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ELECTRONIC STRUCTURE OF TWO-DIMENSIONALHEXAGONAL DISELENIDES: CHARGE DENSITY WAVESAND PSEUDOGAP BEHAVIORE. Z. Ku
hinskii a*, I. A. Nekrasov a**, M. V. Sadovskii a;baInstitute for Ele
trophysi
s, Ural Bran
h, Russian A
ademy of S
ien
es620016, Ekaterinburg, RussiabInstitute for Metal Physi
s, Ural Bran
h, Russian A
ademy of S
ien
es620219, Ekaterinburg, RussiaRe
eived June 27, 2011We theoreti
ally study the ele
troni
 stru
ture (spe
tral fun
tions and Fermi surfa
es) of in
ommensurate pseu-dogap and 
harge density wave (CDW) and 
ommensurate CDW phases of quasi-two-dimensional diselenides2H-TaSe2 and 2H-NbSe2. The in
ommensurate pseudogap regime is des
ribed within the s
enario based onshort-range-order CDW �u
tuations, 
onsidered within the stati
 Gaussian random �eld model. In 
ontrast, e. g.,to high-T
 
uprates, layered di
hal
ogenides have several di�erent CDW s
attering ve
tors and an ele
troni
spe
trum with two bands at the Fermi level. For this, we present a theoreti
al ba
kground for the des
riptionof multiple s
attering pro
esses within a multiple-band ele
troni
 spe
trum. Theoreti
al spe
tral fun
tions andFermi surfa
es thus obtained are 
ompared with re
ent ARPES experimental data, demonstrating rather goodqualitative agreement.1. INTRODUCTIONQuasi-two-dimensional di
hal
ogenides TX2 (T == Nb, Ta, Mo, Hf; X = S, Se) and their di�erent poly-morphi
 modi�
ations attra
ted the attention of s
i-enti�
 
ommunity long ago [1℄. This was 
onne
tedwith (i) early suggestions to seek high-T
 super
on-du
tivity in layered 
ompounds and (ii) the dis
overyof phase transitions with formation of 
harge densitywaves (CDW) [1℄. In parti
ular, in 2H-TaSe2 (2Hmeans a hexagonal stru
ture with two Ta layers inthe unit
ell), a se
ond-order transition into the in
om-mensurate CDW phase is observed at the temperature122:3 K. At 90 K, there is another transition, to a 
om-mensurate CDW phase [1, 2℄. In 2H-NbSe2, the transi-tion to in
ommensurate CDW phase o

urs at a mu
hlower temperature of 33.5 K [2℄ and no 
ommensurateCDW phase is observed.Above the in
ommensurate CDW transition tem-perature in these systems, a range of temperaturesmight exist where short-range order CDW �u
tuations*E-mail: ku
hinsk�iep.uran.ru**E-mail: nekrasov�iep.uran.ru

with a �nite, but su�
iently large, 
orrelation length� exist due to the low-dimensional nature of thesesystems (and in analogy with antiferromagneti
 �u
-tuations in 
uprates). This is indeed observed ex-perimentally in angular resolved X-ray photoemission(ARPES) experiments [3�5℄.In this paper, we present band stru
ture 
al
ulationresults for 2H-TaSe2 and 2H-NbSe2 with the analysisof possible topologies of the Fermi surfa
es upon do-ping, showing the possibility of formation of �bone�-likeFermi sheets. We present the details of the theoreti-
al des
ription of multiband ele
troni
 multiple s
at-tering on CDWs in multiple-band systems, applied topseudogap, in
ommensurate and 
ommensurate CDWphases for both 2H-TaSe2 and 2H-NbSe2. As an out-
ome, we obtain spe
tral fun
tions and Fermi surfa
emaps, whi
h are 
ompared with a number of re
entARPES results [3, 4℄.2. BAND STRUCTUREThe 2H-TX2 layered 
ompounds have a hexago-nal 
rystal stru
ture with the spa
e symmetry group767
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Fig. 1. LDA bands and Fermi surfa
es for 2H-TaSe2. Panel (a) � LDA ele
troni
 dispersions. The Fermi level 
orrespondsto zero. Panel (b) � the LDA Fermi surfa
e. Panel (
) � the Fermi surfa
e for the Fermi level shown in panel (a) with ashort line shifted down to obtain bone-like Fermi sheetsP63/mm
 with the latti
e parameters a = 3:436Åand 
 = 12:7Å for the Ta system. The 
orrespond-ing Wy
ko� positions are 2b (0,0,0.25) for Ta and 4f( 13 , 23 ,0.118) for Se [2℄. The formal ele
troni
 
on�g-uration of Ta is d1. To 
al
ulate the ele
troni
 stru
-ture of the 
ompound, the linearized mu�n-tin orbitalsmethod (LMTO) [6℄ with default settings was used.The obtained band stru
ture and Fermi surfa
es arein good agreement with similar LDA 
al
ulations byother authors [7℄. We do not present any LDA resultson 2H-NbSe2 be
ause its 
rystal stru
ture [2℄ and the
orresponding band stru
ture are very 
lose to those of2H-TaSe2.In our LDA 
al
ulations, in a

ordan
e with theprevious works [7℄, the Fermi level in 2H-TaSe2 is
rossed by two Ta-5d bands with the 3z2 � r2 symme-

try (see Fig. 1a), whi
h are well separated from otherbands.The Fermi surfa
e (FS) of 2H-TaSe2 has three (insome works, two [7℄) hole-like 
ylinders near the � pointand two hole 
ylinders around the K point. Our re-sults are presented in Fig. 1b. Here, we observe threehole-like 
ylinders around the � point.Re
ently, several ARPES studies dete
ted the ex-perimental FS of 2H-TaSe2. In parti
ular, in Ref. [8℄,the ele
troni
 stru
ture of the valen
e band was studiedin 1T-TaS2 and 2H-TaSe2. For 2H-TaSe2, it was shownthat there are four 
rossings with the FS along the ��Kdire
tion. A similar pi
ture is also seen in LDA results(Fig. 1a,b). In later ARPES studies [3; 4; 9℄, it wasobserved that the FS of 2H-TaSe2 has a more 
om-plex topology. Namely, �bone�-like FS sheets appear768
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Fig. 2. �Experimental� bands for 2H-TaSe2 (solid lines)and 2H-NbSe2 (dashed lines). The Fermi level 
orre-sponds to zeroalong the ��M dire
tion. Within the LDA pi
ture,su
h �bones� 
an be obtained by shifting the Fermi leveldown by about 0.1 eV (Fig. 1a,
).In Fig. 2, to improve over simple LDA, we show the�experimental� bands with dispersions:�(k) = t0 + t1 "2 
os kx2 
os p3 ky2 + 
os kx#++ t2 "2 
os 3kx2 
os p3 ky2 + 
osp3 ky#++ t3 h2 
oskx 
osp3 ky + 
os 2kxi++ t4 h2 
os 3kx 
osp3 ky + 
os 2p3 kyi ; (1)with hopping integrals ti obtained from the �t to ex-perimental Fermi surfa
es [10℄. The 
orresponding va-lues of ti (in eV) for the Ta system are t0 = �0:027,t1 = 0:199, t2 = 0:221, t3 = 0:028, t4 = 0:013 forthe band forming barrels around � and K points andt0 = 0:407, t1 = 0:114, t2 = 0:444, t3 = �0:033, t4 == 0:011 for the band forming �bones�. For the Nb sys-tem, t0 = 0:0003, t1 = 0:0824, t2 = 0:1667, t3 = 0:0438,t4 = 0:0158 for the band forming smaller 
ylinders andt0 = 0:1731, t1 = 0:1014, t2 = 0:2268, t3 = 0:037, t4 == �0:0048 for the band forming larger 
ylinders. Thesebands are used in the 
al
ulations in what follows.3. ELECTRON SCATTERING ON A CDW3.1. Commensurate CDW phaseWe 
onsider a s
hemati
 pi
ture of the �rst Bril-louin zone for a two-dimensional hexagonal latti
e,

Q3

X3

Q2

X2

Q1

X1

K

M

Γ

Fig. 3. S
hemati
 pi
ture of the �rst Brillouin zone forthe hexagonal latti
e with 
hara
teristi
 CDW ve
tors:
ommensurate CDW ve
tors Q = 23�M(Q1;Q2;Q3)and the ve
tors X = 12�K(X1;X2;X3) after doubles
attering on Q, whi
h also have signi�
ant Lindhardtfun
tion maxima [3℄shown in Fig. 3. In the hexagonal stru
tures understudy, the 
ommensurate CDW ve
tor is Q = 23�M ,whi
h 
orresponds to tripling the latti
e period. S
at-tering an ele
tron by this 
ommensurate CDW ve
-tor returns the ele
tron to an equivalent point aftertriple s
attering: �(k + 3Q) = �(k). Moreover, thereare in fa
t six equivalent s
attering ve
tors for hexag-onal stru
tures: Q1 = ( 23 ; 23p3 )�, Q2 = ( 23 ; 23p3 )�,Q3 = (� 23 ; 23p3 )�, and �Ql = �Ql (l = 1; 2; 3). Maximaof the Lindhardt fun
tion, 
al
ulated in Refs. [3, 10℄,are observed on these ve
torsQ. In addition, the Lind-hardt fun
tion shows pronoun
ed maxima [3, 10℄ forthe ve
tors X = 12�K (X1 = ( 23 ; 0)�, X2 = ( 13 ; 1p3 )�,X3 = (� 13 ; 1p3 )�, and �Xl = �Xl (l = 1; 2; 3)), whi
happear as sums of the s
attering ve
tors Q (see Tableof momentum summation).An ele
tron with momentum k is therefore s
at-tered by any of thirteen di�erent momenta (see Table):0, preserving its initial momentum k; and Q (Ql and�Ql); and X (Xl and �Xl). In the one-band 
ase, to �ndthe diagonal Green's fun
tion of an ele
tron G(k;k)and twelve o�-diagonal (G(k�Ql;k) and G(k�Xl;k))single-ele
tron Green's fun
tions, we therefore have tosolve the system of thirteen linear equations (17) (seethe Appendix). Su
h an approa
h 
an be generalizedto a multiple-band 
ase under the simplifying assump-tion [11℄ that the intra- and interband CDW s
atteringamplitudes 
oin
ide (see the Appendix). Solving theseequations, we 
an �nally �nd the diagonal Green's fun
-tion Gij(k;k) (where i; j = 1; 2 are band indi
es) and10 ÆÝÒÔ, âûï. 4 769
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attering ve
tors summationQ1 Q2 Q3 �Q1 �Q2 �Q3Q1 �Q1 X2 Q2 0 �Q3 �X1Q2 X2 �Q2 X3 Q3 0 Q1Q3 Q2 X3 �Q3 �X3 �Q1 0�Q1 0 Q3 �X1 Q1 �X2 �Q2�Q2 �Q3 0 �Q1 �X2 Q2 �X3�Q3 X1 Q1 0 �Q2 �X3 Q3
Q1 Q2 Q3 �Q1 �Q2 �Q3X1 �Q2 �Q1 Q1 �Q3 Q3 Q2X2 Q3 �Q3 �Q2 Q2 Q1 �Q1X3 �Q2 �Q1 Q1 �Q3 Q3 Q2�X1 Q3 �Q3 �Q2 Q2 Q1 �Q1�X2 �Q2 �Q1 Q1 �Q3 Q3 Q2�X3 Q3 �Q3 �Q2 Q2 Q1 �Q1

= +i j i i i i n m jnk k k k k k� �k �QlFig. 4. Diagrammati
 representation of the diagonalGreen's fun
tion in the two-wave approximation forele
tron s
attering on a CDWthe 
orresponding spe
tral fun
tionA(E;k) = � 1� ImXi Gii(k;k) (2)determining the e�e
tive ele
tron dispersion.3.2. In
ommensurate CDW phaseIt was noted above that at the temperature T == 90 K, 2H-TaSe2 (and 2H-NbSe2 at 33.5 K) under-goes a phase transition into the in
ommensurate CDWphase with the s
attering ve
tor Q � 0:58�0:6�M .Similarly to the 
ommensurate 
ase dis
ussed above,this ve
tor 
orresponds to six independent s
atteringve
tors Ql; �Ql, l = 1; 2; 3. We 
onsider single s
at-tering of an ele
tron with momentum k near the FSby the ve
tor Q(Ql; �Ql). For general values of k, thiss
attering a
t moves the ele
tron quite far away fromthe FS; the only ex
eption is an ele
tron in the vi
in-ity of the �hot spots� where �(k + Q) = �(k). Mostprobable among the multiple s
attering pro
esses is thesu

essive s
attering by ve
tors Ql and �Ql be
ause thes
attered ele
tron then returns to the initial point withthe momentum k 
lose to the Fermi surfa
e. In whatfollows, we therefore work in the so-
alled two-waveapproximation, when the s
attering a
t 
onsists of twosu

essive s
attering pro
esses by ve
tors Ql and �Ql.

Assuming that the s
attering amplitude is the samefor intra- and interband transitions, we obtain the di-agonal Green's fun
tion in the form (the 
orrespondingdiagram representation is given in Fig. 4):Gij(k;k) = gi(k)Æij + gi(k)�Xm Gmj(k;k); (3)where � = �2Pjl(gj(k+Ql)+gj(k�Ql)) and gj(k) == 1E��j(k)+iÆ is the bare retarded Green's fun
tion forthe nth band. Summing Eq. (3) over i yieldsXi Gij(k;k) = gj(k)1� �Pi gi(k) : (4)Then using Eq. (3) again, we obtainGij(k;k) = gi(k)Æij + gi(k)�gj(k)1� �Pi gi(k) ; (5)whi
h yields spe
tral fun
tion (2) in the 
ase of in
om-mensurate CDW s
attering.3.3. CDW pseudogap �u
tuationsAbove the temperature of the in
ommensurateCDW transition, there is no long-range 
harge orde-ring, but due to low-dimensionality of the system, thereare rather well developed short-range order CDW �u
-tuations with a �nite 
orrelation length � and the 
ha-ra
teristi
 wave-ve
tor Q that rather rapidly be
omes
ommensurate with Q = 23�M [4℄ as the temperaturede
reases. In analogy to the in
ommensurate ele
tron�CDW s
attering, we use the two-wave approximationwith the pair of ve
tors (Ql; �Ql). Diagrammati
ally,su
h s
attering pro
esses are show in Fig. 5, wherethree types of intera
tion lines 
orrespond to three
hara
teristi
 transfer momenta l = 1; 2; 3.770
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Fig. 5. Example of a diagram with multiple s
atteringon a CDW. The dashed, wavy, and zig-zag in
ominglines respe
tively 
orrespond to s
attering on Q1, Q2,and Q3, and the 
orresponding outgoing lines, to �Q1,�Q2, and �Q3We assume the �u
tuations to be Gaussian. Thenaveraging over su
h �u
tuations 
orresponds to all pos-sible inter
onne
tions of the in
oming and outgoing in-tera
tion lines of the same type [12�14℄, produ
ing ap-propriate e�e
tive intera
tions, assumed to be of theform dis
ussed in these works. For high enough tem-peratures, we 
an negle
t the dynami
s of �u
tuationsand average over a stati
 random �eld of Gaussian pseu-dogap �u
tuations [12�14℄.We note that the number of di�erent diagrams isde�ned by the produ
t of the number of ways to in-ter
onne
t verti
es of types 1, 2, and 3. Be
ause onlyoutgoing and in
oming lines of ea
h type 
an be 
on-ne
ted, the 
ombinatori
s 
orresponds to the in
om-mensurate 
ase [12℄. Following Refs. [12�14℄, we usethe basi
 property of the diagrams of this model: anydiagram with 
rossing intera
tion lines is equal to somenon
rossing diagram of the same order. Hen
e, onlynon
rossing diagrams 
an be 
onsidered, while 
ontri-butions of all diagrams 
an be a

ounted for by 
om-binatorial prefa
tors. For ea
h type of intera
tion lines(1,2,3), we have its own in
ommensurate 
ombinatorialprefa
tors, the same as in Refs. [12, 13℄.Re
urrent pro
edure for the Green's fun
tion:single-band 
aseUsing straightforward generalization of the ap-proa
h in Refs. [12, 13℄, the one-ele
tron Green's fun
-tion 
an be obtained in the single-band 
ase via a re-
urrent pro
edure, whi
h is shown diagrammati
ally inFig. 6. There, nl is the number of intera
tion lines oftype l surrounding the �bare� ele
tron line. Analyti-
ally, this pro
edure 
an be written asG�1n1;n2;n3(k) = g�1n1;n2;n3(k) � �n1+1;n2;n3 �� �n1;n2+1;n3 � �n1;n2;n3+1; (6)where n1, n2, n3 are even and�n1+1;n2;n3 = �2s(n1 + 1)�� [Gn1+1;n2;n3(k+Q1) +Gn1+1;n2;n3(k�Q1)℄ : (7)

The other self-energies � in Eq. (6) 
an be found sim-ilarly to (7), but n2 or n3 should be in
reased by oneand the ve
torsQ2 orQ3 should be added (subtra
ted)to (from) k, whileG�1n1+1;n2;n3(k �Q1) = g�1n1+1;n2;n3(k�Q1)�� �n1+2;n2;n3 ; (8)and �n1+2;n2;n3 = �2s(n1 + 2)Gn1+2;n2;n3(k): (9)Here, gn1;n2;n3(k) = 1E � �(k) + inv(k)� ; (10)� = 1=� is the inverse 
orrelation length of pseudogap�u
tuations, n = n1 + n2 + n3, v(k) = jvx(k) + vy(k)j,and vx;y(k) = ��(k)�kx;y are proje
tions of quasiparti
le ve-lo
ities.For in
ommensurate �u
tuations, the 
ombinatorialprefa
tors ares(n) = 8>><>>: n+ 12 for odd k;n2 for even k: (11)This re
urrent pro
edure is applied in analogy withRefs. [12, 13℄. At the �rst step, we take large enoughn = n1 + n2 + n3, for example even, and assume thatall Green's fun
tions Gn1;n2;n3 with even n1, n2, n3,su
h that n = n1 + n2 + n3 are equal to zero. FromEq. (9), we then �nd that all �n1;n2;n3 for the sameindi
es are also equal to zero. Then using the re
urrentpro
edure, we 
an obtain all new values for Gn1;n2;n3with even n1, n2, n3, su
h that n1 + n2 + n3 = n� 2,and repeat the pro
edure until we obtain the physi
alGreen's fun
tion G(k) = G0;0;0(k): (12)Multiple-band pseudogap model forquasi-two-dimensional hexagonal stru
turesIn hexagonal diselenides TaSe2 and NbSe2, as wehave seen, the Fermi level is 
rossed by two bands.Hen
e, our re
urrent pro
edure should be generalizedfor the 
ase of multiple bands. We follow Ref. [11℄, de-voted to the des
ription of possible pseudogap behav-ior in iron-based super
ondu
tors, and assume that theintra- and interband pseudogap s
attering amplitudesare identi
al. This simpli�es the analysis and the re-
urrent pro
edure for diagonal elements (with respe
t771 10*
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tion in the single-band pseudogap model for two-dimensional hexagonalsystems; (1! 2) denotes the last two terms, where the substitutions Q1 ! Q2 and n1 + 1! n2 + 1 should be done

k�Q1 k�Q1 k�Q1 k�Q1k+Q1 k�Q1+ n1 + 1n2n3n1n2n3 �2s(n1 + 1) +(1! 2) + (1! 3)= +n1n2n3n1n2n3 n1 + 1n2n3n1n2n3 �2s(n1 + 1) n1n2n3= +n1 + 1n2n3n1 + 1n2n3 �2s(n1 + 2)n1 + 2n2n3n1 + 1n2n3
i ji j i i ji lp m i i l jp mp mi ji i i lk k k kk kn1n2n3n1 + 1n2n3k n1; n2; n3 � eveni

Fig. 7. Diagram representation of the Green's fun
tion in the multiband pseudogap model for two-dimensional hexagonalsystemsto band indi
es) of the general matrix Green's fun
tionGij 
an be drawn diagrammati
ally as in Fig. 7. Forour two-band model, ea
h of the band indi
es rangesover two possible values, and summation is performedover all possible values of indi
es p, m, l in the ver-ti
es (Fig. 7). Therefore, the self-energy in these dia-grams has no dependen
e on band indi
es at all, andwe 
an obtain the re
urrent pro
edure for Gn1;n2;n3 == Pi;j Gijn1;n2;n3 , whi
h is identi
al to Eqs. (6)�(9) inthe single-band 
ase, with the only repla
ementgn1;n2;n3(k) =Xi gjn1;n2;n3(k) ==Xj 1E��j(k)+invj(k)�; n = n1+n2+n3: (13)At the end of the pro
edure, we de�ne the physi
almatrix Green's fun
tion asGij(k) = gi0;0;0(k)Æij + gi0;0;0(k)�gj0;0;0(k)1� �g0;0;0(k) ; (14)where � = �1;0;0 + �0;1;0 + �0;0;1. This Green's fun
-tion allows �nding spe
tral fun
tion (2) in the presen
eof CDW pseudogap �u
tuations.

4. RESULTS AND DISCUSSIONIn our 
al
ulations, we used a rather typi
al esti-mate of CDW potential � = 0:05 eV, and we assumedthe value � = 10a (where a is the latti
e spa
ing) forthe 
orrelations length of pseudogap �u
tuations. Tomimi
 the experimental ARPES resolution, we broad-ened our spe
tral fun
tions with a Lorentzian of thewidth 
 = 0:03 eV, whi
h pra
ti
ally means that wemade the substitution E ! E+ i
 throughout the 
al-
ulation.In Fig. 8, we show spe
tral fun
tion maps alonghigh-symmetry dire
tions with kz=0 for 2H-TaSe2.The upper panel shows a spe
tral fun
tion map for thein
ommensurate pseudogap phase obtained within ourpseudogap model. In general, it resembles the bare �ex-perimental� dispersions plotted in Fig. 2. But we heresee some additional broadening of the initial spe
tra.These broadened regions of spe
tral fun
tions with alower intensity represent regions of pseudogap forma-tion. Why do we speak about regions? In 
ontrast to
uprates [15℄, where we have a �nite and rather smallnumber of �hot spots�, we here have virtually in�nitelymany �hot spots�, and it is the interplay between allof them that leads to the formation of su
h regions.But still the dispersion here does not have any obviousdis
ontinuities.772
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Fig. 8. Spe
tral fun
tions of 2H-TaSe2. The upper panel: the in
ommensurate pseudogap phase; the middle panel: thein
ommensurate CDW phase, the lower panel: 
ommensurate CDW phase
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tral fun
tions for the in
ommensurate pseudogap phase along the 
uts shown in Fig. 1
The middle panel in Fig. 8 displays the 
ase of thein
ommensurate CDW phase. We see that the regionspreviously 
overed with a pseudogap have 
lear dis
on-tinuities � gaps and also many shadow bands. Whenwe pass further to the 
ommensurate CDW phase (thelower panel in Fig. 8), those gaps be
ome even strongerand we 
an see mu
h more pronoun
ed shadow bands.Figures 9�11 show spe
tral fun
tion maps in thevi
inity of the Fermi level along the 
uts shown inFig. 1
. In all �gures, the upper row represents exper-imental data in Ref. [4℄, while the lower one shows our
theoreti
al results. Generally speaking, in all phases �the in
ommensurate pseudogap Fig. 9, the in
ommen-surate CDW Fig. 10, and the 
ommensurate CDWFig. 11 � we obtain a rather good qualitative agree-ment of the theory and the experiment for the numberof bands 
rossing the Fermi level, their position, andrelative intensity.In Fig. 12, we 
ompare the experimental and theo-reti
al Fermi surfa
es for 2H-TaSe2. In the middle partof Fig. 12, we show the experimental ARPES data fromRef. [4℄. The data at 180 K 
orrespond to the pseudo-773
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k k k k kFig. 11. The same as in Fig. 9 but for the 
ommensurate CDW phasegap phase, and those at 30 K are for the 
ommensurateCDW phase.The upper panel in Fig. 12, shows our theoreti
alFermi surfa
e in the in
ommensurate pseudogap regimefor 2H-TaSe2. In general, it more or less resembles theLDA Fermi surfa
e in Fig. 1
. But there are obvioussignatures of partial destru
tion of the Fermi surfa
esheets. Namely, a 
ylinder around the K point and�bones� along the K�M dire
tion are partially smeared.It is seen that this pi
ture agrees well with the experi-mental ARPES data in Ref. [3, 4℄.For the 
ommensurate CDW phase (the lower panelin Fig. 12), the Fermi surfa
e stays 
lose to that ob-

tained in the LDA and shown in Fig. 1
. In 
ontrast tothe in
ommensurate pseudogap phase, the Fermi sur-fa
e sheets are here sharper in both experiment andtheory. The 
ylinder around the K point is now 
on-tinuous. In the middle of the �bones�, we observe thestart of formation of small triangles, shown in the 
en-ter of the middle panel. In the 
ommensurate CDWphase of 2H-TaSe2, we therefore again obtain an over-all agreement between theory and experiment.In Fig. 13, we 
ompare experimental (middle panel)and theoreti
al (lower and upper panels) Fermi sur-fa
es for 2H-NbSe2. Experimental data on the Fermisurfa
e are available only for the 
ommensurate CDW774
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Fig. 12. Comparison of experimental and theoreti-
al Fermi surfa
es for 2H-TaSe2. The upper panel:the theoreti
al Fermi surfa
e for the pseudogap CDWphase; the middle panel: a joint pi
ture of the experi-mental data on the pseudogap phase (upper part) andthe 
ommensurate CDW phase (lower part). The lowerpanel: the theoreti
al Fermi surfa
e for the 
ommen-surate CDW phasephase [5℄. We 
an therefore 
ompare these with thetheoreti
al pi
ture shown in lower panel in Fig. 13. Ingeneral, both Fermi surfa
es resemble those in Fig. 1b.Taking the ele
tron s
attering on a 
ommensurateCDW into a

ount leads to small regions of Fermi sur-fa
e destru
tion, namely, along the ��K and K�M di-
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al Fermi surfa
es for 2H-NbSe2. The upper panel:the theoreti
al Fermi surfa
e for the pseudogap CDWphase; the middle panel: a joint pi
ture of the exper-imental data on the LDA Fermi surfa
e (upper part)and the 
ommensurate CDW phase (lower part). Thelower panel: the theoreti
al Fermi surfa
e for the 
om-mensurate CDW phase
re
tions. If there exists an in
ommensurate pseudo-gap phase for 2H-NbSe2 at su�
iently high tempera-tures, its Fermi surfa
e is not 
hanged mu
h by pseu-dogap �u
tuations, as 
an be seen in the upper panelin Fig. 13.775
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hinskii, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 141, âûï. 4, 20125. CONCLUSIONTo 
on
lude, we have presented theoreti
al resultson the ele
troni
 stru
ture of two-dimensional dise-lenides 2H-TaSe2 and 2H-NbSe2 within di�erent CDWphases.First of all, we formulated a theoreti
al approa
hto a

ount for multiple s
attering of ele
trons ondi�erent CDW types, also in the multiple-band 
ase.We next investigated spe
tral fun
tions and Fermisurfa
es for the pseudogap, in
ommensurate CDW,and 
ommensurate CDW phases. The 
al
ulatedtheoreti
al spe
tral fun
tions for the pseudogap phasedemonstrate �hot regions� where the spe
tral fun
tionis additionally broadened. In in
ommensurate CDWand 
ommensurate CDW phases, in pla
e of these�hot regions�, we obtained the opening of the numberof gaps at the interse
tions with rather pronoun
ed�shadow bands�. Comparing experimental and theoret-i
al Fermi surfa
es in the pseudogap phase, we observerather 
lear signs of partial Fermi surfa
e destru
tionwith formation of a number of typi
al �Fermi ar
s�,separated by pseudogap regions. In the 
ommensurateCDW phase, Fermi surfa
es are rather similar to thosein the initial LDA pi
ture, with quite small featuresdue to CDW. The overall agreement between theoryand ARPES experiments is rather satisfa
tory.We thank S. V. Borisenko for his interest and help-ful dis
ussions. This work was supported in part bythe RFBR grant 11-02-00147 and was performed in theframework of Programs of Fundamental Resear
h of theRussian A
ademy of S
ien
es (RAS) �Quantum physi
sof 
ondensed matter� (UB RAS 09-�-2-1009) and of thePhysi
s Division of RAS �Strongly 
orrelated ele
tronsin solid states� (UB RAS 09-T-2-1011).APPENDIXS
attering on an 
ommensurate CDWOne-band s
atteringWe �rst 
onsider the single-band 
ase with a �bare�ele
tron spe
trum �(k). These �bare� ele
trons are s
at-tered on the CDW potential written asV (r) = 2� 3Xl=1 
osQlr: (15)The �bare� retarded Green's fun
tion isg(k) = 1E � �(k) + iÆ : (16)

We introdu
e the short notation g(k) = g, g(k+Ql) == fl, g(k � Ql) = f�l, g(k + Xl) = �l, andg(k � Xl) = ��l. For the diagonal Green's fun
-tion G = G(k;k) and twelve o�-diagonal ones (Fl == G(k+Ql;k), F�l = G(k�Ql;k), �l = G(k+Xl;k),��l = G(k�Xl;k)), we then obtain the system of thir-teen linear equations (see Table of s
attering ve
torsummation):G = g + g�F;F1 = f1�(F�1 +�2 + F2 +G+ F�3 +�1);F2 = f2�(�2 + F�2 +�3 + F3 +G+ F1);F3 = f3�(F2 +�3 + F�3 +��1 + F�1 +G);F�1 = f�1�(G+ F3 +��1 + F1 +��2 + F�2);F�2 = f�2�(F�3 +G+ F�1 +��2 + F2 +��3);F�3 = f�3�(�1 + F1 +G+ F�2 +��3 + F3);�l = �l�F; ��l = ��l�F; (17)
where F =P3l=1(Fl + F�l).Solving Eqs. (17) yields the diagonal Green's fun
-tion G = G(k;k):G = gK; K == 1� �� � a(� + 1)� b(�+ 1)1����a(�+1)�b(�+1)�g�[�(�+1)+�(�+1)℄ ;(18)where � = �(f2 + f�1 + f�3), � = �(f1 + f3 + f�2),a = �2[f�1(��1 + ��2) + f2(�2 + �3) + f�3(��3 + �1)℄, andb = �2[f1(�1 + �2) + f3(�3 + ��1) + f�2(��2 + ��3)℄.Multiband s
atteringFollowing the approa
h in Ref. [11℄, we assume thatthe CDW s
attering amplitude � is identi
al for intra-and interband transitions. We introdu
e the short no-tations gi = gi(k) = 1E��i(k)+iÆ , f il(�l) = gi(k�Ql), and�il(�l) = gi(k�Xl), where i is the band index. The diag-onal and o�-diagonal Green's fun
tions have additionalband indi
es. The rest of the notation is the same asin the single-band 
ase. For the diagonal Green's fun
-tion, in analogy with �rst equation of system (17), we
an obtainGij = giÆij + gi�Xm 3Xl=1(Fmjl + Fmj�l ): (19)Introdu
ing Gj = PiGij , F jl(�l) = Pi F ijl(�l), �jl(�l) == Pi�ijl(�l), g = Pi gi, fl(�l) = Pi f il(�l), and �l(�l) ==Pi �il(�l) and summing Eq. (19) over i, we obtainGj = gj + g� 3Xl=1(F jl + F j�l ): (20)776



ÆÝÒÔ, òîì 141, âûï. 4, 2012 Ele
troni
 stru
ture of two-dimensional hexagonal diselenides : : :The other twelve equations for F jl(�l) and �jl(�l) are
ompletely equivalent to the 
orresponding one-bandequations (17). Hen
e, we immediately obtainGj = gjK; (21)where K is de�ned in Eq. (18). But the quantities g,fl(�l), and �l(�l) are now summed over all band indi
es.From Eqs. (19) and (20), using Eq. (21), we �nally ob-tainGij = giÆij + giGj � gjg = giÆij + gigjg (K � 1); (22)whi
h allows 
al
ulating spe
tral fun
tion (2) with thea

ount of s
attering on a 
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