МАГНИТНОЕ СОСТОЯНИЕ СТРУКТУРНО-РАССЛОЕННОГО АНИОН-ДЕФИЦИТНОГО МАНГАНИТА ${\rm La}_{0.70}{\rm Sr}_{0.30}{\rm MnO}_{2.85}$

С. В. Труханов^а^{*}, А. В. Труханов^а, А. Н. Васильев^b, А. М. Балагуров^c, Г. Шимчак^{d**}

^а Научно-практический центр Национальной академии наук Беларуси по материаловедению 220072, Минск, Белоруссия

^b Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

> ^с Объединенный институт ядерных исследований 141980, Дубна, Россия

> > ^dInstitute of Physics, PAS Warsaw 02-668, Poland

Поступила в редакцию 30 ноября 2010 г.

Изложены результаты нейтронных дифракционных исследований соединения $La_{0.70}Sr_{0.30}MnO_{2.85}$ и его поведения во внешнем магнитном поле. Установлено, что в температурном интервале 4-300 K в образце сосуществуют две структурные перовскитные фазы, различающиеся по симметрии (группы $R\bar{3}c$ и I4/mcm). Причиной фазового расслоения является кластеризация вакансий кислорода. Измерены температурные (4-300 K) и полевые (0-140 кЭ) зависимости удельного магнитного момента. Установлено, что в нулевом внешнем поле магнитное состояние $La_{0.70}Sr_{0.30}MnO_{2.85}$ представляет собой кластерное спиновое стекло, что является результатом фрустрации обменных взаимодействий Mn^{3+} – $O-Mn^{3+}$. Увеличение внешнего магнитного поля до 10 кЭ приводит к дроблению ферромагнитных кластеров, а затем к увеличению степени поляризации локальных спинов марганца и появлению дальнего ферромагнитного порядка. С увеличением магнитного поля до 140 кЭ температура магнитного упорядочения достигает 160 К. Проведен анализ причин структурного и магнитного фазового расслоения этого состава и механизма формирования его спин-стекольного магнитного состояния.

1. ВВЕДЕНИЕ

оксиды Сложные магнитные марганца $Ln_{1-x}A_xMnO_3$ (Ln^{3+} и A^{2+} — редко- и щелочноземельные ионы) продолжают оставаться одним из приоритетных объектов в области физики кристаллов в силу большого практического и фундаментального интереса к ним. В частности, составы $La_{1-x}Sr_xMnO_{3-\delta}$ могут быть использованы в качестве катодного материала в твердооксидных топливных элементах. С фундаментальной физической точки зрения, в манганитах особенно интересна тесная взаимосвязь различного типа упорядочений — орбитального, зарядового и магнитного, которая широко обсуждается в литературе

(см., например, обзоры [1,2]). Среди многих типов магнитного упорядочения, наблюдавшихся в манганитах, пожалуй, наименее изученным является состояние спинового стекла, основы теории которого были заложены в пионерской работе [3]. Фазовая диаграмма спинового стекла в координатах температура-энергия в рамках модели Изинга получена в работе [4]. Было показано, что внешнее магнитное поле, увеличивая свободную энергию системы, повышает степень поляризации магнитных моментов и вызывает переход из состояния спинового стекла в ферромагнитное состояние. При этом в матрице, характеризуемой в целом нулевым суммарным магнитным моментом, могут выделиться протяженные области с ненулевой намагниченностью (кластерное спиновое стекло). При воздействии внешнего магнитного поля температура, при которой измеренные в разных условиях

^{*}E-mail: truhanov@ifttp.bas-net.by

^{**}H. Szymczak

намагниченности начинают отличаться друг от друга, изменяется по степенному закону $T_{rev} = a + bH^n$, причем для объемного спинового стекла n = 2/3, а для кластерного n < 2/3.

Для манганитов состояние спинового стекла наблюдается в составах на основе редкоземельных ионов с малым радиусом *A*-катиона, $\langle r_A \rangle$. Впервые в манганитах это состояние было обнаружено в работе [5] в составе $(La_{1-x}Tb_x)_{2/3}Ca_{1/3}MnO_3$ при 0.25 $\langle x \langle 0.85 (\langle r_A \rangle$ изменяется от 1.20 Å до 1.31 Å). Позже оно было обнаружено в составах $Eu_{0.58}Sr_{0.42}MnO_3 (\langle r_A \rangle = 1.20$ Å) [6], Dy_{0.70}Ca_{0.30}MnO₃ ($\langle r_A \rangle = 1.16$ Å) [7] и Y_{0.50}Ca_{0.50}MnO₃ ($\langle r_A \rangle = 1.21$ Å) [8].

В наших предыдущих работах [9,10] по изучению соединения $La_{1-x}Sr_xMnO_{3-\delta}$ было показано, что оно представляет собой яркий пример системы с доминированием двойного обмена и, следовательно, в наименьшей мере подвержено эффектам электрон-решеточных и кулоновских корреляций. Состав La_{0.70}Sr_{0.30}MnO_{2.85} с дефицитом по кислороду с $(\langle r_A \rangle = 1.24 \text{ Å})$ характерен тем, что он содержит только ионы трехвалентного марганца, что заметно упрощает анализ его магнитного состояния. В настоящей работе на основе новых данных проведен анализ причин структурного и магнитного фазового расслоения этого состава и механизма формирования его спин-стекольного магнитного состояния. Нам удалось показать, что вследствие кластеризации вакансий кислорода возникает конкуренция ферро- и антиферромагнитных взаимодействий между магнитными моментами Mn³⁺. В результате образуется новое магнитное состояние — кластерное спиновое стекло, что отчетливо прослеживается в полевых зависимостях температур, характеризующих магнитные свойства этого соединения.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Процедура получения анион-дефицитного состава La_{0.70}Sr_{0.30}MnO_{2.85} (LSM-15) приведена в работе [11]. Кристаллическая структура образцов уточнялась по нейтронным дифракционным спектрам, измеренным на дифрактометре высокого разрешения ($\Delta d/d \approx 0.001$) ФДВР, что позволило уверенно провести обработку дифракционных спектров, содержащих вклад двух сосуществующих кристаллических фаз. ФДВР действует на импульсном реакторе ИБР-2 в Дубне, использующем обратный метод времени пролета [12].

Исследования удельного магнитного момента были выполнены с помощью универсальной криогенной высокополевой измерительной системы (Liquid Helium Free High Field Measurement System by Cryogenic Ltd, London, UK) в интервале температур 4-310 К и полей 0-140 кЭ. Были выполнены измерения в зависимости от температуры в разных полях в режиме отогрева после охлаждения без поля (ZFC) и в поле (FC). Измерения магнитного момента в режиме полевого охлаждения (FC) были выполнены в прямом и обратном направлениях изменения температуры. Температура замерзания магнитных моментов ферромагнитных кластеров (T_f) определялась как температура, соответствующая максимуму ZFC-кривой. Температуры начала расходимости ZFC- и FC-кривых при возрастании (T_{rev}) и уменьшении (T_x) температуры определялись в точках, для которых различия превышали 3 %. Температура магнитного упорядочения (T_{mo}) определялась по температурной зависимости FC-кривой как точка перегиба, т.е. как точка минимума производной FC-кривой по температуре. Спонтанный магнитный момент (σ_s), приходящийся на один катион марганца, был определен линейной экстраполяцией полевой зависимости магнитного момента при нулевом поле.

Обработка нейтронных дифракционных спектров для получения структурных данных проводилась методом Ритвельда с помощью программы MRIA [13]. Анализ магнитных данных и численные расчеты выполнены с помощью программы Origin 7.5. Экстраполяционные кривые получены по методу наименьших квадратов.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Атомная структура

Ранее нами было установлено, что увеличение концентрации вакансий кислорода в La_{0.70}Sr_{0.30}MnO_{3-x} приводит к его структурной перестройке [14]. Так, кристаллическая структура стехиометрического состава (x = 0) соответствует ромбоэдрической пространственной группе $R\bar{3}c$ с небольшой (около 10%) примесью ромбоэдрической фазы Pnma. При увеличении x до 0.1 структура становится чисто ромбоэдрической, а при x = 0.15 дополнительно возникает фаза с тетрагональной (пространственная группа I4/mcm) структурой. Наконец, при x = 0.2 остается только тетрагональная модификация структуры. На рис. 1 показан

Рис. 1. Участок нейтронных дифракционных спектров составов $La_{0.70}Sr_{0.30}MnO_{3-x}$, иллюстрирующий структурные переходы при увеличении дефицита кислорода. Показаны экспериментальные точки, проведенная через них расчетная кривая и положения брэгговских рефлексов. Приведены значения x и пространственные группы сосуществующих фаз

участок дифракционного спектра для всех составов, иллюстрирующий происходящие структурные изменения.

Таким образом, состав La_{0.70}Sr_{0.30}MnO_{2.85} состоит из двух (ромбоэдрической и тетрагональной) перовскитоподобных фаз, занимающих примерно равные объемные доли образца. Вакансии кислорода обнаруживаются в основном в тетрагональной фазе в позиции O2 с координатами близкими к (1/4, 3/4, 0), т.е. в основном именно эта фаза является анион-дефицитной. Считается, что причиной такого типа фазового расслоения является кластеризация вакансий кислорода. Для перовскитов это явление давно изучается и хорошо моделируется (см., например, [15]). По сути, оно во многом аналогично явлению кластеризации избыточного кислорода, например, в соединении La₂CuO_{4+y}, в котором для некоторой области концентраций y_0 происходит мезоскопическое расслоение на две структурные фазы с $y \approx 0$ и $y > y_0$ [16].

Появление вакансий кислорода в перовскитах может приводить к упорядочению катионов в А-подрешетке, что сильно изменяет их магнитные и магнитотранспортные свойства [17]. Упорядочение катионов \Pr^{3+} и Ba^{2+} в манганите Pr_{0.50}Ba_{0.50}MnO₃ приводит к значительному увеличению критических температур фазовых переходов. Так, образец PrBaMn₂O₆ с максимальной степенью упорядочения катионов является металлическим ферромагнетиком с температурой Кюри примерно 320 К, в то время как для полностью разупорядоченного образца T_C достигает лишь приблизительно 140 К. Образцы с промежуточной степенью порядка обладают двумя магнитными фазами. Чуть ниже T_C все образцы демонстрируют переход металл-диэлектрик и пик магнитосопротивления.

С уменьшением температуры до 10 K в нейтронных дифракционных спектрах образца $La_{0.70}Sr_{0.30}MnO_{2.85}$ значимых изменений не наблюдается. В том числе в них нет признаков появления в образце ферро- или антиферромагнитного дальнего магнитного порядка, что согласуется с уже высказывавшейся гипотезой о формировании в нем состояния спинового стекла. Соотношение объемных долей структурных фаз также остается стабильным.

При комнатной температуре объем элементарной ячейки ромбоэдрической фазы $La_{0.70}Sr_{0.30}MnO_{2.85}$, приходящийся на одну формульную единицу, немного меньше (на 0.27%) объема ячейки тетрагональной фазы. Октаэдры MnO_6 , регулярные в ромбоэдрической фазе, искажаются в тетрагональной фазе (удлиняется апикальное расстояние Mn-O1 вдоль длинной оси), но отклонение от средней длины связи весьма невелико, примерно в три раза меньше, чем в $LaMnO_3$. Таким образом, в тетрагональной фазе присутствует кооперативный статический эффект Яна–Теллера, хотя и сравнительно слабо выраженный.

С уменьшением температуры структура обеих фаз практически не меняется. Единственным замет-

 $M, \Gamma c \cdot c M^3 / r$

Рис. 2. Температурные зависимости удельного магнитного момента, измеренного в режимах ZFC и FC, при уменьшении и увеличении температуры в поле 50 Э (*a*) и 500 Э (*б*) для La_{0.70}Sr_{0.30}MnO_{2.85}. Смысл указанных характерных температур объяснен в тексте. Вставка демонстрирует температурную зависимость производной FC-кривой в режиме увеличения температуры

ным фактом является небольшое удлинение с-оси тетрагональной фазы (и, соответственно, расстояния Mn–O1), т.е. некоторое усиление эффекта Яна–Теллера.

3.2. Магнитные измерения

При выполнении измерений температурных зависимостей магнитного момента в различных магнитных полях было установлено, что весь интервал может быть условно разбит на слабые ($0 \le H \le 10^4$ Э) и сильные ($H > 10^4$ Э) поля. В поле 50 Э пик ZFC-кривой наблюдается при $T_f \approx 40$ K (рис. 2*a*). Ниже этой температуры наблюдается значительное

различие в поведении ZFC- и FC-кривых. При измерении FC-кривой в режиме уменьшения температуры точка ее расходимости с ZFC-кривой фиксируется в области $T_x \approx 98$ К, тогда как при увеличении температуры точка расходимости смещается к $T_{rev} \approx 244$ К. FC-кривая, измеренная в режиме увеличения температуры, идет выше FC-кривой, измеренной в режиме уменьшения температуры, везде в интервале от T_f до T_{rev} . При T > 40 К наблюдается очень размытый переход в парамагнитное состояние, подобный переходу второго рода. Температура магнитного упорядочения, которая определялась из поведения производной FC-кривой в режиме увеличения температуры (вставка на рис. 2*a*), составляет $T_{mo}\approx 55~{\rm K}.$ Она является хорошо определяемой величиной, характеризующей, кроме того, начало широкого температурного интервала перехода исследуемого вещества в парамагнитное состояние. В точке минимума производной меняется характер поведения с температурой FC-кривой от «выгнутой вверх» к «выгнутой вниз», что соответствует переходу от ее быстрого убывания к медленному. Таким образом, температура магнитного упорядочения определяет окончание быстрого убывания магнитного момента с ростом температуры.

Результатами многочисленных экспериментальных исследований доказано, что в орбитально-разупорядоченном состоянии сверхобменное взаимодействие $Mn^{3+}(6)$ –О– $Mn^{3+}(6)$ для октаэдрической координации катионов марганца является положительным, тогда как для пентаэдрической координации Mn³⁺(5)-О-Мn³⁺(5) оно отрицательно (см., например, [18, 19]), т.е. способствует соответственно параллельной или антипараллельной ориентации спинов. Конкуренция этих взаимодействий приводит к фрустрации обменных связей и образованию нового магнитного состояния — спинового стекла. Реализация такого механизма образования неоднородного магнитного состояния в случае La_{0.70}Sr_{0.30}MnO_{2.85} была подтверждена нами ранее на основе анализа обратной динамической восприимчивости [10], что позволило обнаружить обменные взаимодействия противоположных знаков.

В модельном представлении Бина–Ливингстона [20] существует связь среднего объема ферромагнитных включений в диа- или парамагнитной матрице $\langle V \rangle$ с константой магнитной кристаллографической анизотропии $\langle K \rangle$, представляющей собой не что иное, как ее объемную плотность энергии, и критической температурой замерзания T_f , $\langle K \rangle \langle V \rangle = k_B T_f$. Оценка среднего размера ферромагнитных кластеров дает величину около 10 нм

⁸ ЖЭТФ, вып. 5 (11)

для $T_f = 40$ К. При таком малом размере области с упорядоченными магнитными моментами заметить их вклад в нейтронный дифракционный спектр невозможно. Температура расходимости ZFC- и FC-кривых, измеренных в одинаковом режиме изменения температуры, T_{rev} , определяет максимальный размер ферромагнитного кластера, который в данном случае почти в шесть раз превышает средний размер. Наличие критической температуры расходимости T_x указывает на доминирование разупорядочивающего эффекта температуры над упорядочивающим эффектом магнитного поля. При охлаждении образца в нем присутствуют ферромагнитные кластеры с меньшими максимальными размерами, нежели в режиме нагрева. Это следует из того факта, что температуры начала расходимости ZFCи FC-кривых при нагревании (Trev) и охлаждении (T_x) разные, причем $T_{rev} > T_x$. Температурный гистерезис FC-кривых свидетельствует о высокой магнитной анизотропии обменных взаимодействий внутри ферромагнитных кластеров.

Факт температурного гистерезиса FC-кривых может указывать на фазовый переход первого рода. Однако плавный вид FC-кривых подобен переходу второго рода. Это противоречие может быть устранено с помощью критерия Банерджи [21]. Согласно критерию Банерджи угол наклона касательной к изотермам $M^2(H/M)$ при T = const определяет порядок магнитного фазового перехода. Подробнее результаты этого анализа будут представлены ниже.

При увеличении поля до 200 Э поведение ZFCи FC-кривых качественно не меняется, но происходит сдвиг характерных температур: $T_f \approx 42$ K, $T_x \approx 97$ К, $T_{rev} \approx 98$ К, $T_{mo} \approx 59$ К. Наличие критической температуры расходимости T_x фиксируется только до полей $H \le 200$ Э. При дальнейшем увеличении поля до 500 Э пик ZFC-кривой округляется и смещается к $T_f \approx 39$ К (рис. 26). Температура расходимости ZFC- и FC-кривых составляет $T_{rev} \approx 82$ K. Температурный гистерезис FC-кривых и температура расходимости T_x отсутствуют. Уменьшение температур замерзания T_f и расходимости T_{rev} свидетельствует о дроблении ферромагнитных кластеров с увеличением внешнего магнитного поля. Хотя в целом объем ферромагнитных взаимодействий возрастает, что можно установить по шкале удельного магнитного момента (ось ординат рис. 26). Отсутствие температурного гистерезиса FC-кривых и температуры расходимости T_x указывает на изменение характера совместного влияния температуры и поля. Теперь уже доминирует упорядочивающий эффект магнитного поля над разупорядочивающим

Рис. 3. Температурные зависимости удельного магнитного момента, измеренного в режимах ZFC и FC, при уменьшении и увеличении температуры в поле 4 кЭ (*a*) и 10 кЭ (δ) для $La_{0.70}Sr_{0.30}MnO_{2.85}$. Смысл указанных характерных температур объяснен в тексте. Вставка демонстрирует температурную зависимость производной FC-кривой в режиме увеличения температуры

эффектом температуры. Переход в парамагнитное состояние остается размытым. Температура магнитного упорядочения возрастает до $T_{mo} \approx 66$ К. В поле 2000 Э характерные температуры составляют: $T_f \approx 37$ К, $T_{rev} \approx 54$ К, $T_{mo} \approx 84$ К. В поле 4000 Э пик ZFC-кривой значительно округляется и находится при $T_f \approx 33$ К (рис. 3*a*). Температура расходимости ZFC- и FC-кривых составляет $T_{rev} \approx 40$ К. Температурный гистерезис FC-кривых и температура расходимости T_x отсутствуют. Уменьшение температур замерзания T_f и расходимости T_{rev} подтверждает предположение о дроблении ферромагнитных кластеров с увеличением внешнего магнитного поля. Температура магнитного упорядочения в

Рис. 4. Зависимости критических температур, характеризующих магнитное состояние $La_{0.70}Sr_{0.30}MnO_{2.85}$, от внешнего магнитного поля: a — температура магнитного упорядочения $T_{mo} = 57 + 10^{-2}H - 5 \cdot 10^{-7}H^2$ (•), δ — температуры расходимости ZFC- и FC-кривых $T_x = 99 - 7 \cdot 10^{-3}H$ (•) и $T_{rev} = 250 - 90H^{0.11}$ (+), e — температура замерзания $T_f = 65 - 6H^{0.21}$ (\blacktriangle)

этом случае составляет $T_{mo} \approx 103$ К.

При измерении в сильных магнитных полях $H > 10^4$ Э наблюдается отсутствие пика ZFC-кривой. Небольшое различие между ZFC- и FC-кривыми в поле 100 кЭ заметно ниже температуры расходимости $T_{rev} \approx 25$ К (рис. 36). Переход в парамагнитное состояние еще более размывается, а температура магнитного упорядочения значительно возрастает и составляет $T_{mo} \approx 146$ К.

3.3. Анализ магнитных данных

Обобщенные экспериментальные данные критических температур переходов в зависимости от

внешнего магнитного поля и их модельный анализ представлены на рис. 4. Увеличение магнитного поля приводит к монотонному увеличению температуры магнитного упорядочения T_{mo} . Эта зависимость может быть удовлетворительно описана полиномом $T_{mo} = A + BH + CH^2$, с коэффициентами A = 57 K, $B = 10^{-2}$ K $\cdot \Im^{-1}$ и C = $= -5 \cdot 10^{-7}$ К $\cdot 3^{-2}$ (рис. 4*a*). Температуры расходимости ZFC- и FC-кривых, T_x и T_{rev} , монотонно убывают с ростом поля. Зависимость $T_x(H)$ может быть описана линейной функцией вида $T_x = y + kH$, где y = 99 К и $k = -7 \cdot 10^{-3}$ К $\cdot \Im^{-1}$ (рис. 46). Температура T_{rev} быстро убывает до $H \approx 10^3$ Э, затем ее уменьшение более плавное. Для Т_{rev} экспериментальные точки могут быть описаны степенной функцией $T_{rev}=a+bH^n$ с $a=250~{\rm K},\,b=-90~{\rm K}\cdot \Im^{-n}$ и $n = 0.11 \ (T_{rev}$ в кельвинах, H в эрстедах) (рис. 46). Температура замерзания T_f постепенно убывает (хотя и не совсем монотонно) с ростом поля, что качественно можно представить такой же, как для T_{rev} , степенной функцией с a = 65 K, b = -6 K $\cdot \Im^{-n}$ и n = 0.21 (рис. 4*в*).

3.4. Упорядоченный магнитный момент

Для стехиометрического манганита $La_{0.70}Sr_{0.30}MnO_3$ максимальное значение упорядоченного атомного магнитного момента, приходящегося на один ион марганца, составляет $3.7\mu_B$. Для анион-дефицитного образца $La_{0.70}Sr_{0.30}MnO_{2.85}$, номинально содержащего только Mn^{3+} , в случае полной поляризации может наблюдаться атомный магнитный момент равный $4\mu_B$.

Измерение полевых изотерм магнитного момента проводилось следующим образом. Вначале образец был охлажден в отсутствие внешнего магнитного поля до самой низкой температуры 5 К. Затем были выполнены последовательные измерения магнитного момента в режиме увеличения и уменьшения поля. Это часто используемый алгоритм для исследования полевых свойств [22]. Измерялась только половина петли, т.е. от нуля до +14 Тл и до нуля. После этого температура увеличивалась и цикл повторялся заново. Процесс намагничивания состоит из трех этапов: 1) увеличение размеров энергетически более выгодных доменов, 2) поворот суммарного магнитного момента энергетически менее выгодных доменов и 3) парапроцесс. Парапроцесс заключается в постепенном увеличении суммарного магнитного момента однодоменного образца с увеличением поля. Спонтанный магнитный момент самопроизвольно намагниченного однодоменного образ-

Рис.5. Полевые зависимости изотерм магнитного момента марганца в интервале температур $5{-}280~K$ для $La_{0.70}Sr_{0.30}MnO_{2.85}$. На графике указаны значения спонтанного атомного магнитного момента, полученные при линейной экстраполяции зависимостей к нулевому полю

ца наблюдается в отсутствие внешнего магнитного поля. Поэтому линейная экстраполяция высокополевых значений магнитного момента к нулевому полю в некотором приближении дает спонтанный момент марганца. Такая процедура часто используется для определения спонтанного магнитного момента [23].

В то время как действие внешнего магнитного поля в интервале слабых полей приводит, в основном, к дроблению ферромагнитных кластеров, действие поля в интервале сильных полей приводит к переходу в ферромагнитное состояние антиферромагнитной матрицы и увеличению степени поляризации магнитных моментов марганца. Так, при T = 5 K в поле 100 кЭ атомный магнитный момент в $La_{0.70}Sr_{0.30}MnO_{2.85}$ равен $1.96\mu_B$, что составляет 48 % от теоретически возможного при полной поляризации локальных спинов ионов марганца (рис. 5). В поле 140 кЭ степень поляризации достигает 53 %. Фактически матрица становится ферромагнитной, а кластеры — антиферромагнитными. Дополнительная магнитная энергия стабилизирует поляризованное состояние ферромагнитной матрицы и увеличивает температуру магнитного упорядочения. В интервале температур 5-120 К, т. е. ниже температуры магнитного упорядочения, наблюдается значительный полевой гистерезис, что свидетельствует о высокой магнитной анизотропии, установленной ранее по температурному гистерезису FC-кривых обменных взаимодействий внутри ферромагнитных кластеров.

Рис. 6. Графики Аррота — зависимости квадрата удельного магнитного момента M^2 от величины H/M при разных температурах (a) и их производные (b) при разных температурах для $La_{0.70}Sr_{0.30}MnO_{2.85}$. Вставка демонстрирует зависимость спонтанного атомного магнитного момента марганца от температуры, полученную экстраполяцией к нулевому полю изотерм магнитного момен-

та

3.5. Природа магнитного состояния в La_{0.70}Sr_{0.30}MnO_{2.85}

Природу фазового перехода в La_{0.70}Sr_{0.30}MnO_{2.85} из парамагнитного в частично упорядоченное состояние можно понять, используя магнитный критерий, предложенный Банерджи [21]. Для уточнения характера поведения исследуемой магнитной системы при переходе были построены полевые изотермы удельного магнитного момента и графики Аррота $M^2(H/M)$ при T = const [24] (рис. 6a). В приближении теории молекулярного поля для основного состояния системы квадрат намагниченности M^2 прямо пропорционален отношению H/M (см., например, [25]). Это соотношение строго выполняется в больших магнитных полях, близких к полям насыщения. Для малых полей наблюдается отклонение от линейного поведения. Отрицательное значение точки пересечения линейной экстраполяции изотерм Аррота с осью абсцисс указывает на ферромагнитные корреляции в системе, в то время как положительное значение соответствует парамагнитному состоянию.

Согласно критерию Банерджи, положительное значение тангенса угла наклона касательной к изотермам Аррота в любой точке в ферромагнитном состоянии определяет магнитный фазовый переход второго рода, в то время как изменение знака тангенса угла наклона касательной с положительного на отрицательный указывает на фазовый переход первого рода. Положительное значение тангенса угла наклона касательной соответствует возрастанию изотермы Аррота или, соответственно, положительным значениям производных $d(M^2)/d(H/M)$, показанных на рис. 66. Таким образом, можно сделать вывод, что магнитный фазовый переход в парамагнитное состояние для La_{0.70}Sr_{0.30}MnO_{2.85} является термодинамическим фазовым переходом второго рода.

Спиновое стекло — магнитное состояние вещества с особыми свойствами, важнейшим из которых является наличие фрустрированных связей, т. е. несоответствие взаимной ориентации магнитных моментов и знаков их обменных взаимодействий. Условия для формирования состояния спинового стекла возникают, если в системе имеет место случайное распределение величин и знаков обменных взаимодействий. Для классического спинового стекла действие внешнего магнитного поля вызывает переход в ферромагнитное состояние и изменяет температуру расходимости ZFC- и FC-кривых удельного магнитного момента по степенному закону $T_{rev} = a + bH^n$ с показателем степени n = 2/3. Поскольку для La_{0.70}Sr_{0.30}MnO_{2.85} получено значение n = 0.11 < 2/3, следует говорить о формировании в нем кластерного спинового стекла [4]. Этот критерий часто используется для установления природы и механизма формирования неоднородного магнитного состояния для разных систем [26].

4. ВЫВОДЫ

Прецизионные нейтронные дифракционные данные и результаты измерения удельного магнитного момента в широком интервале температур и внешних магнитных полей в различных режимах позволили установить природу магнитного состояния манганита La_{0.70}Sr_{0.30}MnO_{2.85}. При кластеризации содержащихся в нем вакансий кислорода происходит расслоение на две структурные фазы с сильной конкуренцией ферро- и антиферромагнитных взаимодействий между магнитными моментами Mn. В результате возникает новое магнитное состояние — кластерное спиновое стекло, что отчетливо прослеживается в полевых зависимостях характерных температур: магнитного упорядочения, замерзания магнитных моментов и расходимости ZFC- и FC-кривых.

Авторы благодарны И. А. Бобрикову и В. Г. Симкину за помощь в проведении нейтронных дифракционных экспериментов. Работа выполнена при частичной финансовой поддержке РФФИ (гранты №№ 10-02-90902, 11-02-90900).

ЛИТЕРАТУРА

- L. P. Gor'kov and V. Z. Kresin, Phys. Rep. 400, 149 (2004).
- 2. E. Dagotto, Science 309, 257 (2005).
- S. F. Edwards and P. W. Anderson, J. Phys. F: Metal Phys. 5, 965 (1975).
- B. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975).
- J. M. De Teresa, M. R. Ibarra, J. Garcia et al., Phys. Rev. Lett. 76, 3392 (1996).
- A. Sundaresan, A. Maignan, and B. Raveau, Phys. Rev. B 55, 5596 (1997).
- T. Terai, T. Kakeshita, T. Fukuda et al., Phys. Rev. B 58, 14908 (1998).
- A. Maignan, A. Sundaresan, U. V. Varadaraju, and B. Raveau, J. Magn. Magn. Mater. 184, 83 (1998).
- **9**. С. В. Труханов, М. В. Бушинский, И. О. Троянчук, Г. Шимчак, ЖЭТФ **126**, 874 (2004).
- С. В. Труханов, И. О. Троянчук, А. В. Труханов и др., Письма в ЖЭТФ 83, 36 (2006).
- **11**. С. В. Труханов, ЖЭТФ **127**, 107 (2005).
- 12. A. M. Balagurov, Neutron News 16, 8 (2005).
- V. B. Zlokazov and V. V. Chernyshev, J. Appl. Cryst. 25, 447 (1992).
- 14. С. В. Труханов, И. О. Троянчук, А. В. Труханов и др., Письма в ЖЭТФ 84, 310 (2006).
- 15. D. D. Cuong, B. Lee, K. M. Choi et al., Phys. Rev. Lett. 98, 115503 (2007).

- **16**. А. М. Балагуров, А. А. Захаров, В. Ю. Помякушин и др., Письма в ЖЭТФ **64**, 254 (1996).
- **17**. С. В. Труханов, ЖЭТФ **128**, 597 (2005).
- 18. K. R. Poeppelmeier, M. E. Leonowicz, and J. M. Longo, J. Sol. St. Chem. 44, 89 (1982).
- 19. I. O. Troyanchuk, D. D. Khalyavin, S. V. Trukhanov et al., Письма в ЖЭТФ 70, 583 (1999).
- 20. C. P. Bean and J. D. Livingstone, J. Appl. Phys. 30, S120 (1959).
- 21. S. K. Banerjee, Phys. Lett. 12, 16 (1964).

- 22. S. V. Trukhanov, L. S. Lobanovski, M. V. Bushinsky, V. A. Khomchenko et al., The Eur. Phys. J. B 42, 51 (2004).
- 23. S. V. Trukhanov, A. V. Trukhanov, C. E. Botez,
 A. H. Adair et al., J. Phys.: Condens. Matter. 19, 266214 (2007).
- 24. A. Arrott and J. E. Noakes, Phys. Rev. Lett. 19, 786 (1967).
- 25. Ч. Киттель, Введение в физику твердого тела, Физматгиз, Москва (1962), с. 298.
- 26. H. Szymczak, R. Szymczak, M. Baran, and J. Fink-Finowicki, J. Magn. Magn. Mater. 272–276, 1327 (2004).