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THE FERMI�PASTA�ULAM RECURRENCE AND RELATEDPHENOMENA FOR 1D SHALLOW-WATER WAVESIN A FINITE BASINV. P. Ruban *Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es119334, Mos
ow, RussiaRe
eived April 5, 2011Di�erent regimes of the Fermi�Pasta�Ulam (FPU) re
urren
e are simulated numeri
ally for fully nonlinear �one-dimensional� potential water waves in a �nite-depth �ume between two verti
al walls. In su
h systems, the FPUre
urren
e is 
losely related to the dynami
s of 
oherent stru
tures approximately 
orresponding to solitons ofthe integrable Boussinesq system. A simplest periodi
 solution of the Boussinesq model, des
ribing a singlesoliton between the walls, is presented in analyti
 form in terms of the ellipti
 Ja
obi fun
tions. In the numeri
alexperiments, it is observed that depending on the number of solitons in the �ume and their parameters, theFPU re
urren
e 
an o

ur in a simple or 
ompli
ated manner, or be pra
ti
ally absent. For 
omparison, thenonlinear dynami
s of potential water waves over nonuniform beds is simulated, with initial states taken in theform of several pairs of 
olliding solitons. With a mild-slope bed pro�le, a typi
al phenomenon in the 
ourse ofevolution is the appearan
e of relatively high (rogue) waves, while for random, relatively short-
orrelated bedpro�les it is either the appearan
e of tall waves or the formation of sharp 
rests at moderate-height waves.1. INTRODUCTIONNearly integrable wave systems are known to ex-hibit the Fermi�Pasta�Ulam (FPU) re
urren
e, whena (�nite-size) system approximately repeats its initialstate after some period of evolution. Starting from the�rst observation of this phenomenon in the famous nu-meri
al experiment with one-dimensional (1D) latti
esof nonlinear os
illators [1℄, the FPU re
urren
e and re-lated phenomena were studied in many physi
al 
on-texts (see, e.g., Refs. [2�14℄ and the referen
es therein).In parti
ular, Zabusky and Kruskal [2℄ dis
overed soli-tons with a highly nontrivial behavior, when numer-i
ally investigated a me
hanism of the re
urren
e forspatially periodi
 solutions of the Korteweg�de Vries(KdV) equation. Presently, the theory of solitons hasdeveloped into one of the main bran
hes of nonlinears
ien
e.It is well known that many integrable mathema-ti
al models have their origin in the theory of waterwaves. The two most famous integrable equations arethe KdV equation, �rst derived for weakly dispersiveunidire
tional shallow-water waves, and the nonlinear*E-mail: ruban�itp.a
.ru

S
hrödinger equation, whi
h des
ribes an envelope of atrain of deep-water waves [15℄. For deep-water waves,many analyti
 and experimental results 
on
erning theFPU re
urren
e are known [4�9; 16�19℄. As regards theshallow-water regime, only some numeri
al studies forthe KdV equation and its higher-order generalizationswere performed until re
ently (see, e.g., Refs. [10, 11℄),while the FPU phenomenon was never 
onsidered theo-reti
ally for long waves in a �nite �ume, and was neverstudied experimentally in the shallow-water regime.It is 
lear that the KdV equation is not adequate forlong waves in a �nite basin where they re�e
t from thewalls. Fortunately, there is another integrable model,the Boussinesq system, that approximately des
ribesbidire
tional shallow-water waves and is therefore po-tentially useful for analyti
 study of the FPU re
ur-ren
e in a �nite-length �ume (
on
erning the integra-bility of the Boussinesq system, see Refs. [20�23℄, and
on
erning the deviations of water waves from exa
tintegrability, see Refs. [10, 24℄). Presently, however,we do not have a 
lear theory of FPU re
urren
e forshallow water, based on the Boussinesq system. Per-haps, a future theory should be built with the help ofthe sophisti
ated mathemati
al methods developed for387 12*
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t g/hFig. 1. The FPU re
urren
e is perfe
t with theinitial shape of the free surfa
e in the form�0(x) = 0:12h 
os(2�x=60h) with L=h = 60,A0=h = 0:12, and h = 1:0 m: a � wave pro�les atseveral time moments when the kineti
 energy is at aminimum; b � the ratio of the kineti
 energy to the to-tal energy; 
 � the maximum and minimum elevationsof the free boundaryobtaining spatially periodi
 solutions of integrable sys-tems (in parti
ular, see [22℄ for the Boussinesq model).In this paper, su
h a general purpose is not a
hieved,although a family of periodi
 solutions is derived in anexpli
it analyti
 form using a simple ansatz that 
orre-sponds to a single soliton periodi
ally moving betweenthe walls. However, that solution is by no means themain result of our work; it just plays an auxiliary role,namely, to provide nearly �many-soliton� initial 
ondi-tions for highly a

urate numeri
al experiments.Very re
ently, our short paper was published wherefor the �rst time the FPU re
urren
e was studied nu-
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Fig. 2. The FPU re
urren
e is less perfe
t with a largerinitial amplitude, �0(x) = 0:14h 
os(2�x=60h) withL=h = 60, A0=h = 0:14, and h = 1:0 m, be
ausethe nonintegrability e�e
ts are stronger (a, b, and 
show the same quantities as in Fig. 1)meri
ally for fully nonlinear shallow-water waves in a�nite �ume [25℄. Exa
t equations of motion for poten-tial planar �ows of a perfe
t �uid with a free surfa
ein terms of so-
alled 
onformal variables were used inthat study [26, 27℄. The simplest initial states weretaken, with zero velo
ity �eld and a 
osine-shaped freeboundary. Two typi
al examples of the re
urren
e arepresented in Figs. 1 and 2.One of the purposes of this paper is to provide addi-tional numeri
al examples of the re
urren
e for di�er-ent initial states, and to demonstrate a relation of theFPU phenomenon in shallow-water �nite basins to soli-tons of the approximate Boussinesq system. Anotherpurpose is to observe what new e�e
ts appear in the dy-nami
s of long dispersive waves if the bottom boundaryis nonuniform (it should be noted that 
onformal vari-388
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urren
e : : :ables provide exa
t equations of motion for an arbitrarynonuniform bottom pro�le when it is parameterized byan analyti
 fun
tion [26, 27℄). In parti
ular, three kindsof bed pro�les are 
onsidered: mild-slope beds, bedswith quasirandom, relatively short-
orrelated 
orruga-tions, and beds with randomly pla
ed barriers. Thenonuniformity destroys the approximate integrability,and therefore initial states in the form of several pairsof 
olliding solitons evolve to the appearan
e of highlynonlinear wave events. Su
h steep and tall waves 
anbe 
onsidered a 1D model for freak (rogue) waves some-times arising in the 
oastal zone (the subje
t of freakwaves is 
urrently studied very extensively, see [28�30℄and the referen
es therein).2. DIFFERENT EXAMPLES OF THE FPURECURRENCE2.1. Notes about the numeri
al methodWe 
onsider two-dimensional (2D) potential �owsof a perfe
t �uid with the velo
ity �eldv(x; y; t) = r'(x; y; t);where x is the horizontal 
oordinate, y is the verti
al
oordinate, and t is the time. The velo
ity potential' satis�es the 2D Lapla
e equation 'xx + 'yy = 0 in-side the �ow domain, with the 
ondition of zero normalvelo
ity �'=�n = 0 at a (�xed) bottom boundary. Atthe free surfa
e y = �(x; t), where the normal velo
ity isVn = (�'=�n)y=�, we have two basi
 equations of mo-tion, the so-
alled kinemati
 boundary 
ondition andthe dynami
 boundary 
ondition (the Bernoulli equa-tion): �t � Vnp1 + �2x = 0; (1)('t + v2=2 + gy)y=� = 0; (2)where g is the gravity a

eleration (we negle
t the sur-fa
e tension in this work).Be
ause the boundaries are nonuniform, Cartesian
oordinates are not 
onvenient for an exa
t treatmentof the above problem. Fortunately, the 2D Lapla
eequation is invariant under 
onformal transformationsof independent variables, and it is therefore possi-ble to introdu
e time-dependent 
onformal 
oordinates#(x; y; t) and �(x; y; t) su
h that the �ow domain 
or-responds to a horizontal stripe 0 � � � �(t) in the #�plane (for details, see Refs. [26, 27℄). In the 
onformalvariables, the potential '(#; �; t) satis�es the Lapla
e

equation '## + '�� = 0, with simple boundary 
ondi-tions '�(#; 0; t) = 0 and '(#; �(t); t) =  (#; t).The 
onformal variables result in a parameteriza-tion of the (x-periodi
) free surfa
e in terms of a realfun
tion �(#; t) as follows [26, 27℄:X + iY = Z h#+ i�(t) + �1 + iR̂�� �(#; t)i ; (3)where R̂� is a linear integral operator diagonal inthe dis
rete Fourier representation, R�(m) = i th(�m)(here, m is the number of a Fourier harmoni
). A �xedanalyti
 fun
tion Z(�) determines a 
onformal map-ping of a su�
iently wide horizontal stripe in the upperhalf-plane of an auxiliary 
omplex variable �, adja
entto the real axis Im � = 0, onto a region in the physi
alxy plane, with the real axis Im � = 0 parameterizingthe bed pro�le.Exa
t 
ompa
t expressions for the time derivatives�t(#; t),  t(#; t), and _�(t) were obtained, 
orrespond-ing to the dynami
s of potential water waves in theuniform gravity �eld [26, 27℄:�t = �Re[�#(T̂� + i)Q℄; (4) t = �Re[�#(T̂�+i)Q℄� j�#j22jZ 0(�)�#j2�g ImZ(�); (5)_�(t) = � 12� 2�Z0 Q(#) d#; (6)where� = #+ i�+ (1 + iR̂�)�; � = (1 + iR̂�) ;Q = R̂� #jZ 0(�)�#j2 :The operator T̂� is diagonal in the dis
rete Fourier rep-resentation:T�(m) = �i 
th(�m); m 6= 0;T�(0) = 0:Equation (4) is the kinemati
 boundary 
ondition atthe free surfa
e, written in terms of 
onformal vari-ables, Eq. (5) is the dynami
 boundary 
ondition (theBernoulli equation), and Eq. (6) takes the time depen-den
e of the 
onformal depth � into a

ount, whi
h isne
essary for the 
onservation of the total �uid volume.If the fun
tion Z(�) is expressed in terms of ele-mentary analyti
 fun
tions (su
h as exp(: : : ), log(: : : ),389
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ular examples),then the right-hand sides of Eqs. (4)�(6) 
an be eas-ily evaluated using the fast Fourier transform routinesand mathemati
al library 
omplex fun
tions (in C pro-gramming language, the names of su
h 
omplex fun
-tions are 
 exp(: : : ), 
 log(: : : ), and so on). The aboveproperties form the base of the numeri
al method.In the numeri
al experiments, we use dimension-less variables (however, for graphi
al presentations, thewave pro�les are res
aled to a 
hara
teristi
 depth h == 1 m), and 
onsider either �at horizontal or 2�-perio-di
 nonuniform bed pro�les (whi
h means Z(� +2�) == 2�+Z(�)) having an additional symmetry about theimaginary axis,ImZ(�� 0 + i� 00) = ImZ(� 0 + i� 00);ReZ(�� 0 + i� 00) = �ReZ(� 0 + i� 00):This symmetry is required for simulations of waves be-tween the verti
al walls lo
ated at x = 0 and at x = �.Of 
ourse, the fun
tions  (#; t) and �(#; t) should alsohave de�nite symmetries: (#+ 2�; t) =  (#; t);  (�#; t) =  (#; t);�(#+ 2�; t) = �(#; t); �(�#; t) = ��(#; t):The symmetries are automati
ally preserved in time ifthe initial data are symmetri
.In all our simulations, the system at t = 0 is 
ha-ra
terized by a free surfa
e pro�le y = �0(x) and bythe velo
ity �eld v = 0. Su
h initial 
onditions withzero kineti
 energy Ekin were taken be
ause they are
onvenient to observe the re
urren
e by monitoring thetime dependen
e of the quantity Ekin=E, where E isthe total energy, whi
h is 
onserved in the numeri
alexperiments up to 7�8 de
imal digits. The fun
tion�0(x) is even and periodi
, and therefore satis�es theboundary 
onditions �00(0) = �00(L=2) = 0, where L isan x-period. A spe
ial pro
edure was designed to nu-meri
ally �nd the fun
tion �(#; 0) 
orresponding to agiven initial pro�le �0(x) [25℄.2.2. Example where the re
urren
e is absentWe stress that the FPU re
urren
e o

urs for spe
ialinitial 
onditions only. It is 
lear from the theoreti
alstandpoint that the re
urren
e 
orresponds to a nearly
losed traje
tory on a torus in the phase spa
e of anintegrable system. The dimensionality of the torus isequal to the number of the e�e
tively ex
ited degreesof freedom. Typi
ally, the frequen
ies of that motionare not rationally related. Therefore, re
urren
e is not
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urren
e is pra
ti
ally absent when�0(x) = 0:24hf[1 + 
os(2�x=60h)℄3=8� 5=16gobserved in the generi
 
ase. In Fig. 3, as an exampleof the 
ase where the re
urren
e is pra
ti
ally absent,we present the evolution of some relevant parametersin the numeri
al experiment with�0(x) = 0:24h"18 �1 + 
os 2�x60h�3 � 516# :From this standpoint, it may seem mira
ulousthat the initial pro�les in the simplest form �0(x) == A0 
os(2�x=L) demonstrate rather perfe
t re
ur-ren
es despite a fairly large number of the e�e
tivelyex
ited degrees of freedom, Ns = 5; 6; 7 for A0=h == 0:12 and L=h = 100; : : : ; 120, as in the numeri
alexperiments reported in [25℄.2.3. Re
urren
e in the dynami
s of solitonsIt is well-known that integrable systems with perio-di
 boundary 
onditions have so-
alled �nite-gap solu-tions, whi
h are exa
tly �nite-dimensional subsystemswith the dynami
s on a torus. For the Boussinesq sys-tem, the simplest example is given in the Appendixand more involved 
ases are 
onsidered in Ref. [22℄. Inthe general 
ase, the formulas are quite 
ompli
ated,and it is di�
ult to des
ribe the 
orresponding degreesof freedom in terms of simple physi
al quantities. Ho-wever, if the x-period is su�
iently long, an approxi-390
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urren
e : : :mate des
ription in terms of several 
olliding solitonsbe
omes possible. In the Boussinesq model, �free� soli-tons are 
hara
terized by positive or negative dimen-sionless velo
ities sn (
onstant and all di�erent) andby the positions (phases) xn(t). The 
orrespondinganalyti
 solutions are presented in [23℄. It is impor-tant that when two solitons with opposite velo
itiess1 = �s2 = s 
ollide at a position x0 (or a single soli-ton 
ollides with the wall), the velo
ity �eld along the�ow domain is identi
ally zero at some time moment,while the shape of the free surfa
e is given by the simpleformula �(x) = S(x� x0; s) withS(x� x0; s) = 2h(s2 � 1)
h2[p3(s2 � 1)(x� x0)=2h℄ : (7)This formula was used in our numeri
al experiments toprepare initial states in the form of several pairs of 
ol-liding solitons, pla
ed su�
iently far apart from ea
hother.In a �nite domain, ea
h soliton moves between thewalls and additionally a
quires a de�nite phase shift�(sn) when it re�e
ts from a wall (sn ! �sn afterre�e
tion) and phase shifts �(sn; sm) when it 
ollideswith other solitons [23℄. In this pi
ture, the re
urren
eo

urs when the positions of all solitons self-
onsistent-ly return 
lose to their initial values at some time mo-ment. The simplest nontrivial example of a quasire
ur-ren
e in the system of two solitons is shown in Fig. 4.But the above approximate des
ription does notwork if we initially put several identi
al humps, ea
h
orresponding to a pair of 
olliding solitons, at di�erentpositions. Figure 5 shows that the re
urren
e o

urs ina more 
ompli
ated way in su
h a 
ase.If we put two or more humps, with one of themhigher than the others, then the re
urren
e is possibleonly with tuned values of the larger velo
ity. Su

essfulexamples are shown in Figs. 6 and 7.3. EXTREME WAVES OVER NONUNIFORMBEDSWe have observed in numeri
al experiments thatwith a �at bottom, if all the initial humps are nearly ofthe same height, the maximum surfa
e elevation, as afun
tion of time, does not mu
h ex
eed the initial valuefor a long time. What happens if the bed is nonuni-form? This question is answered in this se
tion basedon a set of numeri
al experiments. Three typi
al ex-amples are presented below.In the �rst nonuniform 
ase, we simulated wavesover a mild-slope bottom, 
orresponding to a fun
tionZ(�) of the form (Fig. 8)
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Fig. 4. Example of the FPU re
urren
e when two soli-tons with di�erent parameters are present in the sys-tem (L = 40 m, h = 1:0 m; a, b, and 
 show the samequantities as in Fig. 1)Z1(�) = � + 2�i400 �0:2ei� � 1� : (8)The initial state was eight pairs of 
olliding solitonspla
ed at quasirandom positions (that is, eight humpsof form (7)), with s = 1:11 (not shown). Over a nonuni-form bed, the initial solitons evolve to a random wave�eld 
onsisting of quasisolitoni
 
oherent stru
tures ofdi�erent heights, together with non
oherent waves. Af-ter a su�
iently long time, the smooth nonuniformityresulted in the appearan
e of tall extreme wave events(Figs. 8�10), when the strongest, oppositely propagat-ing quasisolitoni
 
oherent stru
tures 
ollided. Thehighest wave events were observed near the left wall,where the depth is minimal.In the se
ond nonuniform 
ase, we took the fun
tionZ(�) as a sum of several Fourier harmoni
s,391
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Fig. 7. More 
ompli
ated regime of the FPU re
urren
e(L = 80 m, h = 1:0 m). Three pairs of solitons arepresent, with one pair stronger than the other two (aand b show the same quantities as in Fig. 5)Z2(�) = � � 2�i400 + i 8Xm=1(�1)mCm exp(ikm�); (9)with some positive 
oe�
ients Cm and positive integerwave numbers km. In this 
ase, the bed pro�le lookspra
ti
ally as a quasirandom, relatively short-
orrela-ted 
urve (Fig. 11). Again, extreme waves appearedat a later stage of the evolution, after the initial state
onsisting of eight pairs of 
olliding solitons with pa-rameters s = 1:12. Compared to the mild slope, theextreme waves were no so high, but very sharp andtypi
ally more asymmetri
. We also note that in this
ase, a typi
al time of the transition to a random wave�eld, 
hara
terized by a rough pro�le of the free sur-fa
e, was mu
h shorter than in the 
ase of a mild-slopebottom. Also, quasisolitoni
 
oherent stru
tures in these
ond 
ase were relatively short-lived, while a non
o-herent part of the wave �ied was more developed.In the third nonuniform 
ase, the bed inhomo-geneity was taken in the form of 25 randomly pla
ednearly identi
al barriers (the shape of barriers is seenin Fig. 12),392
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Fig. 8. Rogue waves appear over a mild-slope bed,some of them near the wall: solid and dashed linesare for a free surfa
e and a bottom, respe
tivelyZ3(�) = � � 2�i400 ++Xn ni �� exp[�B(�+i"��n)2℄�(�+i"��n)2�1=2 �� (� + i"� �n)o ; (10)where �n, n = 0; : : : ; 24, are quasirandom real numbersin the range from 0 to �, and �n+25 = 2� � �n (re-quired for the symmetry). The other parameters wereB = 1400, " = 0:001, and � = 5:0 � 10�5. In 
ontrastto the previous two examples, the 
onformal mapping
orresponding to the fun
tion Z3(�) has singularities inthe upper half-plane of the 
omplex variable �; howe-ver, all the singularities are far enough above the freesurfa
e. The large value of the parameter B allowed usto take only several nearest barriers into a

ount whennumeri
ally evaluating the fun
tion Z(�), thus signi-
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e over the mild-slope bed�
antly redu
ing the 
omputational 
ost 
ompared tomany di�erent possible 
hoi
es for barrier shapes.Eight initial pairs of solitons had s = 1:11. In thisnumeri
al experiment, extreme waves appeared as well(see Fig. 12). Some of them were quite tall, while othershad a moderate height, but a very sharp 
rest (thesewere essentially asymmetri
). In general, the third 
aseis mu
h similar to the se
ond 
ase (
ompare Fig. 12 andFig. 11).4. SUMMARY AND DISCUSSIONIn this work, highly a

urate numeri
al simulationsof the exa
t equations of motion for planar potential�ows of a perfe
t �uid with a free surfa
e were used todemonstrate that shallow-water dispersive waves withmoderate amplitudes A=h . 0:12 
an exhibit the FPUre
urren
e in a �nite basin for various initial states.393
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e
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ed barriers (
urves 1 and 2 are for a freesurfa
e and a bottom, respe
tively)However, the best quality of the re
urren
e is observedfor the initial free surfa
e of the form�0(x) = A0 
os(2�x=L);  0(x) = 0:In that spe
ial 
ase, velo
ities of all the arising solitonsappear self-
onsistently tuned to their phase shifts inmutual 
ollisions, whi
h results in a remarkably perfe
tre
urren
e to the initial state even in quite long �umes.A mathemati
al reason for this self-
onsisten
y is not394
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urren
e : : :
lear at the moment. The FPU quasire
urren
e is alsorobust with initial states in the form of two solitons.For a larger number of solitons, quasire
urren
e is pos-sible with spe
ial values of parameters only.All our numeri
al results are based on the invis-
id theory. In reality, of 
ourse, a vis
ous fri
tion a
tsagainst the re
urren
e. However, it was estimated in[25℄ that a relative e�e
t of the vis
ous fri
tion near thebottom and near the side walls of the �ume be
omessmall if all the spatial s
ales in
rease proportionally.In the quasi-integrable regime over a �at horizon-tal bed, with initial states in the form of several nearlyequal solitons, formation of extreme waves appears ef-fe
tively suppressed, be
ause the solitons preserve theirstrengths for a long time. When the approximate inte-grability is destroyed by the bed nonuniformity, the sys-tem evolves to a random-wave-�eld regime where qua-sisolitoni
 
oherent stru
tures of di�erent amplitudesare present, some of them being stronger than the ini-tial solitons. When the strongest oppositely propaga-ting stru
tures 
ollide, fairly extreme waves arise. Thehighest extreme waves were observed for a mild-slopebed pro�le, while for relatively short-
orrelated bed in-homogeneities, the extreme waves were typi
ally lesstall but more sharp-
rested. Similar e�e
ts were ob-served both for waves between the verti
al walls andfor waves with periodi
 boundary 
onditions withoutthe additional symmetry.Our present results for extreme events in bidi-re
tional wave �elds over nonuniform beds may havesome relevan
e to the problem of rogue (freak) wavesin 
oastal zone, but only if the 
oast is in the formof a wave-re�e
ting 
li� rather than a wave-absorbingbea
h.This paper was supported by the Russian Founda-tion for Basi
 Resear
h (Proje
t � 09-01-00631), theCoun
il of the President of the Russian Federationfor Support of Young S
ientists and Leading S
ien-ti�
 S
hools (Proje
t�NSh-6885.2010.2), and the Pre-sidium of the Russian A
ademy of S
ien
es (program�Fundamental Problems of Nonlinear Dynami
s�).APPENDIXA single soliton between the walls in theBoussinesq modelThe Boussinesq equations for weakly nonlinear,weakly dispersive long water waves in the dimension-

less variables (�=h! �, p3x=2h! x, p3g=h t=2! t)take the form ut + uux + �x = 0; (A.1)�t + [(1 + �)u℄x + 14uxxx = 0; (A.2)where � is the verti
al displa
ement of the free surfa
eand u =  x is the horizontal velo
ity. Following [23℄,we transform the above system to a more symmetri
form qt + 12qxx + q2r = 0; (A.3)�rt + 12rxx + r2q = 0; (A.4)where new real unknown fun
tions q(x; t) and r(x; t)express the old fun
tions �(x; t) and u(x; t) in the fol-lowing manner:u = qxq ; � = �1 + qr + ux2 : (A.5)We note that system of equations (A.3) and (A.4) isformally similar to the fo
using nonlinear S
hrödingerequation 2i t +  xx + 2 2 � = 0and its 
omplex 
onjugate�2i �t +  �xx + 2 �2 = 0:Therefore, we 
an apply a simple generalization ofthe Akhmediev�Eleonskii�Korneev�Kulagin ansatz[8, 34, 35℄, and seek a solution of Eqs. (A.3)�(A.4) inthe form(q; r) = [U(x; t)�pZ(t)℄ exp(�P (t)):In this way, we 
an obtain and integrate a system ofequations for the unknown fun
tions U(x; t), Z(t), andP (t). At some point, the problem is redu
ed to theanalysis of two equations (
f. [34℄)_Z2�16Z4+16wZ3�4(h+w2)Z2�4bZ = 0; (A.6)U2x + U4 + 2(w � 3Z)U2 + 2 _ZpZU ++ (2wZ � 3Z2 � b) = 0; (A.7)where w, h, and b are some 
onstants (there is also thethird equation _P + 2Z = w).395



V. P. Ruban ÆÝÒÔ, òîì 141, âûï. 2, 2012However, we prefer not to deal with a fun
tionof two variables su
h as U(x; t), and therefore use aslightly less general ansatz that still admits physi
allyinteresting solutions, with the variables separated fromthe very beginning:q(x; t) = F (t) + Q(t)D(x) +A(t) ; (A.8)r(x; t) = G(t) + R(t)D(x) +A(t) : (A.9)We take the only x-dependent fun
tion D(x) satisfyingthe relationsD2x = 4�2(D2�1)(1��2D2) � 
D2�ÆD4��; (A.10)Dxx = 
D � 2ÆD3; (A.11)where �, �, 
, and Æ are some real parameters. There-fore, it is one of the Ja
obi ellipti
 fun
tions (for theirde�nitions and properties, see, e.g., [36℄):D(x) = nd�2�x;p1� �2 � : (A.12)The x-period of this fun
tion is ~L = I(�)=�, whereI(�) = 1=�Z1 dzp(z2 � 1)(1� �2z2) : (A.13)We now substitute ansatz (A.8)�(A.9) in system(A.3)�(A.4). Using relations (A.10) and (A.11), weobtain the following set of equations (whose left-handsides are 
oe�
ients in front of di�erent powers(D+A)�n, n = 0; 1; 2; 3, or their linear 
ombinations):_F + F 2G+ ÆAQ = 0; (A.14)� _G+ FG2 + ÆAR = 0; (A.15)_Q+ Q2 (
� 6ÆA2) + 2QFG+RF 2 = 0; (A.16)� _R+ R2 (
� 6ÆA2) + 2RFG+QG2 = 0; (A.17)2 _A+QG�RF = 0; (A.18)�(
A� 2ÆA3) +QG+RF = 0; (A.19)

(
A2 � ÆA4 � �) +QR = 0: (A.20)(The last equation a
tually appears twi
e.) It is easyto show that the two algebrai
 relations are 
onsistentwith the �ve di�erential equations. It also follows fromthese equations thatFG = ÆA2 + 
; (A.21)where 
 is a 
onstant. We now take the squared equa-tion for _A and obtain4 _A2 = (RF �QG)2 = (RF +QG)2 � 4FGQR == (
A� 2ÆA3)2 + 4(
 + ÆA2)(
A2 � ÆA4 � �);whi
h is an easily solvable �rst-order equation4 _A2 = �4
ÆA4 +A2(
2 + 4

 � 4�Æ)�� 4
� � 4
Æ(A2 � �21)(�22 �A2); (A.22)where�21;2 = 12 � 
24
Æ + 
Æ � �
���s14 � 
24
Æ + 
Æ � �
�2 � �Æ : (A.23)The solution of Eq. (A.22) is again expressed throughan ellipti
 fun
tion:A(t) = �1 nd0�t�2p
Æ;s1���1�2�21A �� �1 nd (�; �) : (A.24)Be
ause nd(�; �) = 1=dn(�; �) by de�nition (see [36℄)and [dn(�; �)℄� = ��2sn(�; �) 
n(�; �), we 
an expressthe time derivative _A(t) as_A(t) = �1�2p
Æ�2sd(�; �) 
d(�; �): (A.25)Thus, we have obtained expli
it expressions for thequantities A, QR, FG, and (RF + QG). From these,we 
an also extra
t the ratios Q=F and R=G, be
auseRG + QF = RF +QGFG = 
A� 2ÆA3ÆA2 + 
 ; (A.26)RG � QF = 2 _AFG = 2 _AÆA2 + 
 : (A.27)396
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urren
e : : :The obtained information is su�
ient to 
onstru
t thevelo
ity u(x; t) and the free surfa
e elevation �(x; t) viaformulas (A.5), be
auseu = � 1D +A+Q=F � 1D +A�Dx; (A.28)� = �1+FG+RF+QGD+A + QR(D+A)2+ux2 : (A.29)Using the relations 
 = 4�2(1+�2), Æ = 4�2�2, and � == 4�2, it 
an be shown that �1 < 1 and �2 > 1=�, andtherefore at de�nite time moments the fun
tion A(t)takes values A1 = 1 or A2 = 1=�. Simultaneously, atthose time moments, either Q = 0 or R = 0. WhenQ = 0, the velo
ity �eld u(x) is zero everywhere, whilethe free surfa
e pro�le is either �1(x) or �2(x), where�1(x) = �1 + 
 + 4�2��2 + 1� �2D(x) + 1� ; (A.30)

�2(x) = �1(x� ~L=2): (A.31)We see that the best 
hoi
e for the 
onstant 
 is 
 == 1�4�2�, be
ause in this 
ase �1min = 0. The fun
tion�1(x) has a single hump at x = 0, and therefore 
or-responds to the moments when a soliton 
ollides withthe left wall, while �2(x) 
orresponds to the 
ollisionsof the soliton with the right wall at x = ~L=2.In the limit � � 1, we have ~L ! 1 and D(x) �� 
h(2�x), and hen
e�1(x) � 4�21 + 
h(2�x) = 2�2
h2(�x) : (A.32)The full solution in this limit is given by the follow-ing formulas (it is interesting to note that the solutionbelow is essentially Eq. (52) in Ref. [34℄ for the fo
us-ing nonlinear S
hrödinger equation, but evaluated atimaginary time):q(x; t) = 241 + 2�2 
h�2t�p1 + �2 �� 2�p1 + �2 sh�2t�p1 + �2 �p1 + �2 
h(2�x) + 
h�2t�p1 + �2 � 35 e�t; (A.33)r(x; t) = 241 + 2�2 
h�2t�p1 + �2 �+ 2�p1 + �2 sh�2t�p1 + �2 �p1 + �2 
h(2�x) + 
h�2t�p1 + �2 � 35 et: (A.34)Collision of the soliton with the wall at x = 0 o

urs att = t�, when
h�2t��p1 + �2 � =p1 + �2:It is easy to derive that before and after the 
ollision,the soliton (at x > 0) moves with the respe
tive velo
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