f QWU(IM) e (+ 2)1716 +
. 1 3\| =P+ +p
+é <lA — Sl - 5) TP TP u(po). (14)

—X+
As a result, we obtain the gauge-invariant expression
free of infrared divergences:

a _ ~
M.+ My = ;‘P+U(p+)p1€7pu(p7)v

T T 2)

Inserting this expression in the relevant part of Oj
yields

Ty = =@ T pipryavoh- X
1 . . 1 . .
X =B = P1)Vor + 0 (—D4 +p1m} , (16)
X- X+
where we use the relation
pip = (p+ +p-)p
and the gauge invariance of the hadronic tensor,
quHu, = 0.

Expression (16) containing the contributions of dia-
grams in Fig. 2e, f can be written as

2
q
T,il = —40, [2p—pp—p1 (X_ - 1) +

# 2o (1) = =g - ()
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Applying the operation 1 +A,,, and 1+ P, we ob-
tain the full result

(1+ A, (1 +P)T,

P33
PP B 9pp1 +

+ Bgﬁfpﬁfm + B§ﬁ+pﬁ+p1 + B§7 (ﬁ+l§7)pp1a (18)

where

= [sc— x> = X3l + T,

B” = - (" = x- s + T,

X=X+

(19)

BY = - [® —x)ls + T

X=X+

BY_ =-

[q +s)ls+T
X,

c=><++x7

and we use the notation

sS—X—
T = -2 1+ 2,,] —
g pa [ Il]

_Qm[l + 2lm],
X

—[a? = X[+ 2Ly,

(20)

4 2
q — 1+ 2],
+ XX [ X+][ sm]

N
™
Il

2
X+X—

[s = x-1[1 + 2] +

_|_

S—=X 1+21sm7
——l [l 2L

lop=1ls — Loy lam =1y —1_.

4. VERTEX AND BOX-TYPE DIAGRAM
CONTRIBUTIONS

Contribution of the diagram in Fig. 2¢,h can be
written as

Tboz Tvert Sl ‘92 Cl CZ 21

pP1 pp1 T +— - -2 ( )
X- X+ X=X+ T

where

S, = / 1d'k Tr Byp—vn(P— — P1)Vps
4 im? (0)(2)(2)(a) ’
S, = / 1d'k Terp 7p1( 713—&- +ﬁ1)7n
4 ir? (0)(2)(2)(a) ’
4 :/1 d'k Terp '777(15 _151)'7p1
T I R
Cy = / 1d'k TI‘Vpp ’71)1( + +1§1)7n (22)
4 ir? (0)(2)(a) ’
By = pya(=p+ — k)yn(=p+ +P1 — k) x
X’)/p(ﬁ* - k)’y/\v
Vi = by (=D + 1) A (=ps + D1 — k) x
XYp(P— — 27)7/\-

Using the loop integrals listed in Appendix A, we ob-
tain

Tboac Tvert

oo YL op = DgGpp,+D_p_pp—_p, +D Dy pDip, +

+ Dy —pipp—ps + D—ip—ppip,- (23)
Applying the interchange operator 1+ A,, and 14+ 7P,

D(XJMX*) = PD(X*?XJr)a

and rearranging the gauge invariance then leads to

(1+A,,)1 +7’)(T£’3f” Tl;)lflrt) BVngpl +
+BYPp by + BYPpipbipy + BLE (51D ) ppu s
where
B)? =2(D,+ D,), BYP =2(D_+D,),
BY® =2(D; + D_), (24)

BYB =D, +D_,+Dy_+D_,.
Here, by construction,

VB _ BVB VB _ RVB VB _ RVB
B, " =By BY® =B”, B{Z=B!] (25)

)

and the BY'P are given by

4sc — 8s? 2v2 + 2x2 — 4sc + 452
B;/B: sc — 8s I+ X2 +2x3 sc+4s o
X=X+ X=X+

X [I2+2(1, = Dix =]+ T, 7,
8y, —8
pve _ S8, 8 [12+2(1 —)l\—1+TV B,
X—X+ X=X+
8x—_—8s 8q>
BYB = I+ 421, 1)Ix=1]+TV B,
- voxr T et 2D T
4 2
pyp—AsEd); qve
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where the expressions T,V contain nonleading terms.

These quantities contain the ultraviolet cut-off loga-

rithm
2

L:IDW7

which is eliminated by the standard regularization pro-
cedure [4] L — 21, — 9/2.

Collecting the leading terms that contain the large
logarithm [ and the infrared one [y, we obtain

(BY P+B)icading = 2BY (1242(1,—1) Lx—31,),
(BKB + Bi)leading = (B‘_/B + B%)leading -

=2BP(1s* + 2(I; — 1)Ly — 31,),
(BVB + B

(26)

)leading =0.

5. DISCUSSION: EXPLICIT FORM OF
TENSOR STRUCTURES

The infrared divergences contained in the contribu-
tion of virtual photon emission are canceled when the
emission of an additional soft photon (center-of-mass
of eTe™ is implied) is taken into account,

dgzoft = 6soft dop,

; __‘“f_a/dg_k 2N TR
soft = T 16rs w p k  pik) (27)
w< Ae K ?,
where

w=Vk?+ \2.

Using the standard integrals, we obtain

a AE 1, =°
5soft = ; |:(ls—].) (l,\+2 ln F) +§ls—?:| . (28)
Summing all contributions, we find the Dirac tensor in
the form

By, = (Bfgpm + B+B+ﬁ+pﬁ*p1 + Biﬁ*ﬂﬁ*pl) X
a 3 AE a w2 3
X |:1-|-;(ls—1) <2+21 i ) -I-; <—?+§):| -

a N .
- E[ngpm + T p—pp—p, +

+ T4 pipbypy + T (PrD)pps]-  (29)

The quantities

Ti — TiE + TiVB

are free from infrared singularities and do not contain

large logarithms. The T;° are given in (20) and the

(2
TYB are given in Appendix B.

Expressions for T; contain additional nonphysical
singularities Y32 and y3>. Nevertheless, we can ver-
ify the cancelation of the terms proportional to Xf
with the structure G (see Eq. (54)) and terms y1” in
the contraction of T;. For definiteness, we consider the
case of small values of x_,

m’ Ly L5~ ~xg
It corresponds to the kinematics
p1 = Yp—.

In this case, the nonleading terms containing poles can
be put in the form

(T- + 7Ty — 29T )P pP—py s

X (30)
y =",
S

ngppl
g =1- Y,

and this combination contains only the lowest-order
pole x—!. The Dirac tensor in the limit

m2<<x,<<3

has the form

lim B,lim
Blim — BBl {1+ (Is — 1) ( +2In >+
Lo(3_m\] L
™\ 2 3
O lim (5 47 .
ETé (g + p p p1>7 (31)
where
im 1+y
B/ﬁ)ll = <gppl Pp 1)1)7

=1—-ux, :_7

T
piim = 1 (46— 18y + 10y +4(1 +7%) x (39
g Y (32)

. 1 2
X <lngln%—L12 (q) —7) —
— 8yglny + (=12 + 20y — 14y?)In gj) .

In Fig. 3, xyT;im is presented as a function of y at x =
= 0.1. The obtained formula has a power accuracy, and
we systematically omit the terms of the order of m?/s
compared to terms of the order of unity.

A cross-channel Compton tensor with one real and
another virtual (space-like) photon with terms of the
order of m?/s were taken into account, has similar
properties [5].
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Fig.3. 2yT.™ as a function of y at z = 0.1

6. SAMPLES OF HADRONIC TENSORS

The hadronic tensor is a bilinear combination of ma-
trix elements M,M; summed over spin states, where
the current M, describes the conversion of a heavy
time-like photon to some set of hadrons. In the case
of creation of a pair of charged pseudoscalar mesons
(rtn~, KTK~,...), we have

Hpd= = (0% =205 = 12)ps 4 =15 +12.
For the conversion to a pair of charged spin-1/2
fermions,

v = (o) + 1 (po),
we have

2
q
Hii= =4 [pfppmpl + i, p", — ?gppl] . (33)

For the creation of a pair of charged vector mesons
pTp~, K*TK*~, we obtain

dpq
g = s (- 902

+ s - aplas — ) (3-504 3) L G0

q2

N=—35, 4= G+ +qp—- (35)
P

m

The gauge invariance requirement

Hpp ap = Hpp,qp, =0

is fulfilled.

6 ZKIOT®, Beim. 3

E. A. K. is grateful to Hamburg University, II In-
stitute for Theoretical Physics, where the most part of
this work was done, for the warm hospitality in Novem-
ber 2011. We are grateful to Yu. M. Bystritskiy for
help and to V. Tayursky and V. Druzhinin for the in-
terest in this problem. Also E. A. K. acknowledges
the support from the RFBR (grants NeNe12-02-31703
and 11-02-00112), and Belorussian 2011 and Heisen-
berg—-Landau 2011 grants.

APPENDIX A

One-loop Feynman integrals

Here, we present the result of calculation of 4-fold
integrals associated with a one-loop Feynman diagram.
Here and below, we imply only the real part of inte-
grals. The denominators of the integrals are defined
as

(0) = k2 - )‘27
(2) = (p— — k)> —=m?> +i0 = k* — 2p_Fk + 40, (36)
(2) = (=py — k)* —m® 410,
(q) = (p1 — py — k)? —m? +0.
The four-denominator scalar integral
1 d*k
Iyssg = | dkoee—, dk = — 37
o= [ B O
has the form
1
Tpozg = — %
SX+
2 2
9 . q 5w
X |:lq — 2l+ls — lsl[ + 2L12 (]. — ?> — T:| s (38)
where the logarithms were introduced in (2) and
2
q s
lq=1nm7 lszlnm. (39)

For the three- and two-denominator scalar integrals

o = [ dbs. (40)
where
r = (ij), (ijk), (ijkl)
with
i,j,k, 0 = (0)7 (2)7 (Q)v (Q)a

we have the expressions
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1 272

Im=—ﬁzﬁ gﬁv
1 472
Iz = %% {li + 200 — 3 ] )
1
I2§q = 2(8 — qg) [ZZ li] ) (41)
I ——L—Pa—m+hw4ﬁ+
02q — i —l—q2 q\lq + g \"e +
. X+ 3r°

The two-denominator scalar integrals are

Ip=L+1, Ly=L—l,41, Iy=L-1I,+1,

Ipy=L+1, Ip=L—-L,+1, IL,=L-1

The vector integrals can be defined as

-

For the vector integrals with two denominators, we
have (the imaginary part is neglected):

d*kk*

=afdf +aydt +alpl. (42

a;q_a%q: a;q:%<L_lq+%>’

b= oy =3 (L=1s+3).

ays = —a;'é = % (L — s+ %) , (43)
a%qz—ga{]:% L—g>,

a52=% —i, aogz—%LwLi

and the coefficients for the vector integrals with three
denominators are

1 2 i
— (X+I02q + —X+ l+ + 7X+ lq) 5
a a a

a(;2q =
+ 1 1
Qpag = —Qp2q = E (l-i- - IQ) )
1
g = = (L +2), a=xi e
1 _ 1 (44)
+ 7 —
gy = ~lozg = —l4, Gy = —agys = s,
1 1
a2§q = E (ls lq) s a;%q = _I2§q + E (ls l(I) )
s 1 2s
a’%?q = Elﬁq + - (=lg+2) = = (s =),
c=s—q¢ =x4+x-

Finally, the coefficient of the vector integral with four
denominators has the form

a' =2 (x+A+x-B - s0),

@t =2 (s A= B +5C),

a = % (=x+A+x-B+sC), d=2sy4x—, (45)
A =TIy, — lyzg, B = Inzg — sz,

C= Inog — Ipoa — X+[02§q~

The second-rank tensor integrals can be parameter-
ized in the form

kuk
I = /dk% = [aﬂg +ay pipr +af Targy +

+a;7q-q- +ay T (pigy +qipr) +

1—

+a, " (pra- + q-p1) + o " (qra- + q-q4) (46)

N

The coefficients for the tensor integral with four de-
nominators are (we omit the index 022¢)

1
a't = — (4g + A7 — Ayp),
X+
_ 1
a+ ZE(A2+A6—A10),
L1
a =— (A2 + A7 — Ayo),
11 1 1+ 4
¢ = — (Al — Sa ) N ( 7)
X—
1 .
o == (As — x4a'7),
1
gttt =2 (A3 _X7a1+) ,
S
1
ag = 5 (Alo — A2 — X+a1+) s
with
Al a%?q a(l)ﬁq’ A6 = aE)i_2q - a;ﬁqa
Ay =ay; A7 = agy, — x40,
A3 = a;%q - a(J)%q’ A8 = aa2q - a(;2§ — X+G ", (48)
A4 = a(1)2q - a’%?q’ Ag = a0+2q - a0+22 - X+a+7
A5 = a(;2q - a;§q7 AlO = IQQq'

For the tensor integrals with three denominators
I}y, we have the coefficients!)

482
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1 3 ¢ X+
9 = S ATy
o2 =TT A T
L rx
- 1— +
aE)i_Zq = —Qgq = % [7(14- —lqg) — 1] )
1
N | R E O e S
Go2q = @02¢ = “f02¢ = 5 (lg = 14), (49)
2
—— X
Go2¢ = 2 X2 Jozg + T+l+ -
@2 AP 3G, 43
2a ! 2 '
The coefficients entering the tensor integral 152,/2 are
1 3
U/g2§ = Z(L — ls) + §7
1 1 (50)
++ _—= += _
(o3 = gaz = Q_S(ZS D), a5 = Tog’

and the coefficients for the tensor integral I(‘)%”q are

1 3 ., 1 5
agiq:Z(L_l+)+§’ ao2q:;(l+_§>a
1
03g = K(_M +2), (51)
1
ag;' = IOQq + %(314_ — 1)
In the case of the tensor integral I;g’m they have the
form
11 3 s 7
A ey AL S Y
224 2[2 1% +2c‘1]’
L 1
Uyzq = =50 la = Ls),
++ 3 - _ 1
a2§q = 12’q + %(lq ls), a2§q = %(lq — ls),
1 1 s s
1
5, — — |73 _ls —I )
22q c [ 2 + 2¢ 2c q] (52)
1 5 58 2¢® + 3s
4+ _ L2 285
Uy2q = c [ 2 5Tz, + QCls 2c lq] ’
1 . 35>
a;%q = c—2 |:48 - qZ + SZIQZq - - ls +
352 — (¢®)? + 4s¢®
Iyl .
* 2¢c 1

483

APPENDIX B

Explicit form of coefficients of nonleading
tensor structures

We have

TVB —

g (1+7P) [ao + aylsg + aslyp + aslsy +

2
1- L

q>+
S

+ aglsqlsp + aglfq + a9 Lig (

2
+ aip Lis <1 + E—;) - 4‘;%G] . (53)

where
2 2
ap = &= [—10X—++22i—4 S
3 X— X—  X4+X-
2
-\ 7 M S
X-— X—  X+X-
4 852
a =22 p10Xt _90 4 2
c X-— X—  X4X-
_ 6(s —x+)
az = > 9
q° + X+
4y_ 4 4s 4s
ag = —X= _ZX+ 25 25
X+ X- X+ X-
4xy_-  8s 4s 85>
ag=——""—+—+——
X+ X+  X- X+X—
2y  6s 452
ag = —— — —
X— X—  X+4X-
12 852
ag = —4Xt 4 %8 5
X—  X—  X4+X-
4 2
g =aXt A5 85 8
X— X+ X— X+X-
> X
G = Li (1——) + Lip (1+—j> +
$ q
1, w2
+Laglop = 505 + T

We note that in the limit y_ — 0, the quantity G

vanishes. Next,
V% =pTV?
TYVB = by + bylsg + balyp + balsm+

+ balsp + bslsglom + belsglsp + brl2, +

2
+ bg Liy (1—q—> + bg Lis <1+X—2_> +
§ q
+ b1g Lis <]. + z—j) —
_ 3 2
X+X= X+ X—

(55)
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where
16 s 52 32 48
SO
& X+ X3 X+ X-
60s 165> w2
— 3 + -
X+X—  X3ix- 3
44 44 4 s s
[——+——+~%§—44 82 4
X+ X— XZ X+X - X—
$2 2
tA0— 44— +
Xix- x4
1 4 4s
+—————3-<—84—¥&t4———>,
X+ +¢q X— X+
165 s 52
SRR
c X+ X%

16 s 252 s°
+=(1-—+ 5+ -
X+ X3 XFEX-
20 32 32x4  8s 64s
Ty T e tat
X+ X— X= X3 X+ X-=
48s 4852 3252 8s3

S + —,
Y2 Iy xaxi o A2

b ! < Sy + 45 1y ) +
2= 75 5 | —OX+ — S
(¢ +x+)? X~
2 4
: (4 4 X % _ _8> ,
q° + X+ X— XZ X+
4 4 8s 4s 8s2
by=————— 5 — 5
X+ X— X+ X+X— X3X—
16 12 24 12s 24s 82
by = —+—+ >2<+————2 — 5
X+ X- X— X+X—= X X+XZ
8 8 8s 852
b5 = - - + B} y
X+ X— X+X- XFEX—
16 16 & 16s 16s ]s2
b = —+—+ - — P
X+ X— XZ X4+X- XZT  X4+XZ
12 12 4 12s 8s
bp=——— — A +— —
X+ X— XZ— X+X— XZ—
452 452
ix-  xex2’
24 24 8 24s 165
by = —+ — 5 T 2
X+ X- X+X= X+X- X=
8s2 8s2
D) + 30
Xix- o x+x2
8 8 8s 8s2
bg = —— — — —
X+ X— X+X— XFEX—
16 16  Sys
bjop=—-——————

16s 16s 8s2
+— - 5
X+X— X= X+X=

Finally,

TX,B = (1+P) <Co+Cllsq+63lqm+64lsm+6613qlsm +

q2
—+ Cglgq —+ Co L12 (]. — ?> +

_ 2
-+q0m2<y+%§>-§ii—ﬁiLG>7 (57)

X+x2
where
8 < 52 4 6 10s
co=-(1- - -
c X+X— Q-+ Xx- X— X+X—

—8s 52 1 1252
o=—2(1- (8- +
c xx-/) e XX

+i_8X++ 16s +24s 2452 453

PED G T D G 5 D i

—4x_ 12y —
(@ +x-)?  x+(®+x-)’
Sy 8 4 165  8s 852
+ 3 =
X3+ X+ X—=  XT:  X+X— XZX-

2
(56) %:_Q;_ﬁ+ ?’
X3 X+ X3 X-

4 Axs 45>
D VI

X- X X+XZ

8 8x+ 8s2

APPENDIX C

Two-hard-photon large-angle emission by the

initial leptons

The cross section of two-photon emission by the ini-

tial leptons
T(p1) + " (p=) = v(p1) + v(p2) + hadr(q)
has the form

do® _ 1 a' H,Op)
dr, — 2'27%s  (¢2)?

d’py d*p:
X P pz, wi,ws < Ag,
wr w2
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(58)

(59)
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Dirac tensor with heavy photon

where the factor (1/(2!)) takes the identity of final-state
hard photons into account. The relevant contribution
to the lepton tensor is

QEJQp)1 =7 Trp+012pp ng’

071 =~ P— — D1 — P2 77715——1317,, N (60)
12p 4 d_12 d—l
ob-— D2 _, n P+t D2,
+7 d_» 7)+<7 dyo v+
o —P+ +P1 —Pir +P1 + Do
+1 +12
+t o V7 (=D+ + P2)p(P— —P1)Y" +
—1d42
+ d72d+17"(—15+ +P1)7p (P — P2)77,
and
d_12 = (p— —p1 —p2)* —m?,
d*l = (p* _p1)2 - m27
d—2 = (p— _p2)2 - m27 (61)
dy12 = (—p+ +p1 +p2)® —m?,
dy1 = (—py +p1)” —m?,
diz = (p+ +p2)* —m’.

The tensor Qf)Qp)l obeys the gauge invariance
QPPI 9 = me Tpr =

and can be put in the form

Q2 = Agfpp, +[A_p_p— + Aspips +
+ Apkiky + Ay (Pepo +D-Py) +
+ A (PP +P1P+) + A1 (P-p1 + P1P-)pp, - (62)

The coefficients A; can be obtained standardly, by con-
structing the values

By,Bi1, By, B——,... =
= me [gpm s P1pP1p1 s P4+pP4p1s - - ]

and solving the set of seven linear equations.
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