МАГНИТОПЛАЗМЕННЫЕ КОЛЕБАНИЯ ДВУМЕРНОЙ ЭЛЕКТРОННОЙ СИСТЕМЫ СО СПИН-ОРБИТАЛЬНЫМ ВЗАИМОДЕЙСТВИЕМ В ЛАТЕРАЛЬНОЙ СВЕРХРЕШЕТКЕ

Р. З. Витлина^a, Л. И. Магарилл^{a,b}, А. В. Чаплик^{a,b*}

^а Институт физики полупроводников им. А. В. Ржанова Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> ^b Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 28 ноября 2010 г.

Рассматриваются низкочастотные магнитоплазмонные моды в одномерной латеральной сверхрешетке с учетом рашбовского спин-орбитального расщепления. Такие моды соответствуют осцилляциям, связанным с виртуальными переходами внутри уровня Ландау, которые становятся возможными вследствие уширения каждого уровня Ландау в зону, вызванную потенциалом сверхрешетки. Выявлена специфика одномерных межподзонных плазмонов, возникающих в такой системе.

1. ВВЕДЕНИЕ

В низкоразмерных системах, содержащих многокомпонентную электронную плазму, возможны коллективные колебания двух типов. Один из них соответствует флуктуациям плотности каждой компоненты (например, подзоны поперечного квантования в квантовой яме или проволоке), которые связаны между собой лишь кулоновским взаимодействием при сохранении числа частиц в каждой из компонент. Такие плазмоны называются внутриподзонными и делятся на оптические и акустические. В простейшем случае двух подзон им соответствуют синфазные и антифазные колебания плотности. Второй тип плазменных колебаний сопровождается переходами электронов между подзонами и называется поэтому межподзонными плазмонами; он характеризуется щелью в законе дисперсии: при нулевом импульсе частота равна расстоянию между уровнями одночастичного спектра плюс деполяризационный сдвиг.

При учете спин-орбитального взаимодействия электронная плазма становится двухкомпонентной. В магнитном поле, нормальном к плоскости двумерной плазмы, каждый уровень Ландау расщепляется на два, а потенциал латеральной сверхрешетки размывает эти уровни в подзоны. Как будет показано в предлагаемой работе, плазменные колебания в такой системе обладают значительной спецификой. Во-первых, в дисперсии межподзонных плазмонов (МПП) отсутствует деполяризационный сдвиг. Во-вторых, каждой паре подзон соответствует не одна, а две ветви МПП, что обусловлено спецификой одномерного случая: замагниченные электроны в поле одномерной периодической сверхрешетки ведут себя как одномерные частицы, т. е. у них сохраняется одна из компонент импульса. Физические причины возникновения второй незатухающей ветви МПП объяснены в работе авторов [1].

2. ГАМИЛЬТОНИАН И ЭНЕРГЕТИЧЕСКИЙ СПЕКТР СИСТЕМЫ

В присутствии нормального к плоскости структуры магнитного поля В двумерная система описывается гамильтонианом

$$H_0 = \boldsymbol{\pi}^2 / 2m. \tag{1}$$

Здесь $\pi = \mathbf{p} - e\mathbf{A}/c$, \mathbf{A} — векторный потенциал ($\mathbf{A} = (0, Bx, 0)$, $\mathbf{B} = (0, 0, B)$), m — эффективная масса, e — заряд электрона. Волновые функции и собственные значения гамильтониана (1) имеют вид

^{*}E-mail: chaplik@isp.nsc.ru

$$\Psi_{N,\sigma,k}^{(0)}(\mathbf{r}) = \frac{e^{iky}}{\sqrt{La}} \phi_N\left(\frac{x+ka^2}{a}\right) \chi_\sigma,$$

$$\varepsilon_{N,\sigma,k}^{(0)} = \omega_c\left(N+\frac{1}{2}\right),$$
(2)

где $N = 0, 1, 2, \ldots$ — номер уровня Ландау, $\sigma = \pm$ — спиновое квантовое число, k — импульс вдоль оси y, ϕ_N — нормированные безразмерные осцилляторные функции, a — магнитная длина, L — нормировочный размер системы по оси y,

$$\chi_{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \chi_{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \tag{3}$$

Полагаем, что спин-орбитальное взаимодействие (СОВ) $H_{SO} = \alpha(\sigma_x \pi_y - \sigma_y \pi_x)$ (α — параметр Рашба) и потенциал сверхрешетки $V_{SL} = V_0 \cos(2\pi x/d)$ (d — период сверхрешетки) являются возмущением к гамильтониану (1). Мы будем рассматривать случай достаточно сильного магнитного поля, когда заполнен только нулевой уровень Ландау, т.е. предполагать, что фактор заполнения $\nu = 2\pi n_s a^2 \leq 2$ (n_s — концентрация электронов). В отсутствие возмущения имеется дважды вырожденный по спину уровень Ландау с энергией $\omega_c/2$ ($\omega_c = |e|B/mc$ — циклотронная частота, здесь и в дальнейшем полагаем $\hbar = 1$), который вырожден также и по k.

Поскольку мы имеем дело с вырожденным уровнем, для нахождения спектра электрона с учетом возмущения $U = H_{SO} + V_{SL}$ приходится решать секулярное уравнение. Для этого нужно вычислить матричные элементы $U_{0\sigma k;0\sigma' k}$, но поскольку $(H_{SO})_{0\sigma k;0\sigma k} \equiv 0$, $(V_{SL})_{0\pm k;0\mp k} \equiv 0$, в секулярном уравнении следует сделать замену

$$U_{N\sigma;N'\sigma'} \to \tilde{U}_{N\sigma;N'\sigma'} \equiv U_{N\sigma;N'\sigma'} + \sum_{N''\sigma''} \frac{U_{N\sigma;N'\sigma''}U_{N''\sigma'';N'\sigma'}}{\varepsilon_{N\sigma}^{(0)} - \varepsilon_{N''\sigma''}^{(0)}}.$$
 (4)

(Индекс «k» в формуле (4) опущен, так как матричные элементы по нему диагональны.) Недиагональные матричные элементы $\tilde{U}_{0\pm;0\mp}$ равны

$$\tilde{U}_{0\pm;0\mp} = -\frac{1}{\omega_c} \left((H_{SO})_{0+;1-} (V_{SL})_{1-;0-} + (V_{SL})_{0+;1+} (H_{SO})_{1+;0-} \right) = -\frac{2\alpha\pi V}{d\omega_c} \sin(tka).$$
(5)

Для диагональных элементов $U_{0\pm;0\pm}$ находим, что

$$\tilde{U}_{0\pm;0\pm} = V \cos(tka) - \frac{|(H_{SO})_{0\mp;1\pm}|^2}{\omega_c} = \begin{cases} V \cos(tka), \\ V \cos(tka) - 2\varepsilon_R, \end{cases}$$
(6)

где $\varepsilon_R = m\alpha^2$, $V = V_0 \exp(-t^2/4)$, $t = 2\pi a/d$. Секулярное уравнение имеет вид

$$\begin{vmatrix} \varepsilon - \tilde{U}_{0+;0+} & \tilde{U}_{0+;0-} \\ \tilde{U}_{0-;0+} & \varepsilon - \tilde{U}_{0-;0-} \end{vmatrix} = 0.$$
(7)

Решение уравнения (7) дает энергию спиновых подзон на нулевом уровне Ландау (индекс «нуль» опускаем, энергию отсчитываем от $\omega_c/2$):

$$\varepsilon_{\pm,k} = V \cos(tka) - \varepsilon_R \pm \sqrt{\varepsilon_R^2 + \left(\frac{2\alpha\pi V}{d\omega_c}\sin(tka)\right)^2}.$$
 (8)

В дальнейшем будем предполагать выполнение условия

$$\frac{2\pi V}{\alpha dm\omega_c} \ll 1,\tag{9}$$

тогда для спиновых подзон электронного спектра на нулевом уровне Ландау имеем

$$\varepsilon_{+,k} = V \cos (tka),$$

$$\varepsilon_{-,k} = -2\varepsilon_R + V \cos (tka).$$
(10)

В отсутствие латеральной решетки формулы (10) можно получить из точных выражений для спектра в магнитном поле в двумерной системе с рашбовским СОВ в приближении $\gamma = \sqrt{2m\alpha a} \ll 1$ из работы [2] (см. также формулу (2) из работы [3]).

3. СПЕКТР ПЛАЗМОНОВ

Количество и свойства возникающих в данной системе плазмонных ветвей существенно зависят от наличия или отсутствия перекрытия уширенных сверхрешеткой спиновых подзон и положения уровня Ферми E_F . Перекрытия не существует при $\varepsilon_R > V$, когда между спиновыми подзонами есть щель, равная $2(\varepsilon_R - V)$. Спиновые подуровни перекрываются при условии $\varepsilon_R < V$. Ширина области перекрытия равна $2(V - \varepsilon_R)$. Будем считать, что соотношение между ε_R и V произвольно, но при этом полагаем выполненными условия $\varepsilon_R, V \ll \omega_c$.

Дисперсионное уравнение, определяющее спектр плазмонов, имеет вид

$$1 + \frac{2\pi e^2}{\kappa q} \Pi(\omega, \mathbf{q}) = 0, \tag{11}$$

где в приближении самосогласованного поля поляризационный оператор $\Pi(\omega, \mathbf{q})$ дается выражением

$$\Pi(\omega, \mathbf{q}) = \frac{1}{S} \times \sum_{N\sigma k; N'\sigma' k'} \frac{(f_{N\sigma k} - f_{N'\sigma' k'})|J_{N\sigma k; N'\sigma' k'}(\mathbf{q})|^2}{\omega - \varepsilon_{N\sigma k; N'\sigma' k'} + i\delta}.$$
 (12)

Здесь $f_{N\sigma k} \equiv f(\varepsilon_{N\sigma k})$ — функция Ферми, $\varepsilon_{N\sigma k;N'\sigma'k'} = \varepsilon_{N\sigma k} - \varepsilon_{N'\sigma'k'}, \, \omega, \mathbf{q}$ — частота и волновой вектор плазмона, $\mathbf{q} = (q_x, q_y), \, \kappa$ — фоновая диэлектрическая постоянная, S — нормировочная площадь системы. Входящий в формулу (12) квадрат модуля матричного элемента $J(\mathbf{q}) = e^{i\mathbf{q}\cdot\mathbf{r}}$ можно представить в виде

$$|J_{N\sigma k;N'\sigma'k'}(\mathbf{q})|^2 = \delta_{k,k'+q_y} I^2_{N\sigma;N'\sigma'}(u).$$
(13)

Для величин $I_{0\sigma;0\sigma'}$ имеем

$$I_{0+;0+} = I_{0-;0-} = e^{-u/2},$$

$$I_{0+;0-} = I_{0-;0+} = \sqrt{2 \frac{\varepsilon_R u e^{-u}}{\omega_c}},$$
(14)

где $u = q^2 a^2/2, q = \sqrt{q_x^2 + q_y^2}$. Удобно представить $\Pi(\omega, \mathbf{q})$ в виде суммы двух слагаемых:

$$\Pi(\omega, \mathbf{q}) = \Pi^{0}(\omega, \mathbf{q}) + \tilde{\Pi}(\omega, \mathbf{q}), \qquad (15)$$

где $\Pi^0(\omega, \mathbf{q})$ соответствует переходам внутри нулевого уровня Ландау, а $\tilde{\Pi}(\omega, \mathbf{q})$ отвечает за переходы в состояния с $N \neq 0$. Следуя определению поляризационного оператора (12), представим $\tilde{\Pi}$ в виде

$$\tilde{\Pi}(\omega, \mathbf{q}) = \frac{1}{S} \times \\ \times \sum_{N \neq 0, k, \sigma, \sigma'} \frac{2f_{0,\sigma,k} \varepsilon_{0,\sigma,k;N,\sigma',k-q_y} |I_{0,\sigma;N,\sigma'}(\mathbf{q})|^2}{\omega^2 - \varepsilon_{0,\sigma,k;N,\sigma',k-q_y}^2 + i\delta}.$$
 (16)

Будем пренебрегать уширением уровней Ландау за счет решетки по сравнению с расстоянием между ними ($V \ll \omega_c$). Кроме того, поскольку энергия рассматриваемых плазмонов соответствует переходам между подзонами нулевого уровня Ландау, в приведенном выше выражении можно положить $\omega = 0$. Тогда для $\tilde{\Pi}(\omega, \mathbf{q})$ получаем

$$\tilde{\Pi}(\omega, \mathbf{q}) \approx \frac{\nu m}{\pi} \exp\left(-u\right) \sum_{N} \frac{u^{N}}{NN!} = \frac{\nu m}{\pi} F(u), \quad (17)$$

где $F(u) = (Ei(u) - C - \ln u)e^{-u}$, Ei(u) — интегральная показательная функция, C — константа Эйлера. Вклад от нулевого уровня Ландау $\Pi^{0}(\omega, \mathbf{q})$, в свою очередь, можно также представить в виде суммы двух слагаемых:

$$\Pi^{0}(\omega, \mathbf{q}) = \Pi_{1}(\omega, \mathbf{q}) + \Pi_{2}(\omega, \mathbf{q}), \qquad (18)$$

в которой разделены диагональные и недиагональные по спиновым индексам составляющие. При $\alpha = 0$ слагаемое $\Pi_2(\omega, \mathbf{q})$ исчезает. Окончательно дисперсионное уравнение (11) приобретает вид

$$1 + \frac{2\pi e^2}{\kappa q} \left(\frac{\nu m}{\pi} F(u) + \Pi_1(\omega, \mathbf{q}) + \Pi_2(\omega, \mathbf{q}) \right) = 0.$$
 (19)

Входящие в формулу (19) поляризационные операторы Π_1 , Π_2 можно представить следующим образом:

$$\Pi_{1}(\omega, \mathbf{q}) = -\frac{\omega_{c} m e^{-u}}{4\pi^{2}} \times \\ \times \sum_{\lambda=\pm,\mu=\pm} \left[\Phi\left(y_{\lambda}, \omega, V(1 - \cos(q_{y} a t)), \mu V \sin(q_{y} a t)\right) - \\ - \Phi\left(y_{\lambda}, \omega, -V(1 - \cos(q_{y} a t)), \mu V \sin(q_{y} a t)\right) \right], \quad (20)$$

$$\Pi_{2}(\omega, \mathbf{q}) = -\frac{\varepsilon_{R} q^{2} e^{-u}}{4\pi^{2} \omega_{c}} \sum_{\lambda=\pm,\mu=\pm} \left[\Phi\left(y_{\lambda}, \omega - 2\lambda \varepsilon_{R}, V(1 - \cos(q_{y} a t)), \mu V \sin(q_{y} a t)\right) - \Phi\left(y_{\lambda}, \omega + 2\lambda \varepsilon_{R}, -V(1 - \cos(q_{y} a t)), \mu V \sin(q_{y} a t)\right) \right].$$

$$\mu V \sin(q_{y} a t) \right]. \quad (21)$$

Величины y_{\pm} связаны с факторами заполнения ν_{\pm} в (\pm)-зонах (10) соотношением $y_{\pm} = \pi(1 - \nu_{\pm})$. В формулах (20), (21) функция $\Phi(v, z, b, c)$ дается интегралом

$$\Phi(v, z, b, c) = \int_{v}^{\pi} \frac{dy}{z + b\cos y + c\sin y}.$$
 (22)

Ее вещественная часть имеет вид

$$\operatorname{Re}(\Phi(v, z, b, c)) = \frac{\pi \theta(z^2 - b^2 - c^2)}{\sqrt{z^2 - b^2 - c^2}} \times \left(\operatorname{sign}(z-b) - \frac{2}{\pi} \operatorname{arctg}\left(\frac{(z-b)\operatorname{tg}(v/2) + c}{\sqrt{z^2 - b^2 - c^2}}\right)\right) - \frac{\theta(b^2 + c^2 - z^2)}{\sqrt{b^2 + c^2 - z^2}} \times \ln \left|\frac{(z-b)\operatorname{tg}(v/2) + c - \sqrt{b^2 + c^2 - z^2}}{(z-b)\operatorname{tg}(v/2) + c + \sqrt{b^2 + c^2 - z^2}}\right|, \quad (23)$$

где $\theta(x)$ — ступенчатая функция Хевисайда. Мнимую часть функции $\Phi(v,z,b,c)$ можно представить как

$$Im(\Phi(v, z, b, c)) = -\pi \int_{v}^{\pi} \delta(z + b\cos y + c\sin y) \, dy =$$
$$= -\pi \sum_{i} \frac{1}{|c\cos y_{i} - b\sin y_{i}|}, \quad (24)$$

где y_i — корни функции $(z+b\cos y+c\sin y)$, лежащие внутри интервала (v,π) .

Нетрудно показать, что связь энергии Ферми E_F с фактором заполнения ν дается следующими выражениями:

$$E_F(\nu) = \begin{cases} -2\varepsilon_R - V\cos(\pi\nu), & 0 < \nu < \nu_2, \\ -\varepsilon_R - \left| \operatorname{ctg}\left(\frac{\pi\nu}{2}\right) \right| \sqrt{V^2 \sin^2(\pi\nu/2) - \varepsilon_R^2}, & \nu_2 < \nu < 1, \\ -\varepsilon_R + \left| \operatorname{ctg}\left(\frac{\pi\nu}{2}\right) \right| \sqrt{V^2 \sin^2(\pi\nu/2) - \varepsilon_R^2}, & 1 < \nu < \nu_1, \\ & V\cos(\pi\nu), & \nu_1 < \nu < 2. \end{cases}$$
(25)

Уровень Ферми лежит в области перекрытия, если фактор заполнения удовлетворяет условию $\nu_2 < \nu < < \nu_1,$ где

$$\nu_{1} = 1 + \frac{2}{\pi} \arcsin\left(\sqrt{1 - \frac{\varepsilon_{R}}{V}}\right) \theta(V - \varepsilon_{R}),$$

$$\nu_{2} = \frac{2}{\pi} \arccos\left(\sqrt{1 - \frac{\varepsilon_{R}}{V}}\right) \theta(V - \varepsilon_{R}) + \theta(\varepsilon_{R} - V).$$
(26)

В отсутствие перекрытия подзон ($\varepsilon_R > V$) $\nu_1 = \nu_2 = 1.$

Для определения плазмонного спектра необходимо решить дисперсионное уравнение (19). Это уравнение достаточно сложное и при произвольном q допускает лишь численное решение.

Аналитическое исследование поведения ветвей плазмонного спектра возможно при малых q. Начнем с оптической ветви, которая при $q \to 0$ ведет себя корневым образом, $\omega_{opt} = \beta \sqrt{q}$. В уравнении (19) положим $\omega = \beta \sqrt{q}$ и в пределе $q \to 0$ получим для β следующее уравнение:

$$\beta^{2} - 4a^{2}\sin^{2}(\varphi)V\pi(\sin(\pi\nu_{+}) + \\ +\sin(\pi\nu_{-}))/a_{B}md^{2} = 0. \quad (27)$$

Здесь φ — угол между вектором **q** и осью *x*. Эта ветвь порождается сверхрешеткой, она существует при любых заселенностях подзон ν_{\pm} независимо от наличия или отсутствия перекрытия и соответствует формуле (8) работы [4] при N = 0.

Акустическая ветвь при малых q линейна: $\omega_{ac} = s_{ac}q$. Чтобы найти s_{ac} , подставляем в формулу (19) $\omega = s_{ac}q$ и в пределе $q \to 0$ имеем для s_{ac}

$$s_{ac}^{2} = \frac{4\pi^{2}a^{4}V^{2}}{d^{2}}\sin^{2}(\varphi)\sin(\pi\nu_{+})\sin(\pi\nu_{-}).$$
 (28)

Это решение существует, если факторы заполнения подзон не равны ни нулю, ни единице, что возможно только при наличии области перекрытия подзон и тогда, когда уровень Ферми лежит в этой области. Из формулы (28) видно, что если нижняя подзона заполнена полностью ($\nu_{-} = 1$) или верхняя пуста ($\nu_{+} = 0$), то акустическая ветвь исчезает. Соответственно, в оптической ветви (27) при тех же значениях ν_{\pm} отсутствуют вклады как пустой, так и полностью заполненной подзон.

При малых q межподзонные плазмонные ветви будем искать в виде $\omega = 2\varepsilon_R + sq$. После подстановки этого выражения в формулу (19) переходим к пределу $q \to 0$ и в результате получаем следующее уравнение для s:

$$1 + \frac{\theta(s^2 - K^2)\varepsilon_R a^2}{\pi a_B \sqrt{s^2 - K^2}} \times \\ \times \sum_{\lambda = \pm} \left[\operatorname{arctg} \left(\frac{K - \lambda \ s \operatorname{ctg} \left(\pi \nu_\lambda / 2 \right)}{\sqrt{s^2 - K^2}} \right) - \\ - \operatorname{arctg} \left(\frac{K + \lambda \ s \operatorname{ctg} \left(\pi \nu_\lambda / 2 \right)}{\sqrt{s^2 - K^2}} \right) \right] + \\ + \frac{\theta(K^2 - s^2)\varepsilon_R a^2}{\pi a_B \sqrt{K^2 - s^2}} \times \\ \times \sum_{\lambda = \pm} \ln \left| \frac{K^2 - \left(\sqrt{K^2 - s^2} + \lambda s \operatorname{ctg} \left(\pi \nu_\lambda / 2 \right) \right)^2}{K^2 - \left(\sqrt{K^2 - s^2} - \lambda s \operatorname{ctg} \left(\pi \nu_\lambda / 2 \right) \right)^2} \right| = 0.$$
(29)

Здесь введено обозначение $K = 2\pi a^2 V \sin(\varphi)/d$. Положительный корень s_1 уравнения (29) существует всегда (вне зависимости от положения уровня Ферми и наличия (или отсутствия) перекрытия подзон). При $|K| \ll |s|$ решение уравнения (29) легко находится:

$$s_1 = \frac{\varepsilon_R (\nu_- - \nu_+) a^2}{a_B}; \tag{30}$$

условие существования (30) следующее:

$$\frac{2\pi}{d}|\sin\varphi|V \ll \frac{\varepsilon_R(\nu_- - \nu_+)}{a_B}.$$
(31)

Отрицательный корень уравнения (29), как и рассмотренное выше акустическое решение, возникает только при наличии области перекрытия подзон и когда уровень Ферми лежит в области перекрытия. Если $|s| \ll |K|$, то из формулы (29) получаем

$$s_2 = -\frac{4\pi^3 a_B a^2 \sin^2(\varphi) V^2 \sin(\pi\nu_+) \sin(\pi\nu_-)}{\varepsilon_R d^2 \sin(\pi(\nu_- - \nu_+))}.$$
 (32)

Условие существования (32) имеет вид

$$\frac{2\pi^2 |\sin\varphi| V a_B \sin(\pi\nu_+) \sin(\pi\nu_-)}{\varepsilon_R d \sin(\pi(\nu_- - \nu_+))} \ll 1.$$
(33)

Численный расчет был проведен для двух значений параметра Рашба α : $\alpha = 1.44 \cdot 10^6$ см/с и $\alpha =$ = 2.4 · 10⁶ см/с. При расчетах использовались следующие параметры: $V_0 = 0.1 E_{F0}, n_s = 10^{11} \text{ см}^{-2},$ $m = 0.055m_0, \ \chi = 12.9, \ d = 2 \cdot 10^{-5} \ \text{cm}, \ E_{F0} =$ $= \pi n_s/m$ — энергия Ферми неструктурированной двумерной системы в отсутствие магнитного поля и СОВ. При $\alpha = 1.44 \cdot 10^6$ см/с имеет место перекрытие подзон. Тогда из формул (26) следуют значения $\nu_1 = 1.38363, \nu_2 = 0.60243$. Мы рассмотрели три случая: 1) $\nu = 1.2$ — энергия Ферми лежит в зоне перекрытия, 2) $\nu = 0.6$ — энергия Ферми лежит ниже зоны перекрытия, 3) $\nu = 1.8 -$ энергия Ферми лежит выше зоны перекрытия (рис. 1). В первом случае (рис. 1а) мы имеем две группы носителей, принадлежащих разным подзонам с заселенностью $\nu_{-} = 0.866548, \nu_{+} = 0.333452$. При этом существуют четыре плазмонные ветви: оптическая и акустическая ветви, исходящие из нуля при q = 0, и две межподзонные ветви (МП1, МП2), начинающиеся от разности энергий между спиновыми подзонами (10) $\varepsilon_{0,+,k} - \varepsilon_{0,-,k} = 2\varepsilon_R$. Во втором и третьем случаях (рис. 16, в) имеется только один тип носителей: либо верхняя подзона пуста ($\nu_+ = 0$), либо нижняя заполнена полностью ($\nu_{-} = 1$). Тогда имеются только две плазмонные ветви: оптическая и межподзонная (МП1). При $\alpha = 2.4 \cdot 10^6$ см/с между электронными подзонами есть щель и при любом значении $0 < \nu < 2$ также имеются только две плазмонные ветви: оптическая и межподзонная (МП1) (рис. 2).

Из общих соображений ясно, что дисперсия плазменных волн в рассматриваемой задаче должна

Рис. 1. Зависимость частоты плазмонов от волнового вектора для системы с $\alpha = 1.44 \cdot 10^6$ см/с при $q_x = 0$ для $\nu = 1.2$ (a), $\nu = 0.6$ (б), $\nu = 1.8$ (6). Цифры около кривых соответствуют различным ветвям плазмонного спектра: 1 – акустической, 2 – оптической, 3 – нижней межподзонной и 4 – верхней межподзонной. На вставках показаны спиновые подзоны и расположение уровня Ферми

Рис.2. Зависимость частоты плазмонов от волнового вектора для системы с $\alpha=2.4\cdot 10^6\,$ см/с при $q_x=0\,$ для $u=1.2\,$

характеризоваться сильной анизотропией (в отсутствие спин-орбитального взаимодействия анизотропия дисперсии магнитоплазмонов в латеральной сверхрешетке была установлена также в работе [4]). На рис. 3 показана в полярных координатах угловая зависимость плазмонного спектра для случая параметров, соответствующих рис. 1*а*.

Итак, всегда существуют два основных решения (оптическая и межподзонная (МП1) ветви), которые возникают независимо от величины фактора заполнения и положения уровня Ферми. Однако когда имеется перекрытие подзон и энергия Ферми лежит в области перекрытия, т.е. $-V < E_F < V - 2\varepsilon_R$, в плазмонном спектре возникают две дополнительные ветви: акустический плазмон и еще один межподзонный плазмон (МП2).

В частном случае $\varphi = 0$ спектр плазмонов легко находится аналитически. Диагональная по спину часть поляризационного оператора П₁ тождественно обращается в нуль. Для П₂ получается простое выражение

$$\Pi_2 = -\frac{2\varepsilon_R^2 q_x^2 (\nu_- - \nu_+) e^{-u}}{\pi \omega_c (\omega^2 - 4(m\alpha^2)^2)}.$$
(34)

Независимо от взаимного расположения спиновых подзон и положения уровня Ферми дисперсионное

Рис. 3. Угловая зависимость плазмонного спектра для системы с $\alpha = 1.44 \cdot 10^6$ см/с при qa = 0.91. Фактор заполнения $\nu = 1.2$. Угол отсчитывается от горизонтальной оси

уравнение дает для верхней ветви (МП1)

$$\omega_1 = 2\varepsilon_R \sqrt{1 + \frac{|q_x|a^2}{a_B} \frac{\exp\left(-u\right)(\nu_- - \nu_+)}{1 + 2\nu F(u)/|q_x|a_B}},\qquad(35)$$

а для нижней имеем $\omega_2 = 2\varepsilon_R$, что соответствует одночастичному спин-флип-переходу. При указанной поляризации ($q_y = 0$) оптическая и акустическая ветви не существуют, так как вследствие продольности плазменной волны нет компоненты электрического поля вдоль направления y — единственного направления, по которому возможны бесконечно малые смещения точки подвеса осциллятора Ландау.

Заметим, что формула (35) соответствует полученному нами ранее [5] выражению для межподзонного магнитоплазмона в двумерной системе со спин-орбитальным взаимодействием в отсутствие сверхрешетки. Отличие заключается в замене $|q_x|$ на q.

Работа выполнена при финансовой поддержке РФФИ (грант № 08-02-00152) и в рамках Программ РАН.

ЛИТЕРАТУРА

- 1. Р. З. Витлина, Л. И. Магарилл, А. В. Чаплик, Письма в ЖЭТФ **92**, 762 (2010).
- Ю. А. Бычков, В. И. Мельников, Э. И. Рашба, ЖЭТФ 98, 717 (1990).
- Р. З. Витлина, Л. И. Магарилл, А. В. Чаплик, ЖЭТФ 137, 112 (2010).
- H. L. Cui, V. Fessatidis, and N. J. Horing, Phys. Rev. Lett. 63, 2598 (1989).
- A. V. Chaplik, L. I. Magarill, and R. Z. Vitlina, in Proc. of 18th International Symposium "Nanostructures: Physics and Technology", St. Petersburg (2010), p. 57.