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HYPERBOLIFICATION OF DYNAMICAL SYSTEMS:THE CASE OF CONTINUOUS-TIME SYSTEMSZ. Elhadj a*, J. C. Sprott b**aDepartment of Mathemati
s, University of Tébessa12002, AlgeriabDepartment of Physi
s, University of Wis
onsin, MadisonWI 53706, USARe
eived De
ember 9, 2011We present a new method to generate 
haoti
 hyperboli
 systems. The method is based on the knowledge of a
haoti
 hyperboli
 system and the use of a syn
hronization te
hnique. This pro
edure is 
alled hyperboli�
ationof dynami
al systems. The aim of this pro
ess is to 
reate or enhan
e the hyperboli
ity of a dynami
al system. Inother words, hyperboli�
ation of dynami
al systems produ
es 
haoti
 hyperboli
 (stru
turally stable) behaviorsin a system that would not otherwise be hyperboli
. The method of hyperboli�
ation 
an be outlined as follows.We 
onsider a known n-dimensional hyperboli
 
haoti
 system as a drive system and another n-dimensionalsystem as the response system plus a feedba
k 
ontrol fun
tion to be determined in a

ordan
e with a spe
i�
syn
hronization 
riterion. We then 
onsider the error system and apply a syn
hronization method, and �ndsu�
ient 
onditions for the errors to 
onverge to zero and hen
e the syn
hronization between the two systemsto be established. This means that we 
onstru
t a 2n-dimensional 
ontinuous-time system that displays arobust hyperboli
 
haoti
 attra
tor. An illustrative example is given to show the e�e
tiveness of the proposedhyperboli�
ation method.1. INTRODUCTIONGenerally, the dynami
s of a dynami
al system isinteresting if it has a 
losed, bounded, and hyperboli
attra
tor. In fa
t, the 
oexisten
e of highly 
ompli-
ated long-term behavior, sensitive dependen
e on theinitial 
onditions, and the overall stability of the or-bit stru
ture are the most important features resultingfrom hyperboli
ity. In strange attra
tors of the hyper-boli
 type, all orbits in phase spa
e are of the saddletype, and the invariant sets of traje
tories approa
hthe original one in forward or ba
kward time dire
-tions, i. e., the stable and unstable manifolds interse
ttransversally.The hyperboli
 theory of dynami
al systems iswidely used for 
hara
terizing 
haoti
 behavior of re-alisti
 nonlinear systems, but it has never been ap-plied to any physi
al pro
ess with a 
ontinuous-timedynami
s. Generally, best-known physi
al systems donot belong to the 
lass of systems with hyperboli
 at-*E-mail: zeraoulia�mail.univ-tebessa.dz, zelhadj12�yahoo.fr**E-mail: sprott�physi
s.wis
.edu

tra
tors [1; 2℄. Be
ause hyperboli
 strange attra
torsare robust (stru
turally stable) [3℄, it is interesting to�nd physi
al examples of hyperboli
 
haos, i. e., noisegenerators and transmitters in 
haos-based 
ommuni-
ations. Re
ently, some 
ontinuous-time dynami
alsystems were 
onstru
ted and 
on�rmed to be hyper-boli
. The proof was given based on the 
orrespondingPoin
aré map [4℄. The method most used for su
h a
onstru
tion involves 
oupled self-sustained os
illatorswith alternating ex
itation and invokes the numeri
alanalysis to visualize diagrams illustrating the phasetransfer [4�12℄, where an additional 
oupling allowstransfering the phases simultaneously from one part-ner to the other in order to obtain the desired 
haoti
map on a 
ir
le or a torus (robust hyperboli
 behav-ior). We note that some of the 
onstru
ted hyperboli
systems have six variables [9℄ or eight variables [7℄.Realisti
 examples of physi
al systems with hy-perboli
 
haoti
 attra
tors are of 
onsiderable signif-i
an
e be
ause they open the possibility for real ap-pli
ations of the hyperboli
 theory of dynami
al sys-tems. As far as we know, all examples of 
haoti
 hyper-boli
 
ontinuous-time systems were 
onstru
ted based397
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rete hyperboli
 
haoti
 maps. Infa
t, the many appli
ations of 
haos syn
hronization inse
ure 
ommuni
ations [3; 4; 6�23℄ make it mu
h moreimportant to syn
hronize two di�erent 
haoti
 systems[13�15; 17�19; 23�25℄. Also, it was shown in [26℄ thatthe fri
tionless motion of a me
hani
al system 
alledtriple linkage 
an be des
ribed in terms of a geodesi
�ow on a surfa
e with everywhere negative Gaussian
urvature. In fa
t, this system is expe
ted to have ahyperboli
 
haoti
 attra
tor in the presen
e of fri
tionand an appropriate feedba
k 
ontrol law. These two ex-amples show the importan
e of the hyperboli
 natureof dynami
al systems modeling real-world phenomena.In this paper, we present a new method forsu
h a 
onstru
tion based on a known 
haoti
 hyper-boli
 
ontinuous-time system and a syn
hronizationmethod, namely, the a
tive 
ontrol method presentedin [15; 17; 23; 25℄. An illustrative example is given toshow the e�e
tiveness of the proposed hyperboli�
ationmethod.2. HYPERBOLIFICATION OF DYNAMICALSYSTEMSIn this se
tion, we present our method for hyperbo-li�
ation of 
ontinuous-time dynami
al systems. Thisis a partial answer to a question posed in [27℄. Indeed,let x01 = f (x1)be a known hyperboli
 
haoti
 system regarded as adrive system, wherex1 = �x11; x21; : : : ; xn1 � 2 Rn :Let x02 = g (x2) + U (t)be the response system, where U (t) is a feedba
k 
on-trol fun
tion (in fa
t, the fun
tion U (t) depends on thetime t and the dynami
al variables x1 and x2) to be de-termined in a

ordan
e with a spe
i�
 syn
hronization
riterion. Let the error states beei = xi2 � xi1; i = 1; 2; : : : ; n:We then 
onsider the error system and apply the syn-
hronization method, and then �nd su�
ient 
ondi-tions for whi
h the errors (ei)1�i�n 
onverge to zeroas t!1, and hen
e syn
hronization between the twosystems is a
hieved. This means that we 
onstru
t a2n-dimensional 
ontinuous-time system with a robusthyperboli
 
haoti
 attra
tor.

The syn
hronization 
riterion used in this paper isthe a
tive 
ontrol method presented in [15; 17; 23; 25℄.We also use a 4-dimensional 
ontinuous-time dynami
alsystem as a drive system. This system 
orresponds tothe 3-dimensional Smale�Williams attra
tor, the 
om-posed equations studied in [4℄ and given byx01 = �2�u1 +�h1 +A1 
os 2�tN �x1 � 13x31;u01 = 2� (x1 + "2y1 
os 2�t) ;y01 = �4�v1 +�h2 �A2 
os 2�tN � y1 � 13y31 ;v01 = 4� �y1 + "1x21� (1)
whi
h were �rst introdu
ed in [8℄. System (1) is a non-autonomous nonlinear system 
onsisting of two 
oupledvan der Pol os
illators whose frequen
ies are !0 and2!0, where h1;2, A1;2, "1;2, and N are real 
onstants.System (1) exhibits a Smale�Williams-type strange at-tra
tor when it is represented by a 4-dimensional stro-bos
opi
 Poin
aré map. In this 
ase, the hyperboli
ityis veri�ed numeri
ally by analyzing the distribution ofthe angle ' between the stable and unstable subspa
esof manifolds of the resulting 
haoti
 invariant set. Sys-tem (1) has been 
onstru
ted as a laboratory devi
e [4℄,and experimental and numeri
al solutions were found.The response system is given by the general equa-tion x02 = f1 (x2; u2; y2; v2) + z1 (t) ;u02 = f2 (x2; u2; y2; v2) + z2 (t) ;y02 = f3 (x2; u2; y2; v2) + z3 (t) ;v02 = f4 (x2; u2; y2; v2) + z4 (t) ; (2)where fi (x2; u2; y2; v2), 1 � i � 4, are smooth fun
-tions. We assume that system (2) without the a
tive
ontrol fun
tions z1(t), z2(t), z3(t), and z4(t) displaysbounded solutions. The required smoothness of system(2) means that there is a derivative at every point. Theadvantages of smoothness 
an be seen in the fa
t thatthe lo
al pi
ture 
an be given by a derivative. Alsoin the hyperboli
 
ase, the 
on
ept of a tangent spa
e,whi
h splits into expanding and 
ontra
ting dire
tions,requires smoothness of the system under 
onsideration.The fun
tions z1(t), z2(t), z3(t), and z4(t) are the a
-tive 
ontrol fun
tions to be determined. Let the errorstates be e1 = x2 � x1; e2 = u2 � u1;e3 = y2 � y1; e4 = v2 � v1:398
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ation of dynami
al systems : : :Using the a
tive 
ontrol method, for the a
tive 
ontrolfun
tion U = [z1(t); z2(t); z3(t); z4(t)℄Twe obtainz1 (t) = ���A1 
os 2�tN � e1 + 2�e2 ���f1 ��h1 +A1 
os 2�tN �x2 + 2�u2 + 13x31� ;z2 (t) = �2�e1 + �e2 � 2�"2e3 
os 2�t�� (f2 � 2�x2 � 2�"2y2 
os 2�t) ;z3 (t) = �
 +A2 
os 2�tN � e3 + 4�e4 ���f3 + 4�v2 ��h2 �A2 
os 2�tN � y2 + 13y31� ;z4 (t) = �4�e3 + Æe4 � �f4 � 4�y2 � 4�"1x21� ;where �, �, 
, and Æ are real parameters to be 
hosensu
h that the error states ei, 1 � i � 4, 
onverge tozero, and the response system (2) be
omesx02 = ���A1 
os 2�tN � e1 + 2�e2 ++�h1 +A1 
os 2�tN �x2 � 2�u2 + 13x31;u02 = �2�e1 + �e2 � (2�"2 
os 2�t) e3 ++ 2�x2 + (2�"2 
os 2�t) y2;y02 = �
 +A2 
os 2�tN � e3 + 4�e4 � 4�v2 ++�h2 �A2 
os 2�tN � y2 � 13y31 ;v02 = �4�e3 + Æe4 + 4�y2 + 4�"1x21:
(3)

We note that equation (3) is an 9-dimensional dy-nami
al system (where t is a variable) relating solutionsof the drive system (1) and the response system (2).With the parti
ular 
hoi
e of the fun
tions z1(t), z2(t),z3(t), and z4(t), the 
losed loop system is given bye01 = (h1 + �) e1; e02 = �e2;e03 = (h2 + 
) e3; e04 = Æe4;whose eigenvalues are h1 + �, �, h2 + 
, and Æ. Then,for any set of parameters �, �, 
, and Æ su
h that� < �h1; � < 0; 
 < �h2; Æ < 0;the linear system for ei, 1 � i � 4, is asymptoti
allystable. This 
hoi
e leads to the error states e1, e2,

3
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tFig. 3. The dynami
s of syn
hronization errors states, ei(t), 1 � i � 4, for systems (1) and (4)e3, and e4 
onverging to zero as t!1, and hen
e thesyn
hronization between the general system (3) and the
haoti
 hyperboli
 system (1) is a
hieved. For the pa-rameters h1;2, A1;2, "1;2, and N with whi
h system (1)displays robust (hyperboli
) 
haos (for example N = 8,A1 = 1:5, A2 = 6, "1;2 = 0:1, and h1;2 = 0 as shownin [4℄), it drives another 
haoti
 attra
tor resulting fromthe general system (3), whi
h is also robust hyperboli
be
ause the system error between (1) and (3) 
onvergesto zero for large time t.3. NUMERICAL SIMULATIONIn this se
tion, we take the Lorenz�Sten�o systemgiven by x02 = �� (x2 � u2) + sv2;u02 = �x2y2 + rx2 � u2;y02 = x2u2 � by2;v02 = �x2 � �v2; (4)

as the response system and system (1) as the drivesystem. Here �; r, b, s 2 R are the bifur
ation pa-rameters of system (4). Lorenz�Sten�o system (4)des
ribes �nite-amplitude, low-frequen
y, short-wave-length, a
ousti
 gravity waves in a rotational system[28℄. The drive system (1) displays robust (hyperboli
)
haos for N = 8, A1 = 1:5, A2 = 6, "1;2 = 0:1, andh1;2 = 0 [4℄. Its attra
tor is shown in Fig. 1, and theresponse system (4) displays 
haos for � = 10, b = 8=3,s = 1619, r = 2289, with an attra
tor as shown inFig. 2.For the a
tive 
ontrol fun
tionU = [z1(t); z2(t); z3(t); z4(t)℄Tde�ned above, we 
hoose �, �, 
, and Æ as� = �1 < �h1 = 0; � = �0:5 < 0;
 = �0:25 < �h2 = 0; Æ = �0:5 < 0:The dynami
s of syn
hronization errors states ei(t),1 � i � 4, for systems (1) and (4) are shown in Fig. 3.400
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3

u2

x2
−3 Fig. 4. The 
haoti
 attra
tor of system (3) for N = 8,A1 = 1:5, A2 = 6, "1;2 = 0:1, h1;2 = 0, � = 10,b = 8=3, s = 1619, and r = 2289
Finally, it is 
lear that the syn
hronization error 
on-verges to zero, and therefore syn
hronization betweenthe two systems (1) and (4) is a
hieved. The solution ofthe response system (3) is shown in Fig. 4 (the largestLyapunouv exponent of this system is about 0:085).It seems that the dynami
s of system (3) is inspiredby the one of system (1). This fa
t is exa
tly the mainmeaning of the 
laim that system (1) drives system (4).We note that it is possible to use other syn
hroniza-tion methods su
h as those in [13�15; 17�19; 23�25℄ orother known hyperboli
 systems su
h as those in [4�12℄to generate 
haoti
 attra
tors with a hyperboli
 stru
-ture just like system (1).Finally, our proposed method to hyperboli�
ationof 
ontinuous-time dynami
al systems opens new dire
-tions in studying the nature of 
haos in these systemsand improves possibilities for robust real-world appli-
ations of hyperboli
 systems, whi
h are stru
turallystable. Stru
tural stability means the robustness ofsolutions of the governing dynami
al equations if the
hanges are su�
iently small.

4. CONCLUSIONWe have presented a new method to generate
haoti
 hyperboli
 systems based on the knowledge ofa 
haoti
 hyperboli
 system and the use of a syn
hro-nization te
hnique. This pro
ess 
reates hyperboli
ityin a dynami
al system and generates stru
turally stable
haoti
 attra
tors. An illustrative example is given toshow the e�e
tiveness of the proposed hyperboli�
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