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We present a new method to generate chaotic hyperbolic systems. The method is based on the knowledge of a
chaotic hyperbolic system and the use of a synchronization technique. This procedure is called hyperbolification
of dynamical systems. The aim of this process is to create or enhance the hyperbolicity of a dynamical system. In
other words, hyperbolification of dynamical systems produces chaotic hyperbolic (structurally stable) behaviors
in a system that would not otherwise be hyperbolic. The method of hyperbolification can be outlined as follows.
We consider a known n-dimensional hyperbolic chaotic system as a drive system and another n-dimensional
system as the response system plus a feedback control function to be determined in accordance with a specific
synchronization criterion. We then consider the error system and apply a synchronization method, and find
sufficient conditions for the errors to converge to zero and hence the synchronization between the two systems
to be established. This means that we construct a 2n-dimensional continuous-time system that displays a
robust hyperbolic chaotic attractor. An illustrative example is given to show the effectiveness of the proposed
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hyperbolification method.

1. INTRODUCTION

Generally, the dynamics of a dynamical system is
interesting if it has a closed, bounded, and hyperbolic
attractor. In fact, the coexistence of highly compli-
cated long-term behavior, sensitive dependence on the
initial conditions, and the overall stability of the or-
bit structure are the most important features resulting
from hyperbolicity. In strange attractors of the hyper-
bolic type, all orbits in phase space are of the saddle
type, and the invariant sets of trajectories approach
the original one in forward or backward time direc-
tions, i.e., the stable and unstable manifolds intersect
transversally.

The hyperbolic theory of dynamical systems is
widely used for characterizing chaotic behavior of re-
alistic nonlinear systems, but it has never been ap-
plied to any physical process with a continuous-time
dynamics. Generally, best-known physical systems do
not belong to the class of systems with hyperbolic at-

*E-mail: zeraoulia@mail.univ-tebessa.dz, zelhadj12@yahoo.fr
“*E-mail: sprott@physics.wisc.edu

tractors [1,2]. Because hyperbolic strange attractors
are robust (structurally stable) [3], it is interesting to
find physical examples of hyperbolic chaos, i.e., noise
generators and transmitters in chaos-based communi-
cations. Recently, some continuous-time dynamical
systems were constructed and confirmed to be hyper-
bolic. The proof was given based on the corresponding
Poincaré map [4]. The method most used for such a
construction involves coupled self-sustained oscillators
with alternating excitation and invokes the numerical
analysis to visualize diagrams illustrating the phase
transfer [4-12], where an additional coupling allows
transfering the phases simultaneously from one part-
ner to the other in order to obtain the desired chaotic
map on a circle or a torus (robust hyperbolic behav-
ior). We note that some of the constructed hyperbolic
systems have six variables [9] or eight variables [7].
Realistic examples of physical systems with hy-
perbolic chaotic attractors are of considerable signif-
icance because they open the possibility for real ap-
plications of the hyperbolic theory of dynamical sys-
tems. As far as we know, all examples of chaotic hyper-
bolic continuous-time systems were constructed based
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on well-known discrete hyperbolic chaotic maps. In
fact, the many applications of chaos synchronization in
secure communications [3, 4, 6-23] make it much more
important to synchronize two different, chaotic systems
[13-15,17-19,23-25]. Also, it was shown in [26] that
the frictionless motion of a mechanical system called
triple linkage can be described in terms of a geodesic
flow on a surface with everywhere negative Gaussian
curvature. In fact, this system is expected to have a
hyperbolic chaotic attractor in the presence of friction
and an appropriate feedback control law. These two ex-
amples show the importance of the hyperbolic nature
of dynamical systems modeling real-world phenomena.

In this paper, we present a new method for
such a construction based on a known chaotic hyper-
bolic continuous-time system and a synchronization
method, namely, the active control method presented
in [15,17,23,25]. An illustrative example is given to
show the effectiveness of the proposed hyperbolification
method.

2. HYPERBOLIFICATION OF DYNAMICAL
SYSTEMS

In this section, we present our method for hyperbo-
lification of continuous-time dynamical systems. This
is a partial answer to a question posed in [27]. Indeed,
let

ry = f (1)

be a known hyperbolic chaotic system regarded as a
drive system, where

zy = (x1,23,...,27) € R™.

Let

vy = g(x2) +U (1)

be the response system, where U () is a feedback con-
trol function (in fact, the function U () depends on the
time ¢ and the dynamical variables 21 and z3) to be de-
termined in accordance with a specific synchronization
criterion. Let the error states be
e; :af;é —af;’i, 1=1,2,...,n

We then consider the error system and apply the syn-
chronization method, and then find sufficient condi-
tions for which the errors (e;),.;., converge to zero
as t — oo, and hence synchronization between the two
systems is achieved. This means that we construct a
2n-dimensional continuous-time system with a robust
hyperbolic chaotic attractor.

The synchronization criterion used in this paper is
the active control method presented in [15,17,23,25].
We also use a 4-dimensional continuous-time dynamical
system as a drive system. This system corresponds to
the 3-dimensional Smale-Williams attractor, the com-
posed equations studied in [4] and given by

2rt 1
) = —2muy + <h1 + A cos %) T — gxf,
uy = 27 (21 + 2y cos2mt) , W
, 2mt 1,
yp = —4mvy + h2—A2COSW yl_gyla

v =4 (y1 +e127)

which were first introduced in [8]. System (1) is a non-
autonomous nonlinear system consisting of two coupled
van der Pol oscillators whose frequencies are wg and
2w, where hi s, A, €12, and N are real constants.
System (1) exhibits a Smale-Williams-type strange at-
tractor when it is represented by a 4-dimensional stro-
boscopic Poincaré map. In this case, the hyperbolicity
is verified numerically by analyzing the distribution of
the angle ¢ between the stable and unstable subspaces
of manifolds of the resulting chaotic invariant set. Sys-
tem (1) has been constructed as a laboratory device [4],
and experimental and numerical solutions were found.

The response system is given by the general equa-
tion

zh = fi (X2, us, Y2, v2) + 21 (t),
uy = fo (v2,us,y2,v2) + 22 (t) , @)
ys = f3 (x2,u2,y2,02) + 23 (1),
vy = fu (22, u2,y2,v2) + 24 (1),

where f; (22, us,y2,v2), 1 < i < 4, are smooth func-
tions. We assume that system (2) without the active
control functions zq(t), z2(t), z3(t), and z4(t) displays
bounded solutions. The required smoothness of system
(2) means that there is a derivative at every point. The
advantages of smoothness can be seen in the fact that
the local picture can be given by a derivative. Also
in the hyperbolic case, the concept of a tangent space,
which splits into expanding and contracting directions,
requires smoothness of the system under consideration.
The functions 2 (t), 22(t), 23(t), and z4(t) are the ac-
tive control functions to be determined. Let the error
states be

€1 =2 — 1, €2=1U2—1Ul,

€3 =Y2 — Y1, €4 =7V2— V1.
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Using the active control method, for the active control
function uy

U = [z1(t), 22(t), z3(t), za ()]

we obtain
27t
21 (t) = (a — A cos %) el + 2mes —

2t 1 r
_ <f1 - <h1 + A; cos W) T9 + 2mus + gcc%) ,
20 (t) = —2mey + fes — 2mweqes cos 2wt —

— (fe — 2wy — 2mEaYys cOS 27L)

2t
23 (t) = (7+A2 cos %) es +4dmey —

27t 14
_ <f3 +47T1)2 — <h2 —A2 COSW) Yo + gyl) N

24 (t) = —4mwes + deq — (f4 — Amys — 471'5190%) ,

where «, 3, 7, and § are real parameters to be chosen 3 3
such that the error states e;, 1 < ¢ < 4, converge to X1

zero, and the response system (2) becomes

Fig.1. The chaotic attractor of the drive system (1) for

27t — - - —
1,"2 — <a _ Al COS%) el + 271'62 + N = 8, A1 = 1.5, A2 = 6, £1,2 = 0.1, and h1,2 0

2rt 1
+ (h1 + A cos %) 2 — 2muy + 550?,

uy = —2mey + fey — (2wey cos 27t) ez +

900
+ 21y + (2mey cos2mt) ya,  (3) L

27t
Yy = <7+A2 cos %) es + drey — Amvs +

2t 1
—A —_— — =3 =
+ (h2 5 COS N > Y2 3yl,

vy = —4mes + deq + dmys + 471'611‘%. -

We note that equation (3) is an 9-dimensional dy-
namical system (where ¢ is a variable) relating solutions L
of the drive system (1) and the response system (2). -
With the particular choice of the functions z (t), z2(t), -
23(t), and z4(t), the closed loop system is given by -

ey =(h1 +a)er, ey= e, L

el3 = (h2 + 7) €3, efi - 5647 -

whose eigenvalues are hy + «, 3, ha + 7, and 6. Then, _9(10200 200
for any set of parameters a, 3, v, and § such that X2

a<—h, B<0, y<—hy, §<0, Fig.2. The chaotic attractor of the response system (4)

. ‘ . . for o =10, b = 8/3, s = 1619, and r = 2289
the linear system for e;, 1 < i < 4, is asymptotically

stable. This choice leads to the error states ey, eo,
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Fig. 3. The dynamics of synchronization errors states, e;(t), 1 < i < 4, for systems (1) and (4)

e3, and ey converging to zero as t — oo, and hence the
synchronization between the general system (3) and the
chaotic hyperbolic system (1) is achieved. For the pa-
rameters hy o, A 2, €1,2, and N with which system (1)
displays robust (hyperbolic) chaos (for example N = 8,
Ay =15, Ay =6, 12 = 0.1, and h1 o = 0 as shown
in [4]), it drives another chaotic attractor resulting from
the general system (3), which is also robust hyperbolic
because the system error between (1) and (3) converges
to zero for large time ¢.

3. NUMERICAL SIMULATION

In this section, we take the Lorenz—Stenflo system
given by
rh = —0 (73 — us) + Sva,
Uy = —Tays + Ty — Uy,
Yy = xaus — bys,

i
Uy = —T2 — OV2,

as the response system and system (1) as the drive
system. Here o, r, b, s € R are the bifurcation pa-
rameters of system (4). Lorenz—Stenflo system (4)
describes finite-amplitude, low-frequency, short-wave-
length, acoustic gravity waves in a rotational system
[28]. The drive system (1) displays robust (hyperbolic)
chaos for N = 8, 4, = 1.5, Ay =6, 1, = 0.1, and
hi2 = 0 [4]. Its attractor is shown in Fig. 1, and the
response system (4) displays chaos for o = 10, b = 8/3,
s = 1619, r = 2289, with an attractor as shown in
Fig. 2.
For the active control function
U = [a1(t), 22(t), 23(t), za (1))
defined above, we choose a, 3, v, and ¢ as
a=-1<-h; =0, B=-05<0,
v=-025<—-hy =0, §=-0.5<0.

The dynamics of synchronization errors states e;(t),
1< i <4, for systems (1) and (4) are shown in Fig. 3.
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Fig.4. The chaotic attractor of system (3) for N = 8,
Al = 1.5, A2 = 6, {:‘1,2 = 0.1, h1,2 = 0, g = 10,
b=28/3, s =1619, and r = 2289

Finally, it is clear that the synchronization error con-
verges to zero, and therefore synchronization between
the two systems (1) and (4) is achieved. The solution of
the response system (3) is shown in Fig. 4 (the largest
Lyapunouv exponent of this system is about 0.085).
It seems that the dynamics of system (3) is inspired
by the one of system (1). This fact is exactly the main
meaning of the claim that system (1) drives system (4).

We note that it is possible to use other synchroniza-
tion methods such as those in [13-15,17-19, 23-25] or
other known hyperbolic systems such as those in [4-12]
to generate chaotic attractors with a hyperbolic struc-
ture just like system (1).

Finally, our proposed method to hyperbolification
of continuous-time dynamical systems opens new direc-
tions in studying the nature of chaos in these systems
and improves possibilities for robust real-world appli-
cations of hyperbolic systems, which are structurally
stable. Structural stability means the robustness of
solutions of the governing dynamical equations if the
changes are sufficiently small.

13 ZK3T®, Bem. 2 (8)

4. CONCLUSION

We have presented a new method to generate
chaotic hyperbolic systems based on the knowledge of
a chaotic hyperbolic system and the use of a synchro-
nization technique. This process creates hyperbolicity
in a dynamical system and generates structurally stable
chaotic attractors. An illustrative example is given to
show the effectiveness of the proposed hyperbolification
method.
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