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Different regimes of the Fermi—Pasta—Ulam (FPU) recurrence are simulated numerically for fully nonlinear “one-
dimensional” potential water waves in a finite-depth flume between two vertical walls. In such systems, the FPU
recurrence is closely related to the dynamics of coherent structures approximately corresponding to solitons of
the integrable Boussinesq system. A simplest periodic solution of the Boussinesq model, describing a single
soliton between the walls, is presented in analytic form in terms of the elliptic Jacobi functions. In the numerical
experiments, it is observed that depending on the number of solitons in the flume and their parameters, the
FPU recurrence can occur in a simple or complicated manner, or be practically absent. For comparison, the
nonlinear dynamics of potential water waves over nonuniform beds is simulated, with initial states taken in the
form of several pairs of colliding solitons. With a mild-slope bed profile, a typical phenomenon in the course of
evolution is the appearance of relatively high (rogue) waves, while for random, relatively short-correlated bed
profiles it is either the appearance of tall waves or the formation of sharp crests at moderate-height waves.

1. INTRODUCTION

Nearly integrable wave systems are known to ex-
hibit the Fermi-Pasta-Ulam (FPU) recurrence, when
a (finite-size) system approximately repeats its initial
state after some period of evolution. Starting from the
first observation of this phenomenon in the famous nu-
merical experiment with one-dimensional (1D) lattices
of nonlinear oscillators [1], the FPU recurrence and re-
lated phenomena were studied in many physical con-
texts (see, e.g., Refs. [2-14] and the references therein).
In particular, Zabusky and Kruskal [2] discovered soli-
tons with a highly nontrivial behavior, when numer-
ically investigated a mechanism of the recurrence for
spatially periodic solutions of the Korteweg—de Vries
(KdV) equation. Presently, the theory of solitons has
developed into one of the main branches of nonlinear
science.

It is well known that many integrable mathema-
tical models have their origin in the theory of water
waves. The two most famous integrable equations are
the KdV equation, first derived for weakly dispersive
unidirectional shallow-water waves, and the nonlinear
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Schrédinger equation, which describes an envelope of a
train of deep-water waves [15]. For deep-water waves,
many analytic and experimental results concerning the
FPU recurrence are known [4-9,16-19]. As regards the
shallow-water regime, only some numerical studies for
the KdV equation and its higher-order generalizations
were performed until recently (see, e.g., Refs. [10, 11]),
while the FPU phenomenon was never considered theo-
retically for long waves in a finite flume, and was never
studied experimentally in the shallow-water regime.

It is clear that the KdV equation is not adequate for
long waves in a finite basin where they reflect from the
walls. Fortunately, there is another integrable model,
the Boussinesq system, that approximately describes
bidirectional shallow-water waves and is therefore po-
tentially useful for analytic study of the FPU recur-
rence in a finite-length flume (concerning the integra-
bility of the Boussinesq system, see Refs. [20-23], and
concerning the deviations of water waves from exact
integrability, see Refs. [10, 24]). Presently, however,
we do not have a clear theory of FPU recurrence for
shallow water, based on the Boussinesq system. Per-
haps, a future theory should be built with the help of
the sophisticated mathematical methods developed for
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Fig.1. The FPU recurrence is perfect with the
initial shape of the free surface in the form
no(z) = 0.12hcos(27x/60h) with L/h = 60,

Ao/h = 0.12, and h = 1.0 m: a — wave profiles at

several time moments when the kinetic energy is at a

minimum; b — the ratio of the kinetic energy to the to-

tal energy; ¢ — the maximum and minimum elevations
of the free boundary

obtaining spatially periodic solutions of integrable sys-
tems (in particular, see [22] for the Boussinesq model).
In this paper, such a general purpose is not achieved,
although a family of periodic solutions is derived in an
explicit analytic form using a simple ansatz that corre-
sponds to a single soliton periodically moving between
the walls. However, that solution is by no means the
main result of our work; it just plays an auxiliary role,
namely, to provide nearly “many-soliton” initial condi-
tions for highly accurate numerical experiments.

Very recently, our short paper was published where
for the first time the FPU recurrence was studied nu-
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Fig.2. The FPU recurrence is less perfect with a larger

initial amplitude, no(z) = 0.14h cos(2wz/60h) with

L/h = 60, Ag/h = 0.14, and h = 1.0 m, because

the nonintegrability effects are stronger (a, b, and ¢
show the same quantities as in Fig. 1)

merically for fully nonlinear shallow-water waves in a
finite flume [25]. Exact equations of motion for poten-
tial planar flows of a perfect fluid with a free surface
in terms of so-called conformal variables were used in
that study [26, 27]. The simplest initial states were
taken, with zero velocity field and a cosine-shaped free
boundary. Two typical examples of the recurrence are
presented in Figs. 1 and 2.

One of the purposes of this paper is to provide addi-
tional numerical examples of the recurrence for differ-
ent initial states, and to demonstrate a relation of the
FPU phenomenon in shallow-water finite basins to soli-
tons of the approximate Boussinesq system. Another
purpose is to observe what new effects appear in the dy-
namics of long dispersive waves if the bottom boundary
is nonuniform (it should be noted that conformal vari-

388



MKITD, Tom 141, Bhm. 2, 2012

The Fermi—Pasta—Ulam recurrence ...

ables provide exact equations of motion for an arbitrary
nonuniform bottom profile when it is parameterized by
an analytic function [26, 27]). In particular, three kinds
of bed profiles are considered: mild-slope beds, beds
with quasirandom, relatively short-correlated corruga-
tions, and beds with randomly placed barriers. The
nonuniformity destroys the approximate integrability,
and therefore initial states in the form of several pairs
of colliding solitons evolve to the appearance of highly
nonlinear wave events. Such steep and tall waves can
be considered a 1D model for freak (rogue) waves some-
times arising in the coastal zone (the subject of freak
waves is currently studied very extensively, see [28—30]
and the references therein).

2. DIFFERENT EXAMPLES OF THE FPU
RECURRENCE

2.1. Notes about the numerical method

We consider two-dimensional (2D) potential flows
of a perfect fluid with the velocity field

v(z,y,t) = Vo(r,y,t),

where z is the horizontal coordinate, y is the vertical
coordinate, and ¢ is the time. The velocity potential
¢ satisfies the 2D Laplace equation ¢u, + @yy = 0 in-
side the flow domain, with the condition of zero normal
velocity Op/dn = 0 at a (fixed) bottom boundary. At
the free surface y = n(z, t), where the normal velocity is
Vi = (0¢/0n)y=y, we have two basic equations of mo-
tion, the so-called kinematic boundary condition and
the dynamic boundary condition (the Bernoulli equa-
tion):

ne— Va/14102 =0, (1)

(2)

where ¢ is the gravity acceleration (we neglect the sur-
face tension in this work).

Because the boundaries are nonuniform, Cartesian
coordinates are not convenient for an exact treatment
of the above problem. Fortunately, the 2D Laplace
equation is invariant under conformal transformations
of independent variables, and it is therefore possi-
ble to introduce time-dependent conformal coordinates
Iz, y,t) and v(z,y,t) such that the flow domain cor-
responds to a horizontal stripe 0 < v < «(t) in the Jv
plane (for details, see Refs. [26, 27]). In the conformal
variables, the potential ¢(1,v,t) satisfies the Laplace

(pr +v>/24 gy)y—n = 0,
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equation gy + ¢, = 0, with simple boundary condi-
tions o, (¢,0,t) = 0 and (9, a(t),t) = (9,t).

The conformal variables result in a parameteriza-
tion of the (z-periodic) free surface in terms of a real
function p(¥,t) as follows [26, 27]:

X+i¥ =2 [19 +ia(t) + (1 + iRa) (0, t)] . (3)

where R, is a linear integral operator diagonal in
the discrete Fourier representation, Ry (m) = i th(am)
(here, m is the number of a Fourier harmonic). A fixed
analytic function Z({) determines a conformal map-
ping of a sufficiently wide horizontal stripe in the upper
half-plane of an auxiliary complex variable (, adjacent
to the real axis Im ¢ = 0, onto a region in the physical
zy plane, with the real axis Im ( = 0 parameterizing
the bed profile.

Exact compact expressions for the time derivatives
pe(0,t), (0, t), and &(t) were obtained, correspond-
ing to the dynamics of potential water waves in the
uniform gravity field [26, 27]:

pe = = Rel&y(Ta +4)Q), (4)

b = = Reldo (Lo Hi) Q) 5 s - 29, 5)
alt) = —5- / Q) d, (6)
0

where

E=04ia+ (14+iRa)p, ®=(1+iRa)1,

Q — Ra¢19
1Z'(£)&]?
The operator T, is diagonal in the discrete Fourier rep-

resentation:

To(m) = —icth(am), m #0,

T,,(0) = 0.

Equation (4) is the kinematic boundary condition at
the free surface, written in terms of conformal vari-
ables, Eq. (5) is the dynamic boundary condition (the
Bernoulli equation), and Eq. (6) takes the time depen-
dence of the conformal depth « into account, which is
necessary for the conservation of the total fluid volume.

If the function Z(({) is expressed in terms of ele-
mentary analytic functions (such as exp(...), log(...),
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and so on; see [26,27,31-33] for particular examples),
then the right-hand sides of Eqgs. (4)—(6) can be eas-
ily evaluated using the fast Fourier transform routines
and mathematical library complex functions (in C pro-
gramming language, the names of such complex func-
tions are cexp(...), clog(...), and so on). The above
properties form the base of the numerical method.

In the numerical experiments, we use dimension-
less variables (however, for graphical presentations, the
wave profiles are rescaled to a characteristic depth h =
= 1 m), and consider either flat horizontal or 2m-perio-
dic nonuniform bed profiles (which means Z({ + 27) =
= 27+ Z(({)) having an additional symmetry about the
imaginary axis,

Im Z(—¢" +i¢") =Im Z(¢' +i¢"),
Re Z(—(' +i¢") = —Re Z(¢' +i¢").

This symmetry is required for simulations of waves be-
tween the vertical walls located at x = 0 and at z = 7.
Of course, the functions (1, t) and p(¢,t) should also
have definite symmetries:

¢(19 + 2, t) = ¢(797 t)v ’(ﬁ(—19, t) = ¢(197 t)7

p(=0,t) = —p(J,1).

The symmetries are automatically preserved in time if
the initial data are symmetric.

In all our simulations, the system at ¢ = 0 is cha-
racterized by a free surface profile y = no(z) and by
the velocity field v = 0. Such initial conditions with
zero kinetic energy FEy;, were taken because they are
convenient to observe the recurrence by monitoring the
time dependence of the quantity Ej;,/E, where E is
the total energy, which is conserved in the numerical
experiments up to 7-8 decimal digits. The function
no(z) is even and periodic, and therefore satisfies the
boundary conditions 7;(0) = nj(L/2) = 0, where L is
an x-period. A special procedure was designed to nu-
merically find the function p(¢,0) corresponding to a
given initial profile ng(z) [25].

p(0 +2m,t) = p(, ),

2.2. Example where the recurrence is absent

We stress that the FPU recurrence occurs for special
initial conditions only. It is clear from the theoretical
standpoint that the recurrence corresponds to a nearly
closed trajectory on a torus in the phase space of an
integrable system. The dimensionality of the torus is
equal to the number of the effectively excited degrees
of freedom. Typically, the frequencies of that motion
are not rationally related. Therefore, recurrence is not
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Fig.3. The FPU recurrence is practically absent when
no(z) = 0.24h{[1 + cos(272/60h)]*>/8 — 5/16}

observed in the generic case. In Fig. 3, as an example
of the case where the recurrence is practically absent,
we present the evolution of some relevant parameters
in the numerical experiment with

Lo 2 3
8 5 50n 16|

From this standpoint, it may seem miraculous
that the initial profiles in the simplest form ny(x) =
= Apcos(2rz/L) demonstrate rather perfect recur-
rences despite a fairly large number of the effectively
excited degrees of freedom, Ny = 5,6,7 for Ag/h =
= 0.12 and L/h = 100,...,120, as in the numerical
experiments reported in [25].

no(z) = 0.24h

2.3. Recurrence in the dynamics of solitons

It is well-known that integrable systems with perio-
dic boundary conditions have so-called finite-gap solu-
tions, which are exactly finite-dimensional subsystems
with the dynamics on a torus. For the Boussinesq sys-
tem, the simplest example is given in the Appendix
and more involved cases are considered in Ref. [22]. In
the general case, the formulas are quite complicated,
and it is difficult to describe the corresponding degrees
of freedom in terms of simple physical quantities. Ho-
wever, if the z-period is sufficiently long, an approxi-
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mate description in terms of several colliding solitons
becomes possible. In the Boussinesq model, “free” soli-
tons are characterized by positive or negative dimen-
sionless velocities s, (constant and all different) and
by the positions (phases) x,(t). The corresponding
analytic solutions are presented in [23]. It is impor-
tant that when two solitons with opposite velocities
s1 = —so = s collide at a position z¢ (or a single soli-
ton collides with the wall), the velocity field along the
flow domain is identically zero at some time moment,
while the shape of the free surface is given by the simple
formula n(z) = S(x — z9, s) with

2h(s? — 1)

T P[VB( — 1) (x — 20)/2h]

This formula was used in our numerical experiments to
prepare initial states in the form of several pairs of col-
liding solitons, placed sufficiently far apart from each
other.

In a finite domain, each soliton moves between the
walls and additionally acquires a definite phase shift
o(s,) when it reflects from a wall (s, — —s, after
reflection) and phase shifts A(sy,, s,,) when it collides
with other solitons [23]. In this picture, the recurrence
occurs when the positions of all solitons self-consistent-

S(x — xg, 8) (7)

ly return close to their initial values at some time mo-
ment. The simplest nontrivial example of a quasirecur-
rence in the system of two solitons is shown in Fig. 4.

But the above approximate description does not
work if we initially put several identical humps, each
corresponding to a pair of colliding solitons, at different
positions. Figure 5 shows that the recurrence occurs in
a more complicated way in such a case.

If we put two or more humps, with one of them
higher than the others, then the recurrence is possible
only with tuned values of the larger velocity. Successful
examples are shown in Figs. 6 and 7.

3. EXTREME WAVES OVER NONUNIFORM
BEDS

We have observed in numerical experiments that
with a flat bottom, if all the initial humps are nearly of
the same height, the maximum surface elevation, as a
function of time, does not much exceed the initial value
for a long time. What happens if the bed is nonuni-
form? This question is answered in this section based
on a set of numerical experiments. Three typical ex-
amples are presented below.

In the first nonuniform case, we simulated waves
over a mild-slope bottom, corresponding to a function
Z(Q) of the form (Fig. 8)
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Fig.4. Example of the FPU recurrence when two soli-

tons with different parameters are present in the sys-

tem (L =40 m, h = 1.0 m; a, b, and ¢ show the same
quantities as in Fig. 1)

271,
:C+i

21(0) = ¢+ 305

(0.2¢¢ —1). (8)

The initial state was eight pairs of colliding solitons
placed at quasirandom positions (that is, eight humps
of form (7)), with s = 1.11 (not shown). Over a nonuni-
form bed, the initial solitons evolve to a random wave
field consisting of quasisolitonic coherent structures of
different heights, together with noncoherent waves. Af-
ter a sufficiently long time, the smooth nonuniformity
resulted in the appearance of tall extreme wave events
(Figs. 8-10), when the strongest, oppositely propagat-
ing quasisolitonic coherent structures collided. The
highest wave events were observed near the left wall,
where the depth is minimal.

In the second nonuniform case, we took the function
Z((¢) as a sum of several Fourier harmonics,
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Fig.5. Two pairs of solitons with equal parameters are

present in the system (L = 60 m, h = 1.0 m): o —

wave profiles at several time moments when the soli-

tons collide; b — the ratio of the kinetic energy to the
total energy
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Fig.6. Two pairs of solitons with different parameters
are present in the system (L =80 m, h = 1.0 m; a
and b show the same quantities as in Fig. 5)
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Fig.7. More complicated regime of the FPU recurrence

(L =80 m, h = 1.0 m). Three pairs of solitons are

present, with one pair stronger than the other two (a
and b show the same quantities as in Fig. 5)
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Z3(Q) = ¢ = (9)

with some positive coefficients C),, and positive integer
wave numbers k,,. In this case, the bed profile looks
practically as a quasirandom, relatively short-correla-
ted curve (Fig. 11). Again, extreme waves appeared
at a later stage of the evolution, after the initial state
consisting of eight pairs of colliding solitons with pa-
rameters s = 1.12. Compared to the mild slope, the
extreme waves were no so high, but very sharp and
typically more asymmetric. We also note that in this
case, a typical time of the transition to a random wave
field, characterized by a rough profile of the free sur-
face, was much shorter than in the case of a mild-slope
bottom. Also, quasisolitonic coherent structures in the
second case were relatively short-lived, while a nonco-
herent part of the wave flied was more developed.

In the third nonuniform case, the bed inhomo-
geneity was taken in the form of 25 randomly placed
nearly identical barriers (the shape of barriers is seen
in Fig. 12),
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where (,, n =0, ... ,24, are quasirandom real numbers
in the range from 0 to 7, and (,425 = 27 — (,, (re-
quired for the symmetry). The other parameters were
B = 1400, ¢ = 0.001, and v = 5.0 - 10°. In contrast
to the previous two examples, the conformal mapping
corresponding to the function Z3(¢) has singularities in
the upper half-plane of the complex variable (; howe-
ver, all the singularities are far enough above the free
surface. The large value of the parameter B allowed us
to take only several nearest barriers into account when
numerically evaluating the function Z(¢), thus signi-
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Fig.9. Maximum and minimum elevations of the free
surface over the mild-slope bed

ficantly reducing the computational cost compared to
many different possible choices for barrier shapes.

Eight initial pairs of solitons had s = 1.11. In this
numerical experiment, extreme waves appeared as well
(see Fig. 12). Some of them were quite tall, while others
had a moderate height, but a very sharp crest (these
were essentially asymmetric). In general, the third case
is much similar to the second case (compare Fig. 12 and
Fig. 11).

4. SUMMARY AND DISCUSSION

In this work, highly accurate numerical simulations
of the exact equations of motion for planar potential
flows of a perfect fluid with a free surface were used to
demonstrate that shallow-water dispersive waves with
moderate amplitudes A/h < 0.12 can exhibit the FPU
recurrence in a finite basin for various initial states.
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Fig.12. Formation of extreme waves over a bed with
randomly placed barriers (curves 1 and 2 are for a free
surface and a bottom, respectively)

However, the best quality of the recurrence is observed
for the initial free surface of the form

no(z) = Ag cos(2mz/L), o(z) =0.

In that special case, velocities of all the arising solitons
appear self-consistently tuned to their phase shifts in
mutual collisions, which results in a remarkably perfect
recurrence to the initial state even in quite long flumes.
A mathematical reason for this self-consistency is not



MKITD, Tom 141, Bhm. 2, 2012

The Fermi—Pasta—Ulam recurrence ...

clear at the moment. The FPU quasirecurrence is also
robust with initial states in the form of two solitons.
For a larger number of solitons, quasirecurrence is pos-
sible with special values of parameters only.

All our numerical results are based on the invis-
cid theory. In reality, of course, a viscous friction acts
against the recurrence. However, it was estimated in
[25] that a relative effect of the viscous friction near the
bottom and near the side walls of the flume becomes
small if all the spatial scales increase proportionally.

In the quasi-integrable regime over a flat horizon-
tal bed, with initial states in the form of several nearly
equal solitons, formation of extreme waves appears ef-
fectively suppressed, because the solitons preserve their
strengths for a long time. When the approximate inte-
grability is destroyed by the bed nonuniformity, the sys-
tem evolves to a random-wave-field regime where qua-
sisolitonic coherent structures of different amplitudes
are present, some of them being stronger than the ini-
tial solitons. When the strongest oppositely propaga-
ting structures collide, fairly extreme waves arise. The
highest extreme waves were observed for a mild-slope
bed profile, while for relatively short-correlated bed in-
homogeneities, the extreme waves were typically less
tall but more sharp-crested. Similar effects were ob-
served both for waves between the vertical walls and
for waves with periodic boundary conditions without
the additional symmetry.

Our present results for extreme events in bidi-
rectional wave fields over nonuniform beds may have
some relevance to the problem of rogue (freak) waves
in coastal zone, but only if the coast is in the form
of a wave-reflecting cliff rather than a wave-absorbing
beach.
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Council of the President of the Russian Federation
for Support of Young Scientists and Leading Scien-
tific Schools (Project Ne NSh-6885.2010.2), and the Pre-
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APPENDIX

A single soliton between the walls in the
Boussinesq model

The Boussinesq equations for weakly nonlinear,
weakly dispersive long water waves in the dimension-

less variables (n/h — 1, /3z/2h — x, \/3g/ht/2 = t)
take the form

Ut + uthy + 1, =0, (A.1)

1
ne + [(1 + 77)“]1: + —Uzee = 0,

i (A.2)

where 7 is the vertical displacement of the free surface
and u = 1), is the horizontal velocity. Following [23],
we transform the above system to a more symmetric
form

1
Gt + = qzz + qZT =0, (A3)

2

1
—T¢+ ZTee + 7'2(] =0, (A4)

2
where new real unknown functions ¢(z,t) and r(x,t)
express the old functions n(z,¢) and u(x,t) in the fol-
lowing manner:

dz
u=—

p (A.5)

;o= —ltqr+
2
We note that system of equations (A.3) and (A.4) is
formally similar to the focusing nonlinear Schrédinger
equation
20t + Yze + 2¢2¢* =0

and its complex conjugate
~207 + Y5, + 207 = 0.

Therefore, we can apply a simple generalization of
the Akhmediev-Eleonskii-Korneev—Kulagin ansatz
[8, 34, 35], and seek a solution of Eqs. (A.3)-(A.4) in
the form

(¢,r) = [U(x, 1) £/ Z(t)] exp(£P(t)).

In this way, we can obtain and integrate a system of
equations for the unknown functions U(z,t), Z(t), and
P(t). At some point, the problem is reduced to the
analysis of two equations (cf. [34])

72162 +16wZ° —4(h+w?) Z2—4bZ =0,  (A.6)
U2+ U+ 2w —32)U° + 2£U +
T \/7
+(2wZ -32%-b) =0, (A.7)

where w, h, and b are some constants (there is also the
third equation P + 27 = w).



V. P. Ruban

MKITD, Tom 141, Bhm. 2, 2012

However, we prefer not to deal with a function
of two variables such as U(x,t), and therefore use a
slightly less general ansatz that still admits physically
interesting solutions, with the variables separated from
the very beginning:

q(z,t) = F(t) + D) + A0 (A.8)
r(z,t) = G(t) + % (A.9)

We take the only a-dependent function D(z) satisfying
the relations

D? = 4)*(D*~1)(1—€’D?) = ¢D*—6D* -3, (A.10)

D, =cD —20D3, (A.11)

where pu, €, ¢, and § are some real parameters. There-
fore, it is one of the Jacobi elliptic functions (for their
definitions and properties, see, e.g., [36]):

D(z) =nd (Q,ux, Vv1- 62) .

The z-period of this function is L = I(e)/u, where

(A.12)

1/e

dz
I(e)=1/\/(22_1)(1_6222).

(A.13)

We now substitute ansatz (A.8)-(A.9) in system
(A.3)-(A.4). Using relations (A.10) and (A.11), we
obtain the following set of equations (whose left-hand
sides are coefficients in front of different powers
(D+A)"" n=0,1,2,3, or their linear combinations):

F+ F?G +6AQ =0, (A.14)

~G 4+ FG? +5AR =0, (A.15)

Q+ %(c —604%) +2QFG + RF?> =0,  (A.16)
~R+ %(c —60A%) +2RFG+QG* =0, (A.17)
244+ QG — RF =0, (A.18)

—(cA —204%) + QG + RF =0, (A.19)

(cA? —§A* — B) + QR = 0. (A.20)

(The last equation actually appears twice.) It is easy
to show that the two algebraic relations are consistent
with the five differential equations. It also follows from
these equations that

FG =6A% 4+, (A.21)

where v is a constant. We now take the squared equa-
tion for A and obtain

4A%? = (RF — QG)? = (RF + QG)* —4FGQR =
= (cA —20A%)? + 4(y 4+ 6A?)(cA® — A" - B),

which is an easily solvable first-order equation

4A% = 4~y AY + A% (P + 4oy — 4B6) —

— 478 = 498(A% - ) (0} — A7), (A.22)

1/ ¢2 c B\> B

) R
:F\/4<475+5 7> 5 (A23)
The solution of Eq. (A.22) is again expressed through
an elliptic function:

Qi

A(t) = a; nd (taQ\/y_(S, 1- (ﬂ>2) =

=arnd (& k). (A.24)

Because nd(§,x) = 1/dn(§, k) by definition (see [36])
and [dn(&, k)]e = —@QSn(f,n) en(€, k), we can express
the time derivative A(t) as

A(t) = araa/v0k2sd(€, k) cd(€, k). (A.25)

Thus, we have obtained explicit expressions for the
quantities A, QR, F'G, and (RF + QG). From these,
we can also extract the ratios Q/F and R/G, because

Q RF+QG _ cA—2043

R
GtFTTFG T ome, W
R Q 24 24
G FTTFG saiy A
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The Fermi—Pasta—Ulam recurrence ...

The obtained information is sufficient to construct the
velocity u(x,t) and the free surface elevation n(z,t) via
formulas (A.5), because

1 1
“_<D+A+Q/F_D+A>Dm’ (4.28)
- RF+QG QR u,

n=—1+FG+=—p— HEIVEREE (A.29)

Using the relations ¢ = 4p%(1+¢€2), § = 4u%€%, and 3 =
= 44%, it can be shown that a; < 1 and as > 1/¢, and
therefore at definite time moments the function A(t)
takes values Ay = 1 or Ay = 1/e. Simultaneously, at
those time moments, either ) = 0 or R = 0. When
@ = 0, the velocity field u(z) is zero everywhere, while
the free surface profile is either 1 (x) or n2(z), where

1— ¢
D(z)+1

m(x) = =1+ + 44’ <e2 + ) , (A.30)

() = m( — L/2). (A.31)

We see that the best choice for the constant v is v =
= 1—4/%¢, because in this case 71 min = 0. The function
71 (z) has a single hump at z = 0, and therefore cor-
responds to the moments when a soliton collides with
the left wall, while 75 (x) corresponds to the collisions
of the soliton with the right wall at = = L/2.

In the limit ¢ < 1, we have L — oo and D(z) ~
~ ch(2uz), and hence
4/12 2

~ 2p
1+ ch(2ux)

ch?(px)”

m () (A.32)

The full solution in this limit is given by the follow-
ing formulas (it is interesting to note that the solution
below is essentially Eq. (52) in Ref. [34] for the focus-
ing nonlinear Schrodinger equation, but evaluated at
imaginary time):

\

q(z,t) = {1

242 ch (%ﬁﬂ) —2u7/1 + p2sh (2tum)'|
N

=11

Collision of the soliton with the wall at x = 0 occurs at
t = t,, when

ch (Zt*u\/l n ;ﬂ) — /1122

It is easy to derive that before and after the collision,
the soliton (at x > 0) moves with the respective veloc-
ities s = F4/1 + p2.
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