КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНАЯ АНИЗОТРОПИЯ В ЛЮДВИГИТЕ Co₂FeO₂BO₃

Н. Б. Иванова^{а,b}, Н. В. Казак^{c*}, Ю. В. Князев^а, Д. А. Великанов^{а,c},

Л. Н. Безматерных^с, С. Г. Овчинников^{а,с,d}, А. Д. Васильев^{а,с},

М. С. Платунов^{с, d}, Х. Бартоломе^e^{**} Г. С. Патрин^{а, c}

^а Сибирский федеральный университет 660074, Красноярск, Россия

^b Красноярский государственный аграрный университет 660200, Красноярск, Россия

^с Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^d Сибирская аэрокосмическая академия 660123, Красноярск, Россия

^e Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Departamento de Física de la Materia Condensada 50009, Zaragoza, Spain

Поступила в редакцию 16 декабря 2010 г.

Получены монокристаллы оксиборатов со структурой людвигита $Co_3O_2BO_3$ и $Co_2FeO_2BO_3$. Проведено детальное исследование кристаллической структуры и магнитных свойств. В замещенном людвигите $Co_2FeO_2BO_3$ обнаружено двухэтапное магнитное упорядочение при температурах, характерных для $Fe_3O_2BO_3$ ($T_{N1} \approx 110$ K, $T_{N2} = 70$ K), а не для $Co_3O_2BO_3$ ($T_N = 42$ K). Данный эффект объяснен с позиций предпочтительного характера заполнения железом неэквивалентных кристаллографических позиций, как выявлено в ходе рентгеноструктурных исследований. Оба материала демонстрируют ярко выраженную одноосную магнитную анизотропию. Кристаллографическое направление *b* является легким направлением намагничивания. При замещении железом кобальтовый людвигит приобретает чрезвычайную магнитную жесткость.

1. ВВЕДЕНИЕ

Необычные магнитные свойства оксиборатов переходных металлов со структурой людвигита в последние несколько лет привлекли к себе большое внимание [1–5]. Класс оксиборатов в целом является очень привлекательным объектом для изучения, благодаря многообразию кристаллических структур, которые включают в себя низкомерные элементы в виде зигзагообразных стенок в людвигитах [6] или лент в пироборатах [7] и варвикитах [8]. Наличие низкомерных подструктур делает различные позиции переходных ионов неэквивалентными. Эти позиции в оксиборатах могут быть заняты ионами различной валентности. Так формируется чрезвычайно богатая картина внутреннего устройства оксиборатов, в конечном итоге определяющая их физические свойства.

В данной работе мы фокусируемся на изучении оксиборатов со структурой людвигита. Известно, что в этих материалах ионы металла не только могут занимать четыре неэквивалентные позиции, но и проявляют при этом ярко выраженное предпочтение в зависимости от валентности. Схематически кристаллическая структура людвигита показана на

^{*}E-mail: nat@iph.krasn.ru

^{**}J. Bartolomé

Рис.1. Слева: кристаллическая структура людвигита. Большими кружками показаны переходные ионы кобальта или железа, средними кружками — ионы бора, маленькими — ионы кислорода. Цифрами указаны неэквивалентные позиции переходных ионов. Ионы бора и кислорода образуют треугольные ВО₃-группы. Справа: координация металлических ионов М в неэквивалентных кристаллографических позициях

рис. 1 слева. Цифрами 1, 2, 3 и 4 обозначены неэквивалентные кристаллографические позиции металлического иона. Позиций 3 и 4 вдвое больше, чем позиций 1 и 2. Каждый металлический ион находится внутри кислородного октаэдра, степень искажения октаэдров различна в зависимости от позиции. Расстояния металл-кислород в различных направлениях для неэквивалентных позиций показаны на рис. 1 справа. Ионы в позициях 2 и 4 образуют триады первого типа 4–2–4 (как будет видно далее, наиболее значимые для магнитного порядка). Ионы в позициях 1 и 3 образуют триады второго типа 3–1–3. Зигзагообразные стенки, образованные триадами, распространяются вдоль кристаллографического направления *с*.

Известно только два гомометаллических людвигита: Fe₃O₂BO₃ [3–5] и Co₃O₂BO₃ [1, 3]. Кристаллическая структура людвигитов ромбическая, группа *Pbam*. Данные по эффекту Мессбауэра [9, 10] и рентгеновской дифракции [3] свидетельствуют о том, что в людвигитах позиции 4 заполняются трехвалентными ионами, а остальные позиции — двухвалентными ионами. (Этот факт можно считать вполне достоверным для $Fe_3O_2BO_3$, где валентность ионов железа определена по данным эффекта Мессбауэра, и требующим дальнейшего подтверждения для $Co_3O_2BO_3$, в котором валентности ионов определены на основе длин валентных связей [3]. Дело в том, что возможные длины валентных связей для двух- и трехвалентного кобальта в различных соединениях имеют широкую область перекрытия.) В последнее время также активно ведется изучение смешанных железо-кобальтовых людвигитов $Co_{3-x}Fe_xO_2BO_3$ [1, 11, 12]. Выраженный рост интереса к этим материалам в последнее время обусловлен, в основном, тремя следующими причинами.

1) Физическое поведение первого из родительских соединений $Fe_3O_2BO_3$ чрезвычайно содержательно. В данном материале при понижении температуры ниже T = 283 К наблюдается плавный структурный переход в форме димеризации, выражающейся в изменении длин связей в триаде Fe(4)–Fe(2)–Fe(4) так, что средний ион, занимающий позицию 2, при переходе от ряда к ряду по-

очередно смещается в сторону то одного, то другого соседа. Магнитное упорядочение в Fe₃O₂BO₃ происходит в два этапа. Согласно данным по эффекту Мессбауэра [9,10] и теплоемкости [3], первый фазовый переход происходит около $T_{N1} = 110$ К. В работе по нейтроновскому рассеянию [4] показано, что при этой температуре происходит ферромагнитное упорядочение магнитных моментов ионов в триадах первого типа 4-2-4. Магнитные моменты упорядочиваются в направлении кристаллографической оси b. При этом магнитные моменты соседних рядов, образованных триадами 4-2-4, относительно друг друга направлены антиферромагнитно. Таким образом, магнитный момент в направлении b для Fe₃O₂BO₃ полностью скомпенсирован. При $T_{N2} = 70 \text{ K}$ упорядочиваются магнитные моменты в триадах второго типа 3-1-3. На этот раз упорядочение происходит вдоль кристаллографического направления а, характер упорядочения внутри триады антиферромагнитный, компенсация магнитных моментов ионов неполная. Между собой эти триады связаны ферромагнитно. Таким образом, по данным нейтронного рассеяния в Fe₃O₂BO₃ существуют две магнитные подсистемы, упорядочивающиеся взаим-

2) Свойства двух родственных людвигитов $Fe_3O_2BO_3$ и $Co_3O_2BO_3$ неожиданно обнаруживают существенное различие. В $Co_3O_2BO_3$ не наблюдается никакого структурного перехода с температурой [3]. Картина магнитного упорядочения для этого материала кажется, на первый взгляд, гораздо более простой. Магнитное упорядочение, по-видимому, ферримагнитного характера происходит в один этап [3], температура упорядочения равна 42 К.

но перпендикулярно и при разных температурах.

3) Существует ряд противоречивых данных и неясных моментов, касающихся как исходных соединений $Fe_3O_2BO_3$ и $Co_3O_2BO_3$, так и смешанных железо-кобальтовых людвигитов. Во-первых, по данным эффекта Мессбауэра и нейтронного рассеяния совершенно очевидно, что магнитное упорядочение в Fe₃O₂BO₃ начинается в окрестности T = 110 K [4, 9, 10]. Теплоемкость Fe₃O₂BO₃ также имеет пик при этой температуре [3]. Однако измерения магнитной восприимчивости в этом температурном интервале обнаружили лишь слабую аномалию, практически не видную на кривой $\chi(T)$ [5,10]. То же самое можно сказать и о смешанном соединении Co₂FeO₂BO₃ [11]. Во-вторых, магнитные свойства смешанных соединений Co_{3-x}Fe_xO₂BO₃ неожиданно обнаруживают выраженное сходство со свойствами $\mathrm{Fe}_3\mathrm{O}_2\mathrm{BO}_3,$ но резко отличаются

от свойств Со₃О₂ВО₃. Так, в смешанном составе Co_{2.25}Fe_{0.75}O₂BO₃ обнаружены два характерных для $Fe_3O_2BO_3$ магнитных перехода около T = 70 К и T = 110 K [12], несмотря на то, что этот смешанный состав содержит в три раза больше ионов кобальта, чем ионов железа. В-третьих, замещение кобальта на железо приводит к существенному падению магнитного момента в магнитоупорядоченном состоянии. Так, в одинаковых условиях ($T \approx 4.2$ K, охлаждение в магнитном поле H = 1 кЭ) для ${
m Co_3O_2BO_3}$ магнитный момент $\mu~pprox~0.8$ [3], для $Co_2 FeO_2 BO_3$ равен $\mu \approx 0.5$ [11], а для $Fe_3O_2 BO_3$ составляет всего лишь $\mu = 0.15 \mu_B$ на формульную единицу [5]. С учетом спиновых магнитных моментов ионов (Co^{2+} : S = 3/2, Co^{3+} : S = 2, Fe^{2+} : S = 2и Fe^{3+} : S = 5/2), такое резкое падение магнитного момента выглядит неожиданным.

Несмотря на то, что, как известно, людвигиты на основе кобальта и железа являются материалами с высокой степенью магнитной анизотропии [1,13], в течение более чем десяти лет их изучения даже не ставился вопрос об исследовании магнитной анизотропии в сечении *ab* кристалла. Большинство измерений, описанных во всех цитированных работах, было выполнено или на порошках, или на монокристаллах, случайным образом ориентированных в магнитном поле.

На этом список интригующих аспектов поведения как исходных, так и смешанных людвигитов на основе железа и кобальта не исчерпывается. Цель данной работы — пролить свет на перечисленные выше неясные моменты физики оксиборатов переходных металлов со структурой людвигита. Приступая к исследованию, мы имели перед собой два основных вопроса: 1) почему смешанные составы демонстрируют сценарий магнитного упорядочения, характерный для Fe₃O₂BO₃, а не для Со₃О₂ВО₃, невзирая на меньшее содержание железа, чем кобальта? 2) почему магнитный порядок, возникающий согласно нейтронным, мессбауэровским и термодинамическим данным при $T_{N1} \approx 110 \text{ K}$, так слабо проявляет себя в магнитном поведении? Чтобы получить ответ на эти вопросы, было проведено исследование структуры и магнитных свойств смешанного соединения Co₂FeO₂BO₃ в сравнении с исходным Со₃О₂ВО₃. Особое внимание уделялось магнитной анизотропии. Данное исследование является логическим продолжением наших работ [12,14], в которых обсуждаются структура и особенности магнитного поведения смешанного людвигита $Co_{2.25}Fe_{0.75}O_2BO_3$ с соотношением Co:Feравным 3:2.

2. ТЕХНОЛОГИЯ СИНТЕЗА И ОБРАЗЦЫ

Монокристаллы кобальтового Co₃O₂BO₃ и смешанного Co₂FeO₂BO₃ людвигитов выращивались раствор-расплавным методом. В первом случае исходные реактивы общей массой 50 г были взяты в молярных соотношениях

$$Bi_2Mo_3O_{12} : B_2O_3 : CoO : Na_2Co_3 : Co_2O_3 =$$

= 3 : 2 : 4 : 3 : 3.

Для получения смешанного состава часть оксида кобальта Со₂О₃ была заменена оксидом железа Fe₂O₃. Раствор-расплав приготовлен в платиновом тигле объемом 50 мм³ путем последовательного сплавления при температурах 900-1000 °C. В кристаллизационной печи с неоднородным температурным полем тигель устанавливался так, чтобы при температуре 900 °С вертикальная составляющая температурного градиента в растворе-расплаве составляла не боле
е $1\,^{\circ}\mathrm{C/cm}.$ Для полного растворения и гомогенизации состав выдерживался 3 ч при температуре 1100 °С. Затем раствор-расплав подвергался двухэтапному охлаждению: первый этап — быстрое охлаждение до $T = 960 \,^{\circ}\text{C}$; второй этап — медленное охлаждение со скоростью 12 °С в сутки в течение трех суток. Во время второго этапа происходило разращивание спонтанно зарождающихся монокристаллов Co₃O₂BO₃ и Co₃O₂BO₃: Fe. Затем раствор-расплав сливался. Выросшие на стенках тигля монокристаллы освобождали от оставшегося на них раствора-расплава травлением в 20-процентном водном растворе азотной кислоты. В результате были получены монокристаллы в виде прямоугольных параллелепипедов сильно вытянутых вдоль кристаллографической оси с.

Для монокобальтового людвигита кристаллы имеют вид иголок длиной до 5 мм. Площадь поперечного сечения кристалла менее 0.5×0.5 мм². Форма кристалла позволяет легко ориентировать его в магнитном поле так, чтобы магнитное поле совпадало по направлению с осью *с* либо было ей перпендикулярно. Но при этом есть значительные трудности в точной ориентации кристалла относительно направления магнитного поля в плоскости *ab* поперечного сечения кристалла.

Кристаллы смешанного людвигита представляют собой тонкие хрупкие пластинки. Кристаллографическое направление *b* перпендикулярно плоскости пластинки. Такая форма монокристаллов упрощает их правильную ориентацию относительно направления магнитного поля.

3. РЕНТГЕНОВСКАЯ ДИФРАКЦИЯ

Кристаллическая структура людвигита является достаточно сложной. Наличие низкомерных подструктур определяет иерархию обменных взаимодействий в этих материалах. Поэтому результаты кристаллографических исследований Co₂FeO₂BO₃ в данной работе описаны детально.

Кристаллическая структура кобальтового людвигита $Co_3O_2BO_3$ охарактеризована в работе [3], и структурные данные, полученные в данной работе для этого состава, опущены. Ниже (в табл. 2) приведены только расстояния между переходными ионами в неэквивалентных позициях. Исследование рентгеновской дифракции для смешанного людвигита $Co_2FeO_2BO_3$ было выполнено на одном из монокристаллов при комнатной температуре. Кристаллическая структура образца детально разрешена. Использован рентгеновский дифрактометр SMART APEX II (K_{α} -излучение Мо, CCD-детектор).

По данным рентгеновской дифракции $Co_2FeO_2BO_3$ имеет структуру людвигита, тип кристаллической структуры ромбический, пространственная группа симметрии *Pbam*, параметры элементарной ячейки a = 9.3818 Å, b = 12.3445 Å, c = 3.0578 Å, объем элементарной ячейки V = = 354.13 Å³.

Каждый из трех параметров элементарной ячейки несколько превышает аналогичные значения, полученные для номинально такого же соединения в работе [11]. То же можно сказать и об объеме элементарной ячейки V, который в нашем случае на 1.9% больше приведенного в работе [11]. С ростом содержания железа объем элементарной ячейки увеличивается. Для состава $Co_{2.25}Fe_{0.75}O_2BO_3$ с отношением Co:Fe = 3 имеем V = 343.92 Å³ [12], тогда как в данном случае для $Co_2FeO_2BO_3$ с отношением Co:Fe = 2 этот объем на 3% больше.

Координаты атомов, числа заполнения неэквивалентных кристаллографических позиций разноименными ионами, а также параметры изотропного смещения приведены в табл. 1. Из данных табл. 1 следует, что ионы железа входят в неэквивалентные позиции структуры людвигита с ярко выраженным предпочтением. Наиболее предпочитаемой позицией является позиция 4, так же как и в работах [11, 12]. В противоположность данным работы [11], но в полном согласии с данными работы [12], заметное замещение кобальта железом наблюдается и для позиции 2. Позиции 1 и 3 остаются за кобальтом. Таким образом, согласно данным рентгеновской дифракции,

	x/a	y/b	z/c	SOF
Co1	0.50000	0.00000	0.50000	0.25000
Co2	0.00000	0.00000	0.00000	0.16262
${\rm Fe2}$	0.00000	0.00000	0.00000	0.08738
Co3	0.00069	0.22049	0.50000	0.50000
Co4	0.23777	0.38432	0.00000	0.10448
Fe4	0.23777	0.38432	0.00000	0.39552
01	0.10700	0.35662	0.50000	0.50000
O2	0.34533	0.23645	0.00000	0.50000
O3	0.38483	0.42280	0.50000	0.50000
04	0.12425	0.14000	0.00000	0.50000
O5	0.34760	0.04221	0.00000	0.50000
В	0.27257	0.13845	0.00000	0.50000

Таблица 1. Координаты атомов и числа заполнения позиций (SOF) в $\rm Co_2FeO_2BO_3$

все ионы железа в соединении Co₂FeO₂BO₃ входят в триады первого типа 4–2–4, тогда как в позициях триад второго типа 1–3–1 находятся только ионы кобальта.

Межионные расстояния для переходных ионов в людвигите $Co_2FeO_2BO_3$ в сравнении с исходным $Co_3O_2BO_3$ и синтезированным нами ранее $Co_{2.25}Fe_{0.75}O_2BO_3$ [12] приведены в табл. 2 и составляют порядка трех ангстрем. Наименьшим является расстояние между ионами кобальта и железа внутри триад первого типа, которое в данном случае составляет 2.8446 Å. С ростом содержания железа увеличиваются средние расстояния между переходными ионами во всех неэквивалентных позициях, независимо от того, относятся эти ионы к подрешетке 4–2–4, преимущественно заполняемой железом, или к подрешетке 3–1–3, содержащей только кобальт.

Согласно числам заполнения позиций, приведенным в табл. 2, отношение количества ионов кобальта к количеству ионов железа в наших образцах $Co_2FeO_2BO_3$ равняется 2.11, что несколько больше значения 2, фигурирующего в химической формуле. Однако полученное нами соединение ближе к номинальному составу $Co_2FeO_2BO_3$ по сравнению с образцами из работы [11], где это же соотношение Co:Fe составляет 2.29.

О характере и степени искажения кислородных октаэдров, окружающих каждый неэквивалентный узел, можно судить по данным табл. 3, содержащей значения для величины расстояния металлический ион-кислород.

Воспользовавшись данными табл. 3, можно рассчитать градиент электрического поля (ГЭП) кислородного октаэдра, окружающего металлический ион в каждой неэквивалентной позиции. Расчеты проведены по формуле

$$V_{zz} = \sum 2e \frac{3\cos^2\theta - 1}{r^3}$$

с учетом первой координационной сферы. Здесь V_{zz} — градиент электрического поля в направлении главной оси кислородного октаэдра, θ — угол между этой осью и направлением на соседний ион кислорода, e — заряд электрона, r — расстояние металлический ион-кислород. Результаты вычислений приведены в табл. 4, откуда видно, что наиболее симметричное кислородное окружение имеют позиции 2 и 4, предпочитаемые d^5 -ионом Fe³⁺ с наполовину заполненной электронной оболочкой. Аналогичный результат мы ранее получали для другого смешанного людвигита Co_{2.25}Fe_{0.75}O₂BO₃ [12].

4. МАГНИТНЫЕ ИЗМЕРЕНИЯ

Для проведения магнитных измерений использован СКВИД-магнитометр MPMS-XL Quantum Design. Измерения статической намагниченности выполнены в интервале температур 2–300 К. Кривые намагничивания получены в магнитных полях до 50 кЭ. Перед проведением магнитных измерений было проведено точное взвешивание монокристалла с помощью микровесов DV 215 CD. Монокристалл, ориентированный с помощью рентгеновского дифрактометра, был закреплен на держателе из оргстекла так, чтобы магнитное поле было поочередно направлено вдоль каждой кристаллографических осей. Для каждого ИЗ направления были измерены зависимости намагниченности от температуры и магнитного поля. Сигнал, создаваемый держателем, составлял не более $2.7 \cdot 10^{-4}$ Гс · см³ в магнитном поле 50 кЭ. Температурная зависимость сигнала держателя была получена отдельно и вычиталась из интегрального сигнала. При проведении измерений в кристаллографическом направлении *b* была проведена оценка эффекта размагничивания, обусловленного формой образца. При максимальной величине намагниченности величина размагничивающего поля равна примерно 150 Э, что составляет лишь 0.3% от

Соединение	$d_{13}, \mathrm{\AA}$	$d_{23}, \mathrm{\AA}$	$d_{34}, \mathrm{\AA}$	$d_{14}, \text{ Å}$	$d_{24}, \text{ Å}$
$Co_3O_2BO_3$	3.2979	3.0512	3.0847	3.0045	2.7473
${\rm Co}_{2.25}{\rm Fe}_{0.75}{\rm O}_2{\rm BO}_3$	3.4177	3.0939	3.1355	3.0280	2.8141
$\mathrm{Co_2FeO_2BO_3}$	3.4504	3.1219	3.1674	3.0582	2.8446

Таблица 2. Наименьшие расстояния между переходными ионами в неэквивалентных позициях

Таблица 3. Межионные расстояния в $Co_2 FeO_2 BO_3$

Co1 $-$ O1(I), Å 2.0375 (0.0018)		Co3–O1, Å	$1.9608\ (0.0014)$	
Co1 $-$ O5(IV), Å 2.1571 (0.0013)		Co3–O2(III), Å	$2.1696\ (0.0013)$	
Co1–O1(VIII), Å	$2.0375 \ (0.0018)$	Co3–O2(IX), Å	$2.1696\ (0.0013)$	
Co1–O5(VI), Å	$2.1571 \ (0.0013)$	Co3–O3(III), Å	$2.0693\ (0.0021)$	
Co1–O5(VIII), Å	$2.1571 \ (0.0013)$	Co3–O4, Å	$2.1676\ (0.0014)$	
Co1-O5(II), Å	$2.1571 \ (0.0013)$	Co3–O4(VI), Å	$2.1676\ (0.0014)$	
Co(Fe)2-O4(V), Å	$2.0846 \ (0.0019)$	Co(Fe)(VII)4-O1(VII), Å	$1.9899\ (0.0014)$	
$Co(Fe)2-O_3(VII), Å$	$2.1008 \ (0.0014)$	Co(Fe)(VII)4-O1(VIII), Å	$1.9899 \ (0.0014)$	
Co(Fe)2-O4, Å	$2.0846 \ (0.0019)$	Co(Fe)(VII)4-O2(VII), Å	2.0858(0.0021)	
Co(Fe)2-O3(IX), Å	2.1008 (0.0014)	Co(Fe)(VII)4-O3(VII), Å	$2.1135 \ (0.0014)$	
Co(Fe)2-O3(III), Å	$2.1008 \ (0.0014)$	Co(Fe)(VII)4-O3(VIII), Å	$2.1135 \ (0.0014)$	
$ m Co(Fe)2-O3(VIII), {\rm \AA}$	$2.1008 \ (0.0014)$	Co(Fe)(VII)4-O5, Å	$2.1072 \ (0.0020)$	
В-О2, А	Å	1.3891 (0.0037)		
В-О4, А	Å	$1.3916 \ (0.0037)$		
В-О5, А	Å	1.3809 (0.0034)		
Co(Fe)(VII)4–C	o(Fe)2, Å	2.8446 (0.0005)		

Таблица 4. Главная компонента тензора ГЭП и заселенность ионами железа для неэквивалентных позиций переходного иона в $C_{02}FeO_2BO_3$

Позиция	1	2	3	4
$V_{zz}, e/{\rm \AA}^3$	0.186	0.040	0.234	-0.060
Заселенность, %	≈ 0	34.8	≈ 0	79.1

величины измерительного поля 50 кЭ. С учетом всех погрешностей, вносимых при взвешивании, вычитании сигнала держателя и измерении, полная погрешность определения намагниченности образца не превышает 5 %. Результаты магнитных измерений представлены на рис. 2–8. Для определения температуры магнитного упорядочения $Co_3O_2BO_3$ были сняты температурные зависимости намагниченности образца при его охлаждении в слабом магнитном поле H = 20 Э (FC-кривые) и без магнитного поля (ZFC-кривые). Измерения выполнены при магнитном поле, направленном вдоль кристаллографического направления b. Для других двух направлений сигнал, получаемый в слабом магнитном поле, слишком мал для измерения. Полученные зависимости показаны на рис. 2, где в полном соответствии с имеющимися литературными данными отчетливо виден один магнитный переход в окрестности T = 42 К.

При температуре ниже T_N в направлении на-

Рис.2. Температурные зависимости намагниченности $Co_3O_2BO_3$, измеренные при охлаждении в слабом магнитном поле H=20 Э (FC) и в отсутствие магнитного поля (ZFC). Магнитное поле направлено вдоль кристаллографической оси b

магничивания b наблюдаются петли гистерезиса (рис. 3). При температурах ниже 30 К эти петли обладают ярко выраженным насыщением и имеют почти прямоугольную форму. Коэрцитивное поле сильно растет при понижении температуры. Значения остаточной намагниченности и намагниченности насыщения близки друг к другу и составляют около $3.4\mu_B$ на формульную единицу $(1.13\mu_B)$ на магнитный ион). Исходя из вида петли и значения магнитного момента, можно предположить, что в направлении *b* упорядочение ферримагнитное. В направлениях поля вдоль кристаллографических осей а и с намагниченность мала по величине и линейна по полю, демонстрируя антиферромагнитное поведение. Таким образом, магнитная анизотропия Со₃О₂ВО₃ является ярко выраженной, а кристаллографическое направление b совпадает с легкой осью намагничивания.

В парамагнитной области температурная зависимость обратной магнитной восприимчивости монокристалла $Co_3O_2BO_3$ подчиняется обычному закону Кюри-Вейсса (рис. 4). Бросается в глаза существенная разница между температурами Вейсса θ , полученными для направлений поля вдоль оси b и вдоль оси c. В первом из этих направлений $\theta_b = 1.2$ К близка к нулю. Во втором направлении температура $\theta_c = -153.8$ К велика по модулю и отрицательна, что подчеркивает доминирование антиферромагнитных взаимодействий. Такая «анизотропия» температуры Вейсса указывает на наличие нескольких

Рис. 3. Изотермы намагничивания кристалла $C_{03}O_2BO_3$: a — намагничивание в направлении b; δ — намагничивание в направлении c; e — кривые намагничивания в направлениях a, b и c при T = 2 К. На вставке к среднему рисунку δ — слабо выраженный гистерезис кривой намагничивания в направлении c при T = 2 К

0

-20

-40

T = 2 K

40

Н, кЭ

20

вкладов в восприимчивость с молекулярными полями разных знаков.

Эффективные магнитные моменты μ_{eff} , вычисленные в парамагнитной фазе для направлений b и c, близки друг другу (различие составляет около 6%). Кроме того, эффективный магнитный момент $\mu_{eff} = 4.26\mu_B$, измеренный в доминирующем по на-

0

-40

-80

Соединение	Направление	$\mu_{eff},\ \mu_{B}/$ ион	$\mu_{e\!f\!f}$ (спиновое значение), $\mu_B/$ ион	T_C, T_N	
	b	4.26	4.94	10	
$C_{0_3}O_2BO_3$	С	4.01	4.24	42	
	a	3.83	4.05	70 115	
$CO_2 FeO_2 BO_3$	b	4.29	4.05	70, 115	
	С	4.43			

Таблица 5. Температуры магнитных переходов и эффективные магнитные моменты для $C_{03}O_2BO_3$ и $C_{02}FeO_2BO_3$

Рис. 4. Температурные зависимости обратной магнитной восприимчивости кристалла Co₃O₂BO₃ в кристаллографических направлениях *b* и *c*. Напряженность магнитного поля составляет 50 кЭ. Прямые линии показывают аппроксимацию высокотемпературной части графика в соответствии с законом Кюри – Вейсса

магниченности направлении b, почти идеально совпадает с чисто спиновым значением $\mu_{eff} = 4.24 \mu_B$ (табл. 5). Это указывает на отсутствие значимого орбитального вклада в магнитный момент ионов кобальта в Co₃O₂BO₃.

Спиновое значение эффективного магнитного момента $\text{Co}_2\text{FeO}_2\text{BO}_3$ равное $4.65\mu_B$ вычислено в предположении, что все ионы железа в этом соединении трехвалентны (S=5/2) и дают вклад в полный магнитный момент с весом 1/3 в соответствии с химической формулой. Ионы кобальта рассмотрены как двухвалентные (S=3/2), их весовой вклад равен 2/3, значение g-фактора принято равным 2. Подробные примеры расчета эффективных магнитных моментов в смешанных железо-кобальтовых людвигитах приведены в работе [12].

Температурный ход намагниченности смешанного состава $Co_2 FeO_2 BO_3$ в сильном поле H = 50 кЭ для трех кристаллографических направлений приведен на рис. 5. Хорошо видно, что, как и в случае $Co_3O_2BO_3$, намагниченность в направлении bзначительно превышает обе другие. По величине намагниченность в направлении в приблизительно вдвое меньше аналогичной величины в исходном Со₃О₂ВО₃. Следующее, что бросается в глаза, это высокий пик намагниченности при T = 115 К в направлении а. Ранее было совершенно неясно, почему этот пик практически не виден на температурных зависимостях намагниченности и восприимчивости Fe₃O₂BO₃ [5,10] и Co₂FeO₂BO₃ [11], хотя и теплоемкость, и эффект Мессбауэра, и нейтронная дифракция ярко свидетельствуют о начале магнитного упорядочения в окрестности T = 110 К. Данное исследование, выполненное на ориентированном образце, ясно показало, что соответствующий пик на зависимости M(T) для $Co_2FeO_2BO_3$ можно отчетливо увидеть, только проводя измерения при магнитном поле, направленном вдоль оси а, а не каком-либо случайном направлении в плоскости ab, как это делалось ранее для Fe₃O₂BO₃ и для Co₂FeO₂BO₃ [5,10,11].

Измеренные в направлении a FC- и ZFC-зависимости практически совпадают, если не принимать во внимание некоторое расхождение при температурах ниже 20 К. Острый пик в намагниченности при T_{N1} свидетельствует в пользу установления антиферромагнитного порядка. Это подтверждается и формой кривых намагничивания — близкой к линейной при всех температурах (рис. 6a). На рис. 66, e показаны кривые намагничивания в двух других направлениях, b и c. Хорошо видно явное преобладание намагниченности в направлении b по величине, подтвер-

Рис. 5. Температурные зависимости намагниченности Co₂FeO₂BO₃ в магнитном поле 50 кЭ: *a* — магнитное поле в направлении *a*; *б* — магнитное поле в направлении *b*; *в* — температурные зависимости намагниченности, полученные при охлаждении в магнитном поле (FC-кривые) для трех кристаллографических направлений *a*, *b* и *c*

ждающее, что направление b является легкой осью намагничивания. В направлении c кривые намагничивания линейны при T = 130 К и T = 90 К. При более низких температурах на кривой намагничивания виден перегиб, связанный, возможно, с небольшим отклонением от точной ориентации образца относительно направления магнитного поля.

Сравнить магнитные параметры Со₃О₂ВО₃ и

Рис.6. Изотермы намагничивания $C_{02}FeO_2BO_3$: a — магнитное поле направлено вдоль оси a; б — магнитное поле направлено вдоль оси b; e — магнитное поле направлено вдоль оси c

Со₂FeO₂BO₃ в магнитоупорядоченном состоянии можно на основе данных табл. 6. Видно, что при замещении части ионов кобальта ионами железа происходит значительное уменьшение магнитного момента и что в случае обоих соединений намагниченность представляет собой наложение ферромагнитной и линейной по полю (антиферромагнитной) компонент. Для ферромагнитной компоненты легким направлением намагничивания является кристаллографическое направление b. Предположительно ан-

Соединение	Направление	$M_0,\mu_B/$ ион	H_C (2 К), кЭ	$\chi_{AF}~(2~{ m K}),~{ m Fc}\cdot{ m cm}^3/{ m k}\Im\cdot{ m f}$
$C_{03}O_2BO_3$	b	0.91	23	0.07
	С	—	—	0.12
$\mathrm{C}_{02}\mathrm{FeO}_2\mathrm{BO}_3$	a	_	_	0.11
	b	0.19	> 90	0.07
	c	—	—	0.10

Таблица 6. Магнитные параметры кристаллов C₀₃O₂BO₃ и C₀₂FeO₂BO₃ в магнитоупорядоченном состоянии

Рис.7. Температурные зависимости коэрцитивного поля. Для $Co_2FeO_2BO_3$ при T=15 К и ниже коэрцитивное поле превышает 50 кЭ, что отмечено на рисунке штриховой линией

тиферромагнитный вклад практически изотропен. Соответствующая ему антиферромагнитная восприимчивость $\chi_{AF} \approx 0.1 \ {\rm Fc} \cdot {\rm cm}^3/{\rm k} \Theta \cdot {\rm r}$ для всех направлений и смешанный людвигит Co₂FeO₂BO₃ является необычно магнитожестким. При температурах ниже 15 К максимального доступного поля в 50 к Θ оказалось недостаточно для перемагничивания образца (верхние прямые линии намагничивания на рис. 6, полученные при T = 5 К и T = 15 К). Сравнительные графики зависимостей коэрцитивного поля от температуры для исходного и смешанного людвигитов приведены на рис. 7.

В парамагнитном состоянии смешанный состав $C_{02}FeO_2BO_3$ аналогично своему прототипу $C_{03}O_2BO_3$ демонстрирует резкое различие значений температуры Вейсса в зависимости от направления намагничивания (рис. 8). Для направления b эта температура положительна, для направлений a и

1169

Рис.8. Температурные зависимости обратной магнитной восприимчивости монокристалла Co₂FeO₂BO₃, полученные для трех кристаллографических направлений *a*, *b* и *c*. Напряженность магнитного поля 50 кЭ. Прямые линии показывают аппроксимацию высокотемпературной части графика в соответствии с законом Кюри – Вейсса

с — отрицательна. В направлении с температура θ_c = -387 К очень велика по модулю, что указывает на сильные антиферромагнитные взаимодействия.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенные в настоящей работе исследования рентгеновской дифракции для Co₂FeO₂BO₃ подтвердили полученные ранее данные о кристаллической структуре и ярко выраженном предпочтении в заселении железом позиций внутри триад первого типа, образованных ионами в позициях 4–2–4 [11,12]. Триады второго типа, образованные ионами в позициях 3–1–3, остаются за кобальтом.

⁹ ЖЭТФ, вып. 6 (12)

Расстояния между металлическими ионами в триадах 4-2-4 минимальные, следовательно, и обменные взаимодействия внутри этих триад наиболее сильные. Мессбауэровские [9, 10] и нейтронографические [4] данные, относящиеся к родительскому составу Fe₃O₂BO₃, показывают, что магнитные моменты ионов железа, входящих в триады 4-2-4, упорядочиваются в первую очередь при $T_{N1} \approx 110$ К. В случае замещенного состава Co₂FeO₂BO₃ железо входит именно в позиции, принадлежащие триадам 4-2-4, температура первого магнитного перехода практически та же, что и для Fe₃O₂BO₃. Это заставляет предположить, что мы опять имеем дело с тем же самым поэтапным сценарием магнитного упорядочения, который реализуется в соединении Fe₃O₂BO₃. Причиной этого является ярко выраженное предпочтение в заселении железом триад 4-2-4 с минимальными межионными расстояниями. Остается, однако, важное расхождение магнитных данных, полученных в настоящей работе для Co₂FeO₂BO₃, и данных нейтронной дифракции, полученных в работе [4] для Fe₃O₂BO₃. И те, и другие эксперименты показывают начало первого магнитного перехода в обоих материалах вблизи T = 110 К. Но, согласно результатам работы [4], при T = 110 К магнитные моменты триад 4-2-4 в Fe₃O₂BO₃ упорядочиваются в кристаллографическом направлении b. Как видно из приведенных в настоящей работе магнитных данных, в смешанном $Co_2 FeO_2 BO_3$ при T = 110 К упорядочение устанавливается в направлении а. В случае обоих составов характер магнитного упорядочения при T = 110 K антиферромагнитный.

Эффективный магнитный момент ионов кобальта, найденный для $Co_3O_2BO_3$, очень близок к чисто спиновому значению. Это позволяет заключить, что преобладающим вкладом в полный магнитный момент ионов кобальта в $Co_3O_2BO_3$ является спиновая компонента. Значение среднего эффективного магнитного момента, приходящегося на один ион, для смешанного состава $Co_2FeO_2BO_3$ чуть больше, чем для незамещенного. Этот результат вполне ожидаем, так как, в основном, трехвалентный кобальт с S = 2 замещается трехвалентным железом с S = 5/2.

Главным результатом проведенных магнитных измерений может быть вывод о том, что исследуемые материалы чрезвычайно анизотропны. Магнитная анизотропия ярко проявляется уже в парамагнитном состоянии, что видно из резкого различия температур Вейсса в зависимости от направления магнитного поля. В замещенном составе $Co_2FeO_2BO_3$ отклонения от закона Кюри-Вейсса проявляются много выше точки магнитного упорядочения $T_{N1} = 110$ К (рис. 8), указывая на то, что вклад магнитных корреляций и тенденция к магнитному упорядочению в смешанном составе появляются уже при температурах выше 200 К. Величина намагниченности, измеренной в направлении b, как в магнитоупорядоченном, так и в парамагнитном состоянии превышает значения, полученные в направлениях a и c. Это справедливо как для исходного $Co_3O_2BO_3$, так и для замещенного $Co_2FeO_2BO_3$.

Судя по совокупности магнитных данных, исходный состав $Co_3O_2BO_3$ ниже $T_N = 42$ К является ферримагнетиком с нескомпенсированным магнитным моментом, лежащим в направлении b. Формульная единица Со₃О₂ВО₃ содержит два двухвалентных иона кобальта и один трехвалентный. При ферромагнитном упорядочении в насыщении это должно было дать 10µ_B на формульную единицу против 3.4µ_B, наблюдающихся реально. Зная, на основании данных рентгеновской дифракции, что в смешанном материале Co₂FeO₂BO₃ триады 3–1–3 остаются за кобальтом, мы видим приблизительно двукратное уменьшение магнитного момента в направлении в замещенном составе по сравнению с исходным (рис. 3 и рис. 7). Это дает основание сделать предположение о подобии магнитных подрешеток, образованных триадами 3–1–3 в Co₃O₂BO₃ и Co₂FeO₂BO₃.

Наличие двух магнитных переходов при T = = 70 К и T = 110 К в смешанном соединении Со₂FeO₂BO₃ с неизбежностью поднимает вопрос о том, что же происходит при этих температурах в магнитной системе рассматриваемого материала. Имеем ли мы дело с последовательным упорядочением двух магнитных систем в различных кристаллографических направлениях, или же так проявляют себя переориентационные переходы при изменении температуры? Достаточно богатый экспериментальный материал, касающийся крайнего состава Fe₃O₂BO₃, свидетельствует в пользу первого варианта. Об этом говорят данные эффекта Мессбауэра [9, 10], показывающие, что в интервале температур 70-110 К магнитные моменты ионов триад 3-1-3 не являются упорядоченными, дальний магнитный порядок во всем образце устанавливается только ниже T = 70 К. Результаты нейтронной дифракции для Fe₃O₂BO₃ [4] также указывают на поэтапное упорядочение в этом материале с ортогональностью магнитных моментов систем, упорядочивающихся при T = 110 К и T = 70 К. Остается предположить, что в рассматриваемом смешанном соединении Co₂FeO₂BO₃ мы, скорее всего, имеем дело с подобным сценарием магнитного поведения, когда магнитная система, образованная, в основном, ионами железа в триадах 4–2–4, антиферромагнитно упорядочивается в кристаллографическом направлении a при $T_{N1} = 110$ K, а магнитная система ионов кобальта ферримагнитно упорядочивается в направлении b при $T_{N2} = 70$ K.

В магнитной системе железо-кобальтовых людвигитов возможно проявление целого ряда обменных взаимодействий. Во-первых, это прямое обменное взаимодействие между переходными ионами в позициях 2 и 4, находящимися друг от друга на расстоянии менее 3 Å. Во-вторых, это двойной обмен внутри триад 4-2-4 за счет «лишнего» электрона, так как эти триады формально образованы двумя трехвалентными и одним двухвалентным ионами. В-третьих, это косвенный обмен через ионы кислорода. В-четвертых, обменное взаимодействие между низкомерными подструктурами — рядами, образованными двумя типами триад. Иерархия этих обменных взаимодействий в настоящее время не установлена. Упрощенный расчет косвенных обменных взаимодействий в людвигитах, проведенный нами в работе [12], показал наличие вкладов противоположных знаков и, главное, разупорядочивающих фрустрирующих компонент. Эти фрустрирующие взаимодействия, согласно работе [12], особенно выражены для ионов в позициях 4, что может порождать наблюдаемую тенденцию к упорядочению разных магнитных подрешеток во взаимно перпендикулярных направлениях.

Не может не обратить на себя внимание и экстраординарный рост магнитной жесткости замещенного состава $C_{02}FeO_2BO_3$ по сравнению с исходным $C_{03}O_2BO_3$. Среди возможных причин этого эффекта увеличение концентрации центров пиннинга доменных границ и возможная неколлинеарность намагниченности различных магнитных подсистем в $C_{02}FeO_2BO_3$.

6. ЗАКЛЮЧЕНИЕ

В работе показано, что монокристаллические людвигиты $Co_3O_2BO_3$ и $Co_2FeO_2BO_3$ являются материалами с высокой степенью магнитной анизотропии. Ранее было известно, что кристаллографическое направление *с* является трудной осью намагничивания [1], но вопрос о магнитной анизотропии в плоскости *ab* не поднимался. Магнитные измерения проводились на кристаллах со случайной ориентацией магнитного поля в плоскости *ab* или на порошках. Вследствие этого переход в антиферромагнитное состояние при $T_{N1} \approx 110$ К, явно видный из мессбауэровских экспериментов и нейтронной дифракции, практически никак не проявлял себя в магнитных измерениях. Эта проблема оставалась неразрешенной в течение ряда лет. В данной работе с помощью измерений на ориентированных образцах показано, что в Co₃O₂BO₃ и Co₂FeO₂BO₃ существует значительная анизотропия в плоскости *ab*. Кристаллографическое направление *b* — легкая ось намагничивания. В этом направлении, как в Co₃O₂BO₃, так и в Co₂FeO₂BO₃ магнитное упорядочение, по-видимому, ферримагнитное.

Смешанный состав $Co_2FeO_2BO_3$ проявляет те же две характерные температуры магнитного упорядочения, что и $Fe_3O_2BO_3$, но не $Co_3O_2BO_3$, несмотря на большую концентрацию кобальта, чем железа. Температура первого магнитного перехода составляет примерно 110 К. Мессбауэровские и нейтронографические данные для $Fe_3O_2BO_3$ показали, что при этой температуре упорядочиваются магнитные моменты ионов в триадах 4–2–4. В то же время, согласно данным рентгеновской дифракции, приведенным в настоящей работе, в смешанном соединении $Co_2FeO_2BO_3$ ионы железа с ярко выраженным предпочтением заполняют именно эти позиции, что и объясняет подобие магнитного поведения $Co_2FeO_2BO_3$ и $Fe_3O_2BO_3$.

Природа магнитных переходов в Co₂FeO₂BO₃ на данный момент до конца не выяснена. Согласно нейтронографическим данным работы [4] в Fe₃O₂BO₃, магнитные моменты ионов в триадах 4–2–4 и 3–1–3 упорядочиваются ортогонально при температурах соответственно 110 К и 70 К. Это склоняет к предположению о том, что сценарий магнитного упорядочения в смешанном соединении Co₂FeO₂BO₃ такой же. Однако, согласно нашим данным, антиферромагнитное упорядочение в Co₂FeO₂BO₃ при T = 110 К устанавливается в кристаллографическом направлении a, а не b, как это происходит в исходном Fe₃O₂BO₃. Кроме того, не исключена и возможность спин-переориентационных переходов.

Таким образом, картина магнитных взаимодействий в железо-кобальтовых людвигитах является чрезвычайно сложной и к настоящему времени до конца не понятой. Для дальнейшего продвижения в изучении магнитной структуры незамещенных и смешанных составов остро необходимы данные нейтронной дифракции при различных температурах.

Работа выполнена при финансовой поддержке РФФИ (грант № 09-02-00171-а), Роснауки (Президентский грант МК-5632.2010.2), а также в рамках программы «Сильные электронные корреляции» департамента физических исследований РАН.

ЛИТЕРАТУРА

- N. V. Kazak, N. B. Ivanova, V. V. Rudenko et al., Sol. St. Phen. 152–153, 104 (2009).
- Г. А. Петраковский, Л. Н. Безматерных, Д. А. Великанов и др., ФТТ 51, 1958 (2009).
- D. C. Freitas, M. A. Continentino, R. B. Guimaraes et al., Phys. Rev. B 77, 184422 (2008).
- F. Bordet and E. Suard, Phys. Rev. B 79, 144408 (2009).
- R. B. Guimaraes, M. Mir, J. C. Fernandes et al., Phys. Rev. B 60, 6617 (1999).
- R. Norrestam, M. Kritikos, K. Nielsen et al., Sol. St. Chem. 111, 217 (1994).

- F. S. Sarrat, R. B. Guimaraes, M. A. Continentino et al., Phys. Rev. B 71, 224413 (2005).
- 8. R. Norrestam, Z. Kristallogr. 189, 1 (1989).
- J. J. Larrea, D. R. Sanchez, F. J. Litterst et al., Hyperf. Inter. 161, 237 (2005).
- A. P. Douvalis, A. Moukarika, T. Bakas et al., J. Phys.: Condens. Matter 14, 3303 (2002).
- D. C. Freitas, M. A. Continentino, R. B. Guimaraes et al., Phys. Rev. B 79, 134437 (2009).
- 12. N. V. Kazak, N. B. Ivanova, O. A. Bayukov et al., J. Magn. Magn. Mater. 323, 521 (2011).
- 13. Н. Б. Иванова, А. Д. Васильев, Д. А. Великанов и др., ФТТ 49, 618 (2007).
- 14. J. Bartolomé, A. Arauzo, N. V. Kazak et al., Phys. Rev. B 83, 144426 (2011).