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RELATIVISTIC COULOMB GREEN's FUNCTION IN d DIMENSIONSR. N. Lee *, A. I. Milstein **, I. S. Terekhov ***Budker Institute of Nulear Physis630090, Novosibirsk, RussiaNovosibirsk State University630090, Novosibirsk, RussiaReeived January 28, 2011Using the operator method, we derive the Green's funtions of the Dira and Klein�Gordon equations in theCoulomb potential �Z�=r for an arbitrary spae dimensionality d. Nonrelativisti and semilassial asymptotiforms of these Green's funtions are onsidered in detail.1. INTRODUCTIONAt the alulation of the amplitudes and probabili-ties of QED proesses in the �eld of heavy atoms appli-able, the parameter Z� (where Z is the atomi hargenumber and � is the �ne struture onstant) is notsmall. The e�et of higher orders in Z� an hange theBorn result by several times. Therefore, it is often re-quired to alulate the probabilities of QED proessesin suh a strong �eld exatly in Z�. The most on-venient way to perform this alulation is to use theexat Green's funtions of the Dira equation (or theKlein�Gordon equation) for a harged partile in a �eld(the Furry representation). Deriving the Green's fun-tions for spei� �eld on�gurations is very importantfor appliations. For the Coulomb potential, a on-venient integral representation of the Green's funtionG(r; r0j") was derived in Ref. [1℄ using the O(2,1) alge-bra. The representation obtained is valid in the wholeomplex plane of the energy " and does not ontainontour integrals. Another integral representation forthe Green's funtion in the Coulomb �eld was derivedin Ref. [2℄ using an expliit form of the expansion ofG(r; r0j") with respet to the eigenfuntions of the or-responding wave equation. The representation of theGreen's funtion obtained in Ref. [2℄ ontains a ontourintegral, whih ompliates its use in appliations.In the alulation of loop diagrams, it is often re-quired to regularize the divergent integrals. One of the*E-mail: r.n.lee�inp.nsk.su**E-mail: a.i.milstein�inp.nsk.su***E-mail: i.s.terekhov�inp.nsk.su

most onvenient methods of the regularization is the di-mensional regularization. To use the dimensional regu-larization within the approah based on the Furry rep-resentation, it is neessary to derive the exat Green'sfuntion in the Coulomb �eld in an arbitrary, not ne-essarily integer, spae dimensionality d (the spae�timedimensionality is d + 1). In this paper, we solve thisproblem by generalizing the Green's funtion obtainedin Ref. [1℄ for d = 3 to arbitrary d. Our derivationlosely follows the path of derivation in Ref. [1℄. Inontrast to the onventional approah, the operatormethod used in Ref. [1℄ and in this paper does notrequire the knowledge of the expliit form of the wavefuntions, whih is di�ult to de�ne for noninteger d.To �x the expliit form of the Green's funtion for ar-bitrary d unambiguously, we use only the ommutativeand antiommutative relations for the operators and-matries.2. CALCULATION OF THE GREEN'SFUNCTIONFollowing Ref. [1℄, we represent the Green's funtionin the Coulomb potentialU(r) = �Z�=r(the system of units ~ =  = 1 is used),G(r; r0j") = 1P̂ �m+ i0Æ(r� r0);P̂ = 0("+ Z�=r)� p; (1)as236



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Relativisti Coulomb Green's funtion in d dimensionsG(r; r0j") = (P̂ +m)D(r; r0j");D(r; r0j") == �i 1Z0 ds exp�2iZ�"s�is �rp2r+�2r+Kr ���� Æ(r � r0)rd�2 Æ(n� n0);� =pm2 � "2; pr = � ir(d�1)=2 ��r r(d�1)=2;n = r=r; n0 = r0=r0;K = l2�iZ�� � n� (Z�)2+14(d�1)(d�3);� = 0;
(2)

where �l2 is the angular part of the Laplaian deter-mined by � = 1rd�1 �rrd�1�r � 1r2 l2 (3)and the -matries obey the usual relation�� + �� = 2g�� :We then represent the angular part of the Æ-funtionas Æ(n� n0) =X� P�(n;n0); (4)where the projetion operators P�(n;n0) satisfy the re-lations KP�(n;n0) = �(� + 1)P�(n;n0);Z dn0P�(n;n0)P�0 (n0;n00) = Æ��0P�(n;n00): (5)Beause the operatorK ontains only one matrix oper-ator � � n, the matrix struture of the projetion oper-ator P�(n;n0) is given by the linear ombination of theunit matrix I and matries��n, ��n0, and (��n)(��n0).All other matries, suh as (� �n)(� �n0)(� �n), an beredued to the four above matries using the antiom-mutation relations. Taking this property into aount,we seek the projetion operators P�(n;n0) in the formP�(n;n0) = a1�+(n)�+(n0)+a2�+(n)��(n0) ++ a3��(n)�+(n0) + a4��(n)��(n0);��(n) = 12(1�� � n); (6)where ai are some funtions of x = n�n0. From Eqs. (5),we obtain

a1 = �(�+ iZ�)Bn(x);a2 = a3 = � (n+ � + 1=2)An(x);a4 = �(�� iZ�)Bn(x);� = �;  =q(n+ � + 1=2)2 � (Z�)2;� = �(� + 1)2���+1 ;An(x) = 12� ��x [C�n+1(x) + C�n(x)℄;Bn(x) = 12� ��x [C�n+1(x) � C�n(x)℄;� = d2 � 1;
(7)

where C�n(x) is the Gegenbauer polynomial, andn = 0; 1; 2; : : : is an integer. This integer appears fromthe requirement that the funtions ai have no singular-ities at x = 1. The result for ai in (7) was obtainedusing the identityZ (1 + n � n0 + n � n00 + n0 � n00)��Bn(n � n0)Bn(n0 � n00) dn0 == 
d(1 + n � n00)Bn(n � n00);
d = Z dn = 2�d=2�(d=2) = 2��+1�(� + 1) : (8)We �nally obtain for projetion operatorP�(n;n0) == �2(h�[1+(� �n)(� �n0)℄+iZ�(� �n+� �n0)iBn(x)++ (n+ � + 1=2) [1� (� � n)(� � n0)℄An(x)): (9)For d = 3, this projetion operator oinides with thatfound in Ref. [3℄.We note that the funtions An(x) and Bn(x) havea nonsingular limit as � ! 0 (or d! 2),lim�!0An(x) = sin((n+ 1)�) + sin(n�)sin� ;lim�!0Bn(x) = sin((n+ 1)�)� sin(n�)sin� ;where � = arosx.To omplete the alulation of D(r; r0j") in Eq. (2),it is neessary to �nd the result of the ation of theoperator exp��is �rp2r + �2r + �(� + 1)=r�	on the funtion237



R. N. Lee, A. I. Milstein, I. S. Terekhov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011Æ(r � r0)=r2� :This an be done exatly in the same way as in Ref. [1℄.The method in Ref. [1℄ is based on the ommutation re-lations of the operatorsT1 = 12[rp2r + �(� + 1)=r℄; T2 = rpr; T3 = r;whih oinide with those of the O(2,1) algebra gener-ators (some other examples of applying the O(2,1) al-gebra in a Coulomb �eld an be found in Refs. [4, 5℄).The only di�erene between the ase of arbitrary d andd = 3 is the value of the parameter Æ in the equationT1rÆ = 0:For arbitrary d, we haveÆ = 8><>: �+ 3� d2 ; for� > 0;j�j+ 1� d2 ; for� < 0: (10)The �nal result for the funtion D(r; r0j") in Eq. (2) isD(r; r0j") = � i� (� + 1)2��+1(rr0)�+1=2 �� 1Xn=0 1Z0 ds exp[2iZ�"s+ i�(r + r0) tg(�s)� i�℄��(y2J 02(y)[1 + (� � n)(� � n0)℄Bn(x) ++ iZ�J2(y)(� � n+� � n0)Bn(x) ++ (n+ � + 1=2)J2(y)�� [1� (� � n)(� � n0)℄An(x)); y = 2�prr0sin(�s) ; (11)where J2(y) is the Bessel funtion and An(x), Bn(x),�, and  are de�ned in Eq. (7). The orrespondingresult for the Coulomb Green's funtion of the Diraequation in d spatial dimension isG(r; r0j") = � i� (� + 1)2��+1(rr0)�+1=2 �� 1Xn=0 1Z0 ds exp[2iZ�"s++ i�(r + r0) tg(�s)� i�℄ T ;T = [1 + (� � n)(� � n0)℄��hy2J 02(y)(0"+m)�� iZ�J2(y)0� tg(�s)iBn(x) +

+h[1� (� � n)(� � n0)℄(0"+m)��� tg(�s)( � n�  � n0)i�� J2(y) (n+ � + 1=2)An(x) ++ � i�2(r � r0)2 sin2(�s) + imZ�0��� ( � n+  � n0)J2(y)Bn(x): (12)
For d = 3, this result oinides with the orrespond-ing result in Ref. [1℄. The funtion G(r; r0j ") has utsin the omplex plane " along the real axis from �1 to�m and from m to1, whih orrespond to the ontin-uous spetrum, and also has simple poles in the interval(0;m) for an attrative �eld and in the interval (�m; 0)for a repulsive �eld. Integral representation (12) is validfor any " that belongs to the domain Re " < 0, Im " < 0or Re " > 0, Im " > 0. If Re " < 0, Im " > 0 or Re " > 0,Im " < 0, then the integration over smust be performedin Eq. (12) from zero to �1.For real " in the interval �m < " < m, we obtain(f. Ref. [1℄) G(r; r0j") == � (� + 1)4� sin[�(Z�"=�� )℄��+1(rr0)�+1=2 �� 1Xn=0 �=2Z��=2 ds exp [�2iZ�"s=� ++ i�(r + r0) tg s℄ T ;T = [1 + (� � n)(� � n0)℄�� hv2J 02(v)(0"+m)�� iZ�J2(v)0� tg siBn(x) ++h[1� (� � n)(� � n0)℄(0"+m)��� tg s( � n�  � n0)i�� J2(v) (n+ � + 1=2)An(x) ++ � i�2(r � r0)2 os2 s + imZ�0��� ( � n+  � n0)J2(v)Bn(x); v = 2�prr0os s :

(13)

The denominator in Eq. (13) vanishes at the pointsZ�"=��  = kfor any integer k. But the integral over s also vani-shes at these points with negative k (see Ref. [1℄), andhene expression (13) has poles only for k = 0; 1; 2 : : : .238



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Relativisti Coulomb Green's funtion in d dimensionsTaking into aount that  is positive, we �nd that thesimple poles orresponding to the disrete spetrum areat the points " = m signZs1 +� Z�k + �2 : (14)The maximal value of Z when all the results obtainedare appliable is de�ned by the relation(Z�)max = d� 12(see the de�nition of  in Eq. (7)).For ompleteness, we also present the �nal resultfor the Coulomb Green's funtion of the Klein�Gordonequation,G0(r; r0j") = � � (� + 1)2��+1(rr0)� 1Xn=0 n+ �� C�n(x)�� 1Z0 � dssin(�s) exp[2iZ�"s++ i�(r + r0) tg(�s)� i��℄J2�(y);� =q(n+ �)2 � (Z�)2: (15)
We note that there is no singularity in this formula atd = 2 beauselim�!0 n+ �� C�n(x) = os(n�):3. ASYMPTOTIC FORMSWe derive the Coulomb Green's funtionGnr(r; r0jE) of the Shrödinger equation in d spatialdimensions. For this, we alulate the nonrelativistiasymptoti form of the Coulomb Green's funtion ofthe Klein�Gordon equation, appliable at jEj � mand Z� � 1, where E = " �m. Negleting (Z�)2 in�, using the summation formula (f. [2℄),S0 = 1Xn=0(�1)n � + n� C�n(x)J2(n+�)(y) == p� y2�J��1=2(w)23�+1=2�(� + 1)w��1=2 ; w = yr1 + x2 ; (16)and multiplying by 2m, we obtain

Gnr(r; r0jE) = � m(2�)�+1=2 1Z0 ds� �sin(�s)�2�+1 �� exp[2iZ�ms+i�(r+r0) tg(�s)�i��℄J��1=2(w)w��1=2 ;� = p�2mE: (17)This formula is in agreement with the orrespondingresult in Ref. [6℄.At high energies and small sattering angles of thepartiles, the harateristi angular momenta are largeand the semilassial approximation is appliable. Thesemilassial Green's funtion of the Dira equation ina Coulomb potential for d = 3 was �rst derived in Refs.[7, 8℄. Another representation of this funtion was ob-tained in Refs. [9, 10℄. The semilassial Green's fun-tion for an arbitrary spherially symmetri loalizedpotential was found in Refs. [11, 12℄. In Ref. [13℄, thesemilassial Green's funtion for an arbitrary loalizedpotential was found with the next-to-leading semilas-sial orretion taken into aount. In Ref. [13℄, thespherial symmetry of the potential was not required.We onsider the semilassial Green's funtion ofthe Dira equation in a Coulomb potential for an ar-bitrary spatial dimension d. In this ase, " � m and1 + x � 1, and hene the leading ontribution to thesum over n in Eq. (12) is given by n� 1. We an there-fore neglet the term (Z�)2 in , Eq. (7), and sum overn analytially. We need to alulate two sums,SA = 1Xn=0(�1)n(� + n+ 1=2)��An(x)J2(n+�+1=2)(y);SB = 1Xn=0(�1)nBn(x)J2(n+�+1=2)(y); (18)where the funtions An(x) and Bn(x) are de�ned inEq. (7). Using the reurrent relations for the Besselfuntions and the Gegenbauer polynomials, it is easyto show thatSA = (1 + x) ��xSB + (� + 1=2)SB;SB = �2y ��xS0; (19)so that SA = p� y2�+1J��1=2(w)23�+5=2�(� + 1)w��1=2 ;SB = p� y2�+1J�+1=2(w)23�+3=2�(� + 1)w�+1=2 : (20)
239



R. N. Lee, A. I. Milstein, I. S. Terekhov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011Substituting these results in Eq. (12), we arrive at the�nal expression for the semilassial Green's funtionGq(r; r0j") = � 12�+3=2��+1=2 �� 1Z0 dsu��1=2 � psh(ps)�2�+1 �� exp[2iZ�"s+ ip(r + r0) th(ps)� i��℄M;M = J��1=2(u)�� h0"+m� p2 th(ps)( � n�  � n0)i++ iJ�+1=2(u)u (�p2(r � r0)2 sh2(ps) +mZ�0���( � n+  � n0)� Z�0p th(ps)�� [1 + (� � n)(� � n0)℄); u = pp2rr0(1 + x)sh(ps) ;
(21)

where p =p"2 �m2 = i�:For d = 3, the result in (21) agrees with that ob-tained in Refs. [7, 8℄. The term (Z�)2 in  an alsobe negleted in the nonrelativisti approximation whenZ� � 1, p � m, and Z�m=p is �xed. In this ase,we immediately obtain from Eq. (21) that the nonrel-ativisti approximation for the Green's funtion of theDira equation is given byG(r; r0jm+E) = 0 + 12 Gnr(r; r0jE); (22)where Gnr(r; r0j") is de�ned in Eq. (17).To summarize, in d spatial dimensions, we have al-ulated the Green's funtions of the Dira and Klein�Gordon equations in the Coulomb �eld (Eqs. (12) and(15)). Nonrelativisti and semilassial limit ases ofthese Green's funtions are onsidered in detail. Theresults obtained an be applied for alulation of vari-ous QED amplitudes in the strong Coulomb �eld withthe use of dimensional regularization.
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