АНАЛИЗ ПОСЛЕДОВАТЕЛЬНОСТИ ПЕРЕХОДОВ ДИЭЛЕКТРИК–МЕТАЛЛ ПРИ ВЫСОКОМ ДАВЛЕНИИ В СИСТЕМАХ СО СПИНОВЫМИ КРОССОВЕРАМИ

С. Г. Овчинников*

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> Сибирский федеральный университет 660041, Красноярск, Россия

Поступила в редакцию 4 июля 2012 г.

Рассмотрены возможные варианты переходов Мотта–Хаббарда в системах со спиновыми кроссоверами. Вследствие неуниверсальной зависимости эффективного параметра Хаббарда $U_{eff}(d^n)$ от среднего числа d-электронов, обусловленной спиновыми кроссоверами, для систем с d^3 -, d^6 - и d^8 -конфигурациями возможны каскады переходов диэлектрик-металл–диэлектрик. Более того, для систем с d^6 -конфигурацией возможен переход из металла в отсутствие внешнего давления в диэлектрик при высоком давлении.

DOI: 10.7868/S0044451013010141

1. ВВЕДЕНИЕ

Как известно, сильные электронные корреляции расщепляют одноэлектронную зону в модели Хаббарда на нижнюю (LHB) и верхнюю (UHB) хаббардовские подзоны. В обычной модели Хаббарда с орбитально невырожденной зоной полушириной W и кулоновским параметром U в режиме сильных корреляций, $U \gg W$, диэлектрическая щель $E_g =$ = U - W может уменьшаться с ростом давления Pиз-за увеличения ширины зоны 2W(P), что может привести к переходу Мотта-Хаббарда из диэлектрического в металлическое состояние при достижении критического значения $W_C = aU \ (a \sim 1) \ [1,2]$. Физической причиной роста W(P) может быть уменьшение межатомного расстояния под воздействием внешнего давления либо «химического давления» при изовалентном замещении в ряду твердых растворов. Параметр U, имеющий внутриатомное происхождение, считается не зависящим от давления.

Ситуация может измениться в многоорбитальных моделях Хаббарда, которые можно применить для описания моттовских диэлектриков на примере соединений 3*d*-металлов с преимущественно ионным типом химической связи (оксиды, галогениды

и т. п.). Для таких веществ идеи, заложенные в модели Хаббарда, должны быть дополнены учетом возможных многоэлектронных конфигураций d^n и анионных sp-состояний. В низкоэнергетической области эффективный гамильтониан может быть записан в виде обобщенной модели Хаббарда, в которой вместо атомных состояний Хаббарда d^0 , d^1 и d^2 фигурируют многоэлектронные конфигурации d^{n-1} , d^n и dⁿ⁺¹ [3]. Аналоги нижней и верхней хаббардовских зон в атомном пределе W = 0 имеют энергии $\Omega_v =$ $= E_0(d^n) - E_0(d^{n-1})$ и $\Omega_c = E_0(d^{n+1}) - E_0(d^n)$, где $E_0(d^n)$ — энергия нижнего терма для конфигурации dⁿ. Предполагается, что рассматривается ситуация со средним числом электронов $\langle n_d \rangle = n$. Щель между UHB и LHB определяет эффективный параметр Хаббарда [4]

$$U_{eff}(d^n) = E_0(d^{n+1}) + E_0(d^{n-1}) - 2E_0(d^n).$$
(1)

В дальнейшем ограничимся рассмотрением именно диэлектриков Мотта – Хаббарда, в отличие от диэлектриков с переносом заряда [5].

Для d^n -ионов в кристаллическом поле кубической симметрии возможны различные варианты основного состояния в зависимости от соотношения между хундовским обменом J и величиной расщепления в кубическом поле $10Dq \equiv \Delta$ [6]. Параметр Δ также зависит от межатомного расстояния и растет при увеличении давления. Поэтому давление мо-

^{*}E-mail: sgo@iph.krasn.ru

жет индуцировать спиновые кроссоверы, как правило, из высокоспинового (HS) в низкоспиновое (LS) состояние (см. обзор [7]). Смена основного состояния d^n -иона может привести к изменению U_{eff} [8], причем эти изменения оказались неуниверсальными. Для конфигураций d^1 , d^2 , d^4 , d^9 величина U_{eff} не зависит от давления, для d^5 она уменьшается, а для d^3 , d^6 , d^8 растет с ростом P. Влияние ослабления корреляций для d^5 ионов Fe³⁺ на переход металл-диэлектрик было рассмотрено в работах [8, 9]. В настоящей работе мы рассмотрим, как влияет рост $U_{eff}(P)$ на переходы Мотта – Хаббарда для конфигураций d^3 , d^6 , d^8 .

2. ОБЩИЕ СООТНОШЕНИЯ

Поскольку относительные изменения параметра решетки обычно невелики, можно предположить линейную зависимость ширины зоны и кристаллического поля от давления:

$$W(P) = W_0 + a_W P, \quad \Delta(P) = \Delta_0 + a_d P. \quad (2)$$

Для конкретных соединений барические производные a_W и a_d могут быть найдены из расчетов *ab initio* (для FeBO₃, например, в работе [10]) либо рассматриваться как эмпирические параметры.

Мы не ставим своей целью развитие теории перехода Мотта в модели Хаббарда, эта задача решилась ранее многими методами: расщеплением высших функций Грина [11], в приближении когерентного потенциала [12], диаграммной техникой для операторов Хаббарда [13], динамической теории среднего поля (DMFT) [14]. В последнее время наиболее точные результаты получаются с помощью кластерных теорий возмущений [15], в частности, кластерным DMFT-методом [16, 17]. Конкретное значение критического значения, которое зависит от приближений, нас в данном случае не интересует, поскольку $a \sim 1$ и мы ограничиваемся лишь качественным анализом. Поэтому для простоты мы положим a = 1, тогда с учетом зависимости ширины зоны и эффективного параметра Хаббарда от давления критерий перехода металл-диэлектрик в точке перехода $P = P_M$ запишем в виде

$$U_{eff}(P_M) = W(P_M). \tag{3}$$

Другая характерная точка на шкале давлений дается спиновым кроссовером при $P = P_S$. Критическое значение P_S определяется из равенства энергий высокоспинового (HS) и низкоспинового (LS) термов. Согласно работе [6], для d^3 - и d^8 -конфигураций HS-терм будет основным при всех значениях кристаллического поля. Однако спиновый кроссовер для d^4 -конфигурации, происходящий при $\Delta(P_S) =$ = 3J, изменяет согласно (1) величину $U_{eff}(d^3)$. Аналогично, для d^8 -ионов HS-состояние стабильно при

всех Δ , но спиновый кроссовер для d^7 -конфигурации при $\Delta(P_S) = 2J$ меняет $U_{eff}(d^8)$. Для d^6 -ионов зависимость $U_{eff}(d^6)$ от давления более сложная, так как спиновые кроссоверы возможны для d^5 -, d^6 -, d^7 -конфигураций.

Ниже мы рассмотрим возможные варианты переходов отдельно для d^3 -, d^6 -, d^8 -конфигураций d-иона.

3. ВОЗМОЖНЫЕ ПЕРЕХОДЫ МЕТАЛЛ-ДИЭЛЕКТРИК ДЛЯ СИСТЕМ С d^3 -ИОНАМИ

В этом случае зависимость $U_{eff}(P)$ дается соотношением [8]

$$U_{eff}(d^3) = \begin{cases} U - J + \Delta, & P < P_S, \\ U + 2J, & P > P_S. \end{cases}$$
(4)

Величина $P_S = (3J - \Delta_0)/a_d$. Обозначим $U_0 = U - J + \Delta_0$. Анализ начнем со случая диэлектрического состояния при P = 0, когда $U_0 > W_0$. В этом случае с ростом ширины зоны W(P) всегда будет происходить переход диэлектрик-металл, как и ожидается в классической теории мотт-хаббардовских переходов. Однако в зависимости от соотношения параметров этот переход может произойти как в HS-состоянии (линия 1 на рис. 1*a*), так и в LS-состоянии (линия 2). Первый случай реализуется при $a_W > a_d$ и

$$\frac{a_W}{a_d} > \frac{U+2J-W_0}{3J-\Delta_0},\tag{5}$$

при этом переход диэлектрик-металл происходит в точке

$$P_M^{(HS)} = \frac{U - J + \Delta_0 - W_0}{a_W - a_d}.$$
 (6)

При нарушении неравенства (5) переход в LS-диэлектрик будет при давлении

$$P_M^{(LS)} = \frac{U + 2J - W_0}{a_W}.$$
 (7)

Если левая и правая части в (5) равны, то точки перехода диэлектрик-металл и спинового кроссовера совпадают, $P_M = P_S$.

Более интересная ситуация имеет место, когда исходное состояние при P = 0 металлическое (рис. 16). Кроме тривиальной стабильности металла

Рис. 1. Зависимости от давления ширины зоны W (линии 1 и 2) и эффективного параметра Хаббарда для d³-конфигурации в случае диэлектрика (a) и металла (б) в отсутствие внешнего давления. Линиям 1 и 2 в случае a соответствуют переходы диэлектрик-металл соответственно в HS- и LS-состояниях. В случае б линия 1 показывает металл при всех P, а линия 2 соответствует последовательности металл-диэлектрик-металл

при всех P (линия 1), что реализуется при выполнении условия (5), возможна ситуация с двумя последовательными переходами металл-диэлектрик-металл в точках $P_M^{(HS)}$ и $P_M^{(LS)}$ при нарушении условия (5).

4. ПЕРЕХОДЫ МЕТАЛЛ-ДИЭЛЕКТРИК ДЛЯ СИСТЕМ С *d*⁶-ИОНАМИ

Для каждой из конфигураций d^5 , d^6 , d^7 , энергии основного состояния которых определяются $U_{eff}(d^6)$, возможны спиновые кроссоверы: HS \rightarrow LS для d^5 при $\Delta(P) = 3J$, и при $\Delta(P) = 2J$ для d^6 и d^7 . В результате схема уровней всех конфигураций

Рис.2. Схема энергетических уровней d^{5} , d^{6} , d^{7} -конфигураций в трех областях давлений, показывающая формирование $U_{eff}(d^{6})$: $a - \Delta(P) < 2J$, $\delta - 2J < \Delta(P) < 3J$, $b - \Delta(P) > 3J$. Числа указывают величину спина, крестиком отмечено состояние с минимальной энергией d^{6} -конфигурации, которое заполнено при T = 0, остальные уровни не заполнены. Стрелки показывают процессы рождения электрона $(d^{6} \rightarrow d^{7})$ и дырки $(d^{6} \rightarrow d^{5})$

различна в трех интервалах давлений: $\Delta(P) < 2J$, $2J < \Delta(P) < 3J, \Delta(P) > 3J$ (рис. 2). При T = 0все показанные уровни не заполнены, кроме основного состояния d^6 , отмеченного крестиком. Стрелками показаны процессы рождения электронов $(d^6 \rightarrow d^7)$ и дырок $(d^6 \rightarrow d^5)$, формирующие величину U_{eff} как разность энергий конечного состояния двух соседних ионов $d^5 + d^7$ и начального состояния $2d^6$. Следует обратить внимание на то, что закон сохранения спина запрещает (приводит к нулевым матричным элементам) возбуждения между термами $d^{n\pm 1}$ и d^n с разностью величины спина более 1/2. Так, при $2J < \Delta < 3J$ невозможно родить дырку из начального состояния d^6 , S = 0 в конечное d^5 , S == 5/2. Вместо этого ненулевой матричный элемент имеется у возбуждения d^6 , $S = 0 \to d^5$, S = 1/2. Таким образом, несмотря на разный порядок уровней в средней и нижней частях рис. 2, процессы формирования $U_{eff}(d^6)$ оказываются одинаковыми. В результате получаем рост U_{eff} вследствие спинового кроссовера:

$$U_{eff}(d^{6}) = \begin{cases} U - J, & P < P_{S}, \\ U - J + \Delta(P), & P > P_{S}, \end{cases}$$
(8)

где $P_S = (2J - \Delta_0)/a_d$. Заметим, что в нашей работе [8] эффекты матричных элементов не были учтены и приведенное там выражение для $U_{eff}(d^6)$ с дву-

Рис. 3. Зависимости от давления ширины зоны (линии 1 и 2) и эффективного параметра Хаббарда для d^6 -конфигурации и диэлектрического начального состояния в случае $a_W < a_d$ (a) и $a_W > a_d$ (б). В случае a линии 1 соответствует диэлектрик при всех давлениях, линии 2 — последовательность переходов диэлектрик-металл-диэлектрик. В случае δ линии 1 соответствует переход диэлектрик-металл, а линии 2 — каскад из трех переходов диэлектрик-металл-диэлектрик-металл

мя изломами некорректно, хотя общий вывод работы [8] об усилении корреляций вследствие спинового кроссовера остается справедливым.

На рис. 3 показаны различные варианты поведения системы при начальном диэлектрическом состоянии. При $a_W < a_d$ (рис. 3a) возможны два режима: стабильность диэлектрического состояния при всех давлениях (линия 1) имеет место, если

$$\frac{a_W}{a_d} < \frac{U - J - W_0}{2J - \Delta_0}$$

В случае нарушения этого неравенства (линия 2)

происходит два перехода: диэлектрик-металл в точке

$$P_M^{(HS)} = \frac{U - J - W_0}{a_W}$$
(9)

и металл-диэлектрик в точке спинового кроссовера P_S . Для реализации этого сценария необходимо условие

$$\frac{U - J - W_0}{2J - \Delta_0} < \frac{a_W}{a_d} < \frac{U + J - W_0}{2J - \Delta_0}.$$
 (10)

При $a_W > a_d$ (рис. 36) также возможны два варианта. При дополнительном неравенстве

$$\frac{a_W}{a_d} > \frac{U+J-W_0}{2J-\Delta_0} \tag{11}$$

имеет место переход диэлектрик-металл в высокоспиновом состоянии (линия 1) в точке $P_M^{(HS)}$. Если же выполняется условие (10), то происходит три перехода: из диэлектрика в металл в точке $P_M^{(HS)}$, из металла в диэлектрик в точке P_S и из диэлектрика в металл в точке

$$P_M^{(LS)} = \frac{U - J + \Delta_0 - W_0}{a_W - a_d} \,. \tag{12}$$

Возможные сценарии переходов из начального металлического состояния показаны на рис. 4. При $a_W < a_d$ (рис. 4*a*) и одновременном выполнении условия (11) металл переходит в диэлектрик в низкоспиновом состоянии в точке $P_M^{(LS)}$ (линия 1). Если же выполняется условие (10) (линия 2), то переходы металл-диэлектрик и спиновый кроссовер совпадают. В случае $a_W > a_d$ (рис. 4*b*) также возможны два варианта. При выполнении условия (11) металлическое состояние стабильно при всех давлениях (линия 1). При выполнении условия (10) (линия 2) имеют место переходы металл-диэлектрик в точке спинового кроссовера P_S и диэлектрик-металл в низкоспиновом состоянии в точке $P_M^{(LS)}$.

5. ПОВЕДЕНИЕ МОТТ-ХАББАРДОВСКИХ ДИЭЛЕКТРИКОВ С *d*⁸-ИОНАМИ

В этом случае

$$U_{eff}(d^8) = \begin{cases} U - J + \Delta, & P < P_S, \\ U + J, & P > P_S, \end{cases}$$
(13)

где $P_S = (2J - \Delta_0)/a_d$. В целом, поведение очень похоже на случай систем с d^3 -ионами. Схема возможных переходов описывается рис. 1, но с другими значениями характерных точек. Вместо неравенства (5) для d^8 -систем должно быть неравенство

$$\frac{a_W}{a_d} > \frac{U + J - W_0}{2J - \Delta_0} \,. \tag{14}$$

Рис. 4. Зависимость от давления ширины зоны (линии 1 и 2) и параметра U_{eff} для d^6 -конфигурации и металлического начального состояния при $a_W < a_d$ (a) и $a_W > a_d$ (б). В случае a линии 1 соответствует переход из металла в низкоспиновый диэлектрик, линии 2 — переход металл-диэлектрик, совпадающий со спиновым кроссовером. В случае δ линии 1 соответствует металлическое состояние при всех давлениях, а линии 2 — переходы металл

Значение давления перехода в высокоспиновом состоянии $P_M^{(HS)}$ по-прежнему описывается формулой (6). Для перехода в низкоспиновом состоянии выражение $P_M^{(LS)}$ изменяется:

$$P_M^{(LS)} = (U + J - W_0)/a_W.$$
(15)

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В классической схеме переход Мотта – Хаббарда происходит за счет уширения зоны при неизменном U. Такой схеме соответствует линия 1 на рис. 36.

10 ЖЭТФ, вып.1

Рассмотренные нами системы с d^3 -, d^6 -, d^8 -ионами характеризуются усилением корреляций с ростом давления, обусловленным спиновым кроссовером. Для d³-, d⁸-случаев рост ограничен и происходит в области высокоспинового состояния, для *d*⁶-систем он неограничен и происходит в низкоспиновом состоянии. Вследствие этого возможны каскады двух или трех переходов диэлектрик-металл-диэлектрик. При этом возникают такие необычные варианты, как существование диэлектрического состояния внутри ограниченного интервала давлений $P_{M}^{(HS)} < P < P_{M}^{(LS)}$ для d^{3} -, d^{8} -систем, вне которого имеется металлическое состояние (рис. 16, линия 2). Для d⁶-систем, наоборот, возможно металлическое состояние в области $P_{M}^{(HS)} < P < P_{M}^{(LS)}$ (линия 2 на рис. 3*a*), вне которого реализуется диэлектрическое состояние. Такой случай имеет место для магнезиовюстита Mg_{1-x}Fe_xO и подробно рассмотрен в работе [18].

Наиболее экзотичным представляется вариант, когда исходное металлическое состояние превращается в диэлектрик при росте давления (рис. 4a). В определенном смысле это противоположный сценарий к классическому переходу Мотта – Хаббарда. Традиционно мы ожидаем роста кинетической энергии с давлением и усиления металлических свойств. Если же U_{eff} растет быстрее, чем ширина зоны, что и характерно для рис. 4a, то, наоборот, с ростом давления увеличивается тенденция к диэлектрическим свойствам.

Работа выполнена при финансовой поддержке РФФИ (грант № 10-02-00251) и в рамках программы поддержки ведущих научных школ (грант НШ-1044.2012.2), программы Президиума РАН (2.16), а также СО РАН (проект № 96, 97).

ЛИТЕРАТУРА

- 1. N. F. Mott, *Metal-Insulator Transitions*, Taylor and Francis, London (1974).
- J. C. Hubbard, Proc. Roy. Soc. London, A 276, 238 (1963).
- В. В. Вальков, С. Г. Овчинников, Квазичастицы в сильно коррелированных системах, Изд-во СО РАН, Новосибирск (2001).
- J. Zaanen and G. A. Sawatzky, J. Sol. St. Chem. 88, 8 (1990).
- J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

- Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).
- 7. И. С. Любутин, А. Г. Гаврилюк, УФН **179**, 1047 (2009).
- 8. С. Г. Овчинников, ЖЭТФ 134, 172 (2008).
- 9. I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriliuk, and V. V. Struzhkin, Phys. Rev. B **79**, 085125 (2009).
- 10. С. Г. Овчинников, В. И. Анисимов, И. А. Некрасов,
 3. В. Пчелкина, ФММ 99, Прил. 1, 93 (2005).
- 11. J. C. Hubbard, Proc. Roy. Soc. London A 281, 401 (1964).
- B. Velicky, S. Kirkpatrik, and H. Ehrenreich, Phys. Rev. B 175, 747 (1968).

- 13. Р. О. Зайцев, ЖЭТФ 70, 1100 (1976).
- 14. A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
- 15. T. Maier, M. Jarrell, T. Pruschke, and M. N. Hettler, Rev. Mod. Phys. 77, 1027 (2005).
- 16. H. Hafermann, S. Brener, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, JETP Lett. 86, 677 (2007).
- 17. H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008).
- 18. С. Г. Овчинников, Письма в Ж
ЭТФ 94, 210 (2011).