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We theoretically study the electronic structure (spectral functions and Fermi surfaces) of incommensurate pseu-
dogap and charge density wave (CDW) and commensurate CDW phases of quasi-two-dimensional diselenides
2H-TaSes and 2H-NbSe;. The incommensurate pseudogap regime is described within the scenario based on
short-range-order CDW fluctuations, considered within the static Gaussian random field model. In contrast, e. g.,
to high-T. cuprates, layered dichalcogenides have several different CDW scattering vectors and an electronic
spectrum with two bands at the Fermi level. For this, we present a theoretical background for the description
of multiple scattering processes within a multiple-band electronic spectrum. Theoretical spectral functions and
Fermi surfaces thus obtained are compared with recent ARPES experimental data, demonstrating rather good

qualitative agreement.

1. INTRODUCTION

Quasi-two-dimensional dichalcogenides TX, (T =
= Nb, Ta, Mo, Hf; X =S, Se) and their different poly-
morphic modifications attracted the attention of sci-
entific community long ago [1]. This was connected
with (i) early suggestions to seek high-T, supercon-
ductivity in layered compounds and (ii) the discovery
of phase transitions with formation of charge density
waves (CDW) [1]. In particular, in 2H-TaSe, (2H
means a hexagonal structure with two Ta layers in
the unitcell), a second-order transition into the incom-
mensurate CDW phase is observed at the temperature
122.3 K. At 90 K, there is another transition, to a com-
mensurate CDW phase [1, 2]. In 2H-NbSe., the transi-
tion to incommensurate CDW phase occurs at a much
lower temperature of 33.5 K [2] and no commensurate
CDW phase is observed.

Above the incommensurate CDW transition tem-
perature in these systems, a range of temperatures
might exist where short-range order CDW fluctuations
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with a finite, but sufficiently large, correlation length
¢ exist due to the low-dimensional nature of these
systems (and in analogy with antiferromagnetic fluc-
tuations in cuprates). This is indeed observed ex-
perimentally in angular resolved X-ray photoemission
(ARPES) experiments [3-5].

In this paper, we present band structure calculation
results for 2H-TaSes; and 2H-NbSe, with the analysis
of possible topologies of the Fermi surfaces upon do-
ping, showing the possibility of formation of “bone™like
Fermi sheets. We present the details of the theoreti-
cal description of multiband electronic multiple scat-
tering on CDWs in multiple-band systems, applied to
pseudogap, incommensurate and commensurate CDW
phases for both 2H-TaSe, and 2H-NbSes. As an out-
come, we obtain spectral functions and Fermi surface
maps, which are compared with a number of recent
ARPES results [3, 4].

2. BAND STRUCTURE

The 2H-TX, layered compounds have a hexago-
nal crystal structure with the space symmetry group
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Fig.1. LDA bands and Fermi surfaces for 2H-TaSe;. Panel (a) — LDA electronic dispersions. The Fermi level corresponds
to zero. Panel (b) — the LDA Fermi surface. Panel (¢) — the Fermi surface for the Fermi level shown in panel (a) with a
short line shifted down to obtain bone-like Fermi sheets

P63/mmc with the lattice parameters a = 3.436 A
and ¢ = 12.7A for the Ta system. The correspond-
ing Wyckoff positions are 2b (0,0,0.25) for Ta and 4f
(1,2,0.118) for Se [2]. The formal electronic config-
uration of Ta is d'. To calculate the electronic struc-
ture of the compound, the linearized muffin-tin orbitals
method (LMTO) [6] with default settings was used.
The obtained band structure and Fermi surfaces are
in good agreement with similar LDA calculations by
other authors [7]. We do not present any LDA results
on 2H-NbSe, because its crystal structure [2] and the
corresponding band structure are very close to those of
2H—TaSe2.

In our LDA calculations, in accordance with the
previous works [7], the Fermi level in 2H-TaSe, is
crossed by two Ta-5d bands with the 322 — r? symme-
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try (see Fig. 1a), which are well separated from other
bands.

The Fermi surface (FS) of 2H-TaSe, has three (in
some works, two [7]) hole-like cylinders near the I" point
and two hole cylinders around the K point. Our re-
sults are presented in Fig. 1b. Here, we observe three
hole-like cylinders around the I' point.

Recently, several ARPES studies detected the ex-
perimental FS of 2H-TaSes. In particular, in Ref. [§8],
the electronic structure of the valence band was studied
in 1T-TaSs and 2H-TaSes. For 2H-TaSes, it was shown
that there are four crossings with the FS along the I'-K
direction. A similar picture is also seen in LDA results
(Fig. 1a,b). In later ARPES studies [3,4,9], it was
observed that the FS of 2H-TaSe, has a more com-
plex topology. Namely, “bone™like FS sheets appear
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Fig. 2. “Experimental” bands for 2H-TaSe; (solid lines)
and 2H-NbSe; (dashed lines). The Fermi level corre-
sponds to zero

along the I'-M direction. Within the LDA picture,
such “bones” can be obtained by shifting the Fermi level
down by about 0.1 eV (Fig. 1a,c).

In Fig. 2, to improve over simple LDA, we show the
“experimental” bands with dispersions:

k
e(k) =to +t1 Y 4 cosky
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+ cos \/gky

+ty [2cos cos

ke 3k
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+ t3 [2 cos k, cos \/gky + cos ZkI] +

+t4 [2 cos 3k, cos V'3 k, + cos 2V/3 ky] . (1)

with hopping integrals ¢; obtained from the fit to ex-
perimental Fermi surfaces [10]. The corresponding va-
lues of ¢; (in eV) for the Ta system are to = —0.027,
t; = 0.199, to = 0.221, t3 = 0.028, t4 = 0.013 for
the band forming barrels around I' and K points and
to = 0.407, t; = 0.114, t, = 0.444, t; = —0.033, t4 =
= 0.011 for the band forming “bones”. For the Nb sys-
tem, tg = 0.0003, t; = 0.0824, t, = 0.1667, t3 = 0.0438,
t4 = 0.0158 for the band forming smaller cylinders and
to = 0.1731, t; = 0.1014, t5 = 0.2268, t3 = 0.037, t4 =
= —0.0048 for the band forming larger cylinders. These
bands are used in the calculations in what follows.

3. ELECTRON SCATTERING ON A CDW

3.1. Commensurate CDW phase

We consider a schematic picture of the first Bril-
louin zone for a two-dimensional hexagonal lattice,
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Fig.3. Schematic picture of the first Brillouin zone for

the hexagonal lattice with characteristic CDW vectors:

commensurate CDW vectors Q = 2I'M (Q1, Q2, Qs)

and the vectors X = 1I'K (X, X, X3) after double

scattering on Q, which also have significant Lindhardt
function maxima [3]

shown in Fig. 3. In the hexagonal structures under
study, the commensurate CDW vector is Q = %FM,
which corresponds to tripling the lattice period. Scat-
tering an electron by this commensurate CDW vec-
tor returns the electron to an equivalent point after
triple scattering: e(k +3Q) = e(k). Moreover, there

are in fact six equivalent scattering vectors for hexag-

onal structures: Q = (2, %)n—, Q. = (3, %)ﬂ,
Qs = (—%, 3%)77, and Q; = —-Q; (I =1,2,3). Maxima

of the Lindhardt function, calculated in Refs. [3, 10],
are observed on these vectors Q. In addition, the Lind-
hardt function shows pronounced maxima [3, 10] for
the vectors X = $TK (7X1 = (2,0)m, X2 = (3, %)77,
X3 = (—%,%)ﬂ', and X; = =X, (I = 1,2,3)), which
appear as sums of the scattering vectors Q (see Table

of momentum summation).

An electron with momentum k is therefore scat-
tered by any of thirteen different momenta (see Table):
0, preserving its initial momentum k; and Q (Q; and
Q)); and X (X; and X;). In the one-band case, to find
the diagonal Green’s function of an electron G(k,k)
and twelve off-diagonal (G(k+Qy, k) and G(k+X;, k))
single-electron Green’s functions, we therefore have to
solve the system of thirteen linear equations (17) (see
the Appendix). Such an approach can be generalized
to a multiple-band case under the simplifying assump-
tion [11] that the intra- and interband CDW scattering
amplitudes coincide (see the Appendix). Solving these
equations, we can finally find the diagonal Green’s func-
tion G% (k,k) (where i,j = 1,2 are band indices) and
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Table of scattering vectors summation

Q |Q | Q| Q| Q| Qs
Q| Q X2 | Q| 0 |Qs| X,
Q | Xy | Q| X3 |Qs| 0 | Q

Qs | Q| X3 | Qs | X5 | Qi O
Q| 0 |Q | Xy |Q | Xy |Q
Q | Qs | 0 | Q| Xy | Q| X5
Qs | X1 |Qi| 0| Q| X5|Qs

A A
i i i 1%11 n%m j
= +

k k k k k£Q; k k

Fig.4. Diagrammatic representation of the diagonal

Green's function in the two-wave approximation for
electron scattering on a CDW

the corresponding spectral function
1 g
A(E k) =——1 G"(k,k
(B9 == In 3 6k 19
determining the effective electron dispersion.

3.2. Incommensurate CDW phase

It was noted above that at the temperature T =
= 90 K, 2H-TaSe; (and 2H-NbSe, at 33.5 K) under-
goes a phase transition into the incommensurate CDW
phase with the scattering vector Q ~ 0.58-0.6I' M.
Similarly to the commensurate case discussed above,
this vector corresponds to six independent scattering
vectors Q;,Q;, | = 1,2,3. We consider single scat-
tering of an electron with momentum k near the FS
by the vector Q(Q, Q;). For general values of k, this
scattering act moves the electron quite far away from
the FS; the only exception is an electron in the vicin-
ity of the “hot spots” where e(k + Q) = e(k). Most
probable among the multiple scattering processes is the
successive scattering by vectors Q; and Q; because the
scattered electron then returns to the initial point with
the momentum k close to the Fermi surface. In what
follows, we therefore work in the so-called two-wave
approximation, when the scattering act consists of two
sticcessive scattering processes by vectors Q; and Q.
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Q | Q| Qs | Qi | Q| Qs
X; [ Q| Q| Q|Q:|Q:|Q
Xy Qs | Qs | Q| Q| Q| Qu
Xs | Q| Qi | Qi | Qs | Qs | Qo
X: | Q|Q|Q|Q|Q | Q
Xo | Q| Qi | Qi | Qs | Qs | Qo
X3 | Q| Q| Q| Q| Q | Q

Assuming that the scattering amplitude is the same
for intra- and interband transitions, we obtain the di-
agonal Green’s function in the form (the corresponding
diagram representation is given in Fig. 4):

GY(k,k) = g'(k)d;; + g'(K)D D G™(kk),  (3)

where ¥ = A? Eﬂ(gj(k-l-Ql)-l-gj(k—Ql)) and ¢/ (k) =
= m is the bare retarded Green’s function for
the nth band. Summing Eq. (3) over i yields

g’ (k)

1-%%¢'(k) W

> Gk k) =
Then using Eq. (3) again, we obtain

g9'(k)Eg’ (k)
1-%3gi(k)’

which yields spectral function (2) in the case of incom-
mensurate CDW scattering.

G (k, k) = ¢' (k)i + (5)

3.3. CDW pseudogap fluctuations

Above the temperature of the incommensurate
CDW transition, there is no long-range charge orde-
ring, but due to low-dimensionality of the system, there
are rather well developed short-range order CDW fluc-
tuations with a finite correlation length ¢ and the cha-
racteristic wave-vector Q that rather rapidly becomes
commensurate with Q = 2'M [4] as the temperature
decreases. In analogy to the incommensurate electron—
CDW scattering, we use the two-wave approximation
with the pair of vectors (Q;,Q;). Diagrammatically,
such scattering processes are show in Fig. 5, where
three types of interaction lines correspond to three
characteristic transfer momenta [ = 1,2, 3.
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Fig.5. Example of a diagram with multiple scattering
on a CDW. The dashed, wavy, and zig-zag incoming
lines respectively correspond to scattering on Q1, Q2,
and Q3, and the corresponding outgoing lines, to Q:,

Qz, and Q3

We assume the fluctuations to be Gaussian. Then
averaging over such fluctuations corresponds to all pos-
sible interconnections of the incoming and outgoing in-
teraction lines of the same type [12-14], producing ap-
propriate effective interactions, assumed to be of the
form discussed in these works. For high enough tem-
peratures, we can neglect the dynamics of fluctuations
and average over a static random field of Gaussian pseu-
dogap fluctuations [12-14].

We note that the number of different diagrams is
defined by the product of the number of ways to in-
terconnect vertices of types 1, 2, and 3. Because only
outgoing and incoming lines of each type can be con-
nected, the combinatorics corresponds to the incom-
mensurate case [12]. Following Refs. [12-14], we use
the basic property of the diagrams of this model: any
diagram with crossing interaction lines is equal to some
noncrossing diagram of the same order. Hence, only
noncrossing diagrams can be considered, while contri-
butions of all diagrams can be accounted for by com-
binatorial prefactors. For each type of interaction lines
(1,2,3), we have its own incommensurate combinatorial
prefactors, the same as in Refs. [12, 13].

Recurrent procedure for the Green’s function:
single-band case

Using straightforward generalization of the ap-
proach in Refs. [12, 13], the one-electron Green’s func-
tion can be obtained in the single-band case via a re-
current procedure, which is shown diagrammatically in
Fig. 6. There, n; is the number of interaction lines of
type [ surrounding the “bare” electron line. Analyti-
cally, this procedure can be written as

Gt ngina (6) = 95y ng () —

ni,nz,n3 - gnl,ng,ng an-‘rl,ng,ng -

- En1,n2,n3+17 (6)

- En1,n2+1,n3

where ny, no, ng are even and

En1+17n27n3 = A2S(TL1 + 1) X
X [Gn1+1,n27n3 (k + Ql) + Gn1+1,n27n3 (k - Ql)] . (7)

The other self-energies ¥ in Eq. (6) can be found sim-
ilarly to (7), but ns or nz should be increased by one
and the vectors Q2 or Qg should be added (subtracted)
to (from) k, while

7;11+17n2,n3 (k +Q1) = 97:11+17n2,n3 (k +Qu) -
- En1+2,n2,n37 (8)
and
En1+27n2,n3 = Azs(nl + Q)Gn1+27nz,n3 (k) (9)

Here,

1
E —e(k) + inv(k)r’

9ni,n2,n3 (k) = (10)
k = 1/¢ is the inverse correlation length of pseudogap
fluctuations, n = ny +ns + ng, v(k) = |v. (k) + vy (k)|
and v, , (k) = % are projections of quasiparticle ve-
locities.

For incommensurate fluctuations, the combinatorial
prefactors are

n+1

for odd &,
s(n) = " (11)
3 for even k.

This recurrent procedure is applied in analogy with
Refs. [12, 13]. At the first step, we take large enough
n = ni + no + nz, for example even, and assume that
all Green’s functions Gy, n,.ns With even nj, ns, ns,
such that n = n; + ny + ng are equal to zero. From
Eq. (9), we then find that all £,,, ,,, n, for the same
indices are also equal to zero. Then using the recurrent
procedure, we can obtain all new values for G, ny.ns
with even ny, ns, n3, such that ny +ns + n3 = n — 2,
and repeat the procedure until we obtain the physical
Green’s function

G(k) = Go,0,0(k). (12)

Multiple-band pseudogap model for
quasi-two-dimensional hexagonal structures

In hexagonal diselenides TaSe> and NbSes, as we
have seen, the Fermi level is crossed by two bands.
Hence, our recurrent procedure should be generalized
for the case of multiple bands. We follow Ref. [11], de-
voted to the description of possible pseudogap behav-
ior in iron-based superconductors, and assume that the
intra- and interband pseudogap scattering amplitudes
are identical. This simplifies the analysis and the re-
current procedure for diagonal elements (with respect

10%*



E. Z. Kuchinskii, I. A. Nekrasov, M. V. Sadovskii MXIOT®, Tom 141, Bhm. 4, 2012

A%s(ny +1) A%s(ng +1)
k k k . k+Q >~ k k . k-Q ~ k
= + - + - +(1—=2)+ (1> 3)
nina2ng nina2nsg ninanz n1 + lnens ninsna ninans ni + lneng ninens
A%s(ny +2) ni, Nz, N3 — even
k+Q k+Q k£Q: .7k T~ kxQ

= +
n1 + 1nong  n1 + 1lnens ni1 + lnons ni1 + 2nens n1 + 1nang

Fig.6. Diagram representation of the Green's function in the single-band pseudogap model for two-dimensional hexagonal
systems; (1 — 2) denotes the last two terms, where the substitutions Q1 — Q2 and n1 + 1 — na + 1 should be done

A?s(ny +1) A?s(ny +1)
i k j i k i i k i.k+Q 1 k j i k i.k-QO~1 k j
= + L — + L —_ +(1—=2)+(1—3)
niN2n3 n1n2n3 ninana n1 + lnens ningna ninana N1+ lnons ningna
AQS(nl +2) n1,N2, N3 — even
ik+Qij  ik+Qii ikini/Z;’k Tl kEQij

= +
n1 + 1nons  n1 4+ 1nens n1 + 1nanz 1 + 2nanz ny + 1nana

Fig.7. Diagram representation of the Green's function in the multiband pseudogap model for two-dimensional hexagonal

systems
to band indices) of the general matrix Green’s function 4. RESULTS AND DISCUSSION
G can be drawn diagrammatically as in Fig. 7. For
our two-band model, each of the band indices ranges In our calculations, we used a rather typical esti-
over two possible values, and summation is performed  mate of CDW potential A = 0.05 eV, and we assumed
over all possible values of indices p, m, [ in the ver-  the value £ = 10a (where a is the lattice spacing) for

tices (Fig. 7). Therefore, the self-energy in these dia-  the correlations length of pseudogap fluctuations. To
grams has no dependence on band indices at all, and mimic the experimental ARPES resolution, we broad-

we can obtain the recurrent procedure for Gy, n,ns =  ened our spectral functions with a Lorentzian of the

= 215 Gi\ nang» Which is identical to Egs. (6)~(9) in  width v = 0.03 eV, which practically means that we

the single-band case, with the only replacement made the substitution £ — E + iy throughout the cal-
culation.

j In Fig. 8, we show spectral function maps along

gnhnz,ns (k) = Zgn1,n27n3 (k) = hl h_ H H H — _
- gh-symmetry directions with k,=0 for 2H-TaSe,.

(2

1 The upper panel shows a spectral function map for the

= - n =ni+ns+ns. (13 i . 1
Z E—e;(K)+inv; (K)x’ 1+n24ns.  (13) incommensurate pseudogap phase obtained w1th1n“0ur
J pseudogap model. In general, it resembles the bare “ex-
perimental” dispersions plotted in Fig. 2. But we here
At the end of the procedur67 we define the physical see some additional broadening of the initial spectra.
matrix Green’s function as These broadened regions of spectral functions with a
lower intensity represent regions of pseudogap forma-
tion. Why do we speak about regions? In contrast to

i ; g(i)oo(k)zgtj)oo(k) :
G (k) = gb.0.0(k)0i; + == it , (14) cuprates [15], where we have a finite and rather small
1= g0,0,0(k) number of “hot spots”, we here have virtually infinitely
many ‘“hot spots”, and it is the interplay between all
where ¥ =31 90 + ¥0,1,0 + X0,0,1- This Green’s func-  of them that leads to the formation of such regions.
tion allows finding spectral function (2) in the presence But still the dispersion here does not have any obvious
of CDW pseudogap fluctuations. discontinuities.
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Fig.8. Spectral functions of 2H-TaSes. The upper panel: the incommensurate pseudogap phase; the middle panel: the
incommensurate CDW phase, the lower panel: commensurate CDW phase

k

k

Fig.9. Spectral functions for the incommensurate pseudogap phase along the cuts shown in Fig. 1c

The middle panel in Fig. 8 displays the case of the
incommensurate CDW phase. We see that the regions
previously covered with a pseudogap have clear discon-
tinuities — gaps and also many shadow bands. When
we pass further to the commensurate CDW phase (the
lower panel in Fig. 8), those gaps become even stronger
and we can see much more pronounced shadow bands.

Figures 9-11 show spectral function maps in the
vicinity of the Fermi level along the cuts shown in
Fig. 1c. In all figures, the upper row represents exper-
imental data in Ref. [4], while the lower one shows our
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theoretical results. Generally speaking, in all phases —
the incommensurate pseudogap Fig. 9, the incommen-
surate CDW Fig. 10, and the commensurate CDW
Fig. 11 — we obtain a rather good qualitative agree-
ment of the theory and the experiment for the number
of bands crossing the Fermi level, their position, and
relative intensity.

In Fig. 12, we compare the experimental and theo-
retical Fermi surfaces for 2H-TaSes. In the middle part
of Fig. 12, we show the experimental ARPES data from
Ref. [4]. The data at 180 K correspond to the pseudo-
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Fig.11. The same as in Fig. 9 but for the commensurate CDW phase

gap phase, and those at 30 K are for the commensurate
CDW phase.

The upper panel in Fig. 12, shows our theoretical
Fermi surface in the incommensurate pseudogap regime
for 2H-TaSes. In general, it more or less resembles the
LDA Fermi surface in Fig. 1c¢. But there are obvious
signatures of partial destruction of the Fermi surface
sheets. Namely, a cylinder around the K point and
“bones” along the K-M direction are partially smeared.
It is seen that this picture agrees well with the experi-
mental ARPES data in Ref. [3, 4].

For the commensurate CDW phase (the lower panel
in Fig. 12), the Fermi surface stays close to that ob-
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tained in the LDA and shown in Fig. 1¢. In contrast to
the incommensurate pseudogap phase, the Fermi sur-
face sheets are here sharper in both experiment and
theory. The cylinder around the K point is now con-
tinuous. In the middle of the “bones”, we observe the
start of formation of small triangles, shown in the cen-
ter of the middle panel. In the commensurate CDW
phase of 2H-TaSes, we therefore again obtain an over-
all agreement between theory and experiment.

In Fig. 13, we compare experimental (middle panel)
and theoretical (lower and upper panels) Fermi sur-
faces for 2H-NbSe,. Experimental data on the Fermi
surface are available only for the commensurate CDW
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Fig.12. Comparison of experimental and theoreti-
cal Fermi surfaces for 2H-TaSes. The upper panel:
the theoretical Fermi surface for the pseudogap CDW
phase; the middle panel: a joint picture of the experi-
mental data on the pseudogap phase (upper part) and
the commensurate CDW phase (lower part). The lower
panel: the theoretical Fermi surface for the commen-
surate CDW phase

phase [5]. We can therefore compare these with the
theoretical picture shown in lower panel in Fig. 13. In
general, both Fermi surfaces resemble those in Fig. 1b.
Taking the electron scattering on a commensurate
CDW into account leads to small regions of Fermi sur-
face destruction, namely, along the I'-K and K-M di-

775

Fig.13. Comparison of experimental and theoreti-
cal Fermi surfaces for 2H-NbSez. The upper panel:
the theoretical Fermi surface for the pseudogap CDW
phase; the middle panel: a joint picture of the exper-
imental data on the LDA Fermi surface (upper part)
and the commensurate CDW phase (lower part). The
lower panel: the theoretical Fermi surface for the com-
mensurate CDW phase

rections. If there exists an incommensurate pseudo-
gap phase for 2H-NbSe, at sufficiently high tempera-
tures, its Fermi surface is not changed much by pseu-
dogap fluctuations, as can be seen in the upper panel
in Fig. 13.
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5. CONCLUSION

To conclude, we have presented theoretical results
on the electronic structure of two-dimensional dise-
lenides 2H-TaSe; and 2H-NbSe, within different CDW
phases.

First of all, we formulated a theoretical approach
to account for multiple scattering of electrons on
differentt CDW types, also in the multiple-band case.
We next investigated spectral functions and Fermi
surfaces for the pseudogap, incommensurate CDW,
and commensurate CDW phases. The calculated
theoretical spectral functions for the pseudogap phase
demonstrate “hot regions” where the spectral function
is additionally broadened. In incommensurate CDW
and commensurate CDW phases, in place of these
“hot regions”, we obtained the opening of the number
of gaps at the intersections with rather pronounced
“shadow bands”. Comparing experimental and theoret-
ical Fermi surfaces in the pseudogap phase, we observe
rather clear signs of partial Fermi surface destruction
with formation of a number of typical “Fermi arcs”,
separated by pseudogap regions. In the commensurate
CDW phase, Fermi surfaces are rather similar to those
in the initial LDA picture, with quite small features
due to CDW. The overall agreement between theory
and ARPES experiments is rather satisfactory.
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APPENDIX
Scattering on an commensurate CDW
One-band scattering

We first consider the single-band case with a “bare”
electron spectrum e(k). These “bare” electrons are scat-
tered on the CDW potential written as

3
V(r) =2A Z cos Qqr.

(15)
=1
The “bare” retarded Green’s function is
1
k= ————. 1
10 = F i v (16)
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We introduce the short notation g(k) = g, g(k+ Q) =
fio 9k — Q) = fr, gk + X)) ¢, and
gk — X;) = ¢;. For the diagonal Green’s func-
tion G = G(k,k) and twelve off-diagonal ones (F; =
=Gk +Qk), =Gk —-Q,k), & = Gk+ X, k),
®; = G(k — X, k)), we then obtain the system of thir-
teen linear equations (see Table of scattering vector
summation):

G = g+ gAF,

Fi = fiA(Ff + ®2 4+ F>» + G + F5 + ),
Fy = foA(®y + F5 + B3+ F3 + G+ Fy),
Fy = fsA(Fy + @3 + F5 + &7 + F; + G), a7
Fr = fiAG+ F + &1 + FL + &5 + F),
Fs = fsA(F5 4+ G + Fp + ®; + Fy + ®3),
Fy= fsA(®) + F1 + G+ F + &3 + F3),

b, = ¢, AF, @7 = ¢;AF,

where F = 37 | (F, + F}).
Solving Eqs. (17) yields the diagonal Green’s func-
tion G = G(k, k):

G=gK: K=
_ l-—af—a(f+1)—bla+1)
 1-af—-a(B+1)=b(a+1)—gAa(f+1)+B(a+1)]’
(18)
where a = A(fo + fi + f3), B = A(fi + f3 + f3),
a = A?[fi(¢1 + ¢3) + f2(d2 + d3) + f3(d3 + 61)], and
b= A%[fi(o1 + ¢2) + f3(d3 + 01) + f5(d5 + ¢3)].

Multiband scattering

Following the approach in Ref. [11], we assume that
the CDW scattering amplitude A is identical for intra-
and interband transitions. We introduce the short no-
tations g° = ¢g'(k) = (T fli(l-) =¢'(k+Q), and

f([) = g'(k+X;), where i is the band index. The diag-
onal and off-diagonal Green’s functions have additional
band indices. The rest of the notation is the same as
in the single-band case. For the diagonal Green’s func-
tion, in analogy with first equation of system (17), we
can obtain

3
G :gz(;ij +ngZZ(FlmJ _l_FZmJ)_

m =1
u 2. GY, sz(i) = 2 ﬂl(]i)v (I)?(i) -
= Zz (I);z[)a g = Zigla fl(l_) = Z@ f;([)a and ¢l(l_) =

> qﬁf(l-) and summing Eq. (19) over i, we obtain

(19)

Introducing G7

3
Gl =g +gA> (F +F)).
=1

(20)
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Fj; and &),
completely equivalent to the corresponding one-band

equations (17). Hence, we immediately obtain

The other twelve equations for are

G =¢ K, (21)
where K is defined in Eq. (18). But the quantities g,
fiu)» and ¢y are now summed over all band indices.
From Eqs. (19) and (20), using Eq. (21), we finally ob-
tain

S Gi_g igi
G = gib+ g~ = gigy; + %(K ~1), (22)
which allows calculating spectral function (2) with the

account of scattering on a commensurate CDW.
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