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A SIMPLE THEORY OF CONDENSATIONS. Rabinovih *Reeived Otober 25, 2010A simple assumption of an emergene in gas of small atomi lusters onsisting of  partiles eah leads toa phase separation (�rst-order transition). It reveals itself by the emergene of a �forbidden� density rangestarting at a ertain temperature. De�ning this latter value as the ritial temperature predits the existeneof an interval with the anomalous heat apaity behavior p / �T�1=. The value  = 13 suggested in theliterature yields the heat apaity exponent � = 0:077.1. INTRODUCTIONThe theory of gas�liquid ondensation is probablythe most famous unsolved problem in lassial statis-tial mehanis [1℄. Numerous attempts to attak theproblem have been made during the last hundred years.They were based on a wide range of di�erent teh-niques, from umulant expansion to �eld theory me-thods of phase transitions [2℄. A onsiderable step inthis diretion was made by the luster (droplet) theoryof Fisher [3℄. This theory predits an essential singu-larity of the free energy at the ondensation point.A simple model of ondensation that opens theway to the appearane of a ritial point and the or-responding phase separation is suggested here. Thismodel reveals the basi desirable features of the on-densation and allows a new and self-onsistent de�ni-tion of the ritial point. Moreover, it identi�es thefamous heat apaity singularity and explains it up tothe alulation of the divergeny exponent in an exel-lent aordane with the measured data.Isolated lusters of atoms and moleules have beenobserved in moleular beams experimentally and stu-died theoretially [4℄. Stability of suh lusters has alsobeen studied in a liquid-like environment in [5℄. It wasshown there that the loally preferred struture of theLennard�Jones liquid is an iosahedron (13 atoms), andthat the liquid-like environment only slightly reduesits relative stability.Sattering experiments an also be regarded as anadditional indiret argument in favor of lustering inliquids. For example, the argon radial distribution*E-mail: shaulr�orange.net.il, Israel

funtion [6℄ shows neither temperature nor density de-pendene of the absissa of its �rst maximum, whihmeans that the internulear distanes in solid, liquid,and gaseous argon are inherent harateristis of thematerial. In other words, this phase independene anbe attributed to the persistene of small dense lusters.A more detailed study of experimental evidene infavor of the existene of relatively stable small atomilusters will be published elsewhere [7℄.2. BASIC ASSUMPTIONBased on the foregoing, it is possible to formulatethe following basi assumption: elementary partiles ofa gas (atoms or moleules) form small, relatively stablelusters onsisting of  partiles eah. Their onentra-tion is a funtion of state. It then immediately followsthat the gas should be regarded as (at least) a two-om-ponent system (see the Figure).The ground state of the system under onsiderationis expeted to be a full separation as the energetiallypreferable on�guration (we do not address those spe-ial ases where geometry allows pakings denser thanthe FCC or HCP ones). On the other hand, at hightemperature, the system remains a mixture of atomsand lusters. Hene, separation into two phases oursat a �nite temperature.This observation helps us answer a very naturalquestion: why do we suppose lusters of only one size toform or, at least, to be stable. Unfortunately, we do notknow an a priori reason for this. On the other hand,as we see, the existene of lusters of one size leadsto the separation. Therefore, the existene of lustersof any di�erent number of partiles would reveal itself733
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Gas as a binary mixturethrough multiple separations. To the best of our know-ledge, it is not the ase with simple liquids in Nature.This a posteriori argument therefore justi�es our basiassumption. Inidentally, the ompliated phase dia-grams of omplex liquids may be attributable to theexistene of lusters of di�erent sizes and nature.Suh a model reveals a universal behavior. Indeed, alose viinity of the ritial point (if it exists) has to begoverned by the universal properties of the two-om-ponent mixture separation, regardless of the spei�details of the inter-partile interation. That intera-tion a�ets the ritial parameters, i. e., physial oor-dinates, but not the system behavior.Our basi assumption plays a role analogous to thatof the Cooper pairing in an early version of the super-ondutivity theories: it is a mirosopi phenomenonunderlying the marosopi one. Knowledge of the ex-at (probably, quantum) mehanism of this lusteringis not ruial to understand the liquid�gas transition.3. FREE ENERGYWe start with the expression for the Helmholtz freeenergy for a two-omponent slightly nonideal gas mix-ture [8℄

�F = N1 ln��31e N1V �+N2 ln��32e N2V �+�EBN1++ 1V �B11N21 + 2B12N1N2 +B22N22 � : (1)Let N1 = n be the number of lusters ontaining  par-tiles eah; N2 = N�n, and N be the total number ofpartiles; � = (kBT )�1, as usual. As already noted, weassume that all the lusters have the same and onstantnumber of onstituent partiles, . The value�i =r2��mi ~is a thermal wave length and mi is a partile mass.EB stands for a luster binding energy and Bij denoteseond virial oe�ients. Thus,�F = n ln��31e nV �+ (N � n) ln��32e N � nV �++ �EBn+ 1V B(�;n); (2)and the internal energy isU = ��(�F )�� �V = 32 1� [N � (� 1)n℄ ++EBn+ 1V B0�(�;n); (3)whereB(�;n) � B11(�)n2 + 2B12(�)n(N � n) ++B22(�)(N � n)2: (4)Within the same approximation (a slightly nonidealmixture), the equation of state is [8℄P� = 1V [N � (� 1)n℄ + 1V 2B(�;n): (5)A dynami equilibrium on�guration of thetwo-omponent system is de�ned by the value of norresponding to the minimum of the total free energy.Simple di�erentiation of Eq. (2) leads to the mainequation for n:ln��31 nV ��  ln��32N � nV �++ �EB + 1V B0n(�;n) = 0; (6)or ln ��3x���  ln ��3�(1� x)� �� 32 ln + �EB + �B0x(�;x) = 0; (7)734



ÆÝÒÔ, òîì 139, âûï. 4, 2011 A simple theory of ondensationwhere� � NV ; x � nN ; � = �2; �1 = �1=2�;B(�;x) = B11x2 + 2B12x(1� x) +B22(1� x)2:One has to solve Eq. (7) analytially, i. e., to �ndx = x(�). Instead, we found an inverse funtion, � == �(x), where x 2 [0; 1=℄. This is easily done withthe aid of the Lambert W -funtion [9℄ (!-funtion inanother notation):�3� = � ax(1� x) �1=(�1) �� exp(�W  �� ax(1�x) �1=(�1) B0x(�;x)(�1)�3 !) ; (8)where a = �3=2 exp(�EB):In fat, equation of state (5) in the formP� = �[1� (� 1)x℄ + �2B(�;x) (9)and Eq. (8) de�ne P (�) using the parameter x.The most interesting feature of Eq. (8) is the exis-tene of �forbidden� values for �. This behavior is go-verned by the sign of the derivative B0x(�;x). Namely,if for a given � it remains negative for all permissib-le values of x, then � ranges over the entire positivesemi-axis. This is lear from the behavior of the Lam-bert funtion in the negative range [9℄. If the expres-sion hanges its sign to positive, an equilibrium solutionjumps from the W0 branh, ontinued from the posi-tive argument, to the W�1 one. Moreover, the positiverange of the expression has another �forbidden� regionbeause the absolute value of the Lambert funtion ne-gative argument annot exeed 1=e.4. THE CRITICAL POINTThe standard de�nition of a ritial point is��P�� �� = ��2P��2 �� = 0: (10)However, this de�nition is not appliable if a singulari-ty is expeted to be revealed at this point. Moreover,as we just saw, there exists some speial behavior ha-raterized by the sign of B0x(�;x). Thus, the very last(ritial) point before the � axis beomes �teared up� isde�ned by B0x(�;x) = 0. In fat, this equation de�nesritial parameters: the (inverse) ritial temperature� and the ritial onentration x, satisfying

[B12(�)� B22(�)℄ ++ x[B11(�)� 2B12(�) + 2B22(�)℄ = 0: (11)The left-hand side onsists of smooth monotoni fun-tions of � (seond virial oe�ients) and is linear in x,and hene attains its extremum at a limiting point. Itannot be x = 0 beause our physial system is sup-posed to be stable at small onentrations. Therefore,the only possibility is x = 1=, and Eq. (11) beomesB11(�)� B12(�) = 0: (12)The root � of this equation is the inverse ritial tem-perature. Naturally, these equations for x and � arestrongly depend on the approximation. A higher viralexpansion would ompliate Eq. (11), leading to diffe-rent values for the roots x and �.An important observation to make here is that theatom�luster (B12) and luster�luster (B22) intera-tions should be substantialy weak in omparison withthe interatomi one (B11), beause part of the gasenergy is aumulated in the luster bindings. Thisresults, in turn, in a �shallow� potential well with amuh shorter repulsive part and a relatively small inter-luster distane, and then in a muh higher density ofthe heavy omponent of the gas.This new de�nition of the ritial point,B0x(�;x) = 0, allows writing an expansion inthe viinity of this point,B0x(�;x) � B00x�(�;x)�� +B00xx(�;x)�x; (13)where �� � � � � and �x � x � x. Substitutingthis, x ! 1=, � ! �, and 1 � x ! �x in Eq. (7),we obtain the main eguation (7) in a lose viinity ofthe ritial point ln (�x)� A = �B00xx�x; (14)whereA � �B00x���+�EB�(�1) ln ��3��+��52� ln :This equation is solved as before with the aid of theLambert funtion and its solution is given by�x = eA exp��W ��1 �B00xxeA�� (15)witheA = ��3��1�1= 1�5=2 exp�1 ��EB + �B00x����� :This looks like an ultimate solution of the problem, inthe viinity of the ritial point at least, but it doesnot aount for the basi feature � the disontinuityof the �-sale � and it should be used very arefully.735



S. Rabinovih ÆÝÒÔ, òîì 139, âûï. 4, 20115. SPECIFIC HEATThe internal energy is given byUN = 32 1� (� 1)x� +EBx+ �B0�(�;x) (16)and the spei� heat, byV = ��T �UN �V = �kB�2 ��� �UN�� == kB �32 [1� (� 1)x℄� ��2B00���++ kB��32(� 1)� �EB � ��B00x��x0� : (17)Therefore, if we look for speial behavior of this quan-tity in the viinity of the ritial point, then x and x0�have to be examined. We also use the fat that on theritial isohore, V behaves like p in a seond-orderphase transition [10℄.We start with substituting Eq. (13) in Eq. (8) andthen note thatB00xx(�;x) = B11(�)� 2B12(�) + 2B22(�) == B12(�)� B22(�):This represents the luster�atom and luster�lusterinterations, whih are supposed to be very small.Hene, we an expet the existene of an interval whereB0x(�;x) � B00x�(�;x)�� andln ��3�� = ln � a=(�x) �1=(�1) ��W  � � a=(�x) �1=(�1) B00x�(�;x)(� 1)�3 ��! : (18)Further onsideration depends on the sign ofB00x�(�;x)��. In the homogeneous phase, it is nega-tive, and we are on theW0 branh with a small positiveargument. Here, it su�es to take W0(y) � y [9℄ and,subsequently,�3� = � a=(�x) �1=(�1) ��(1� � a=(�x) �1=(�1) B00x�(�;x)(� 1)�3 ��) :The relevant root behaves as� (�x)a= �1=(�1) � B00x�(�;x)(� 1)�3 ��or �x / (��)1�1= :

This means that the derivative �x=�� and thereforethe spei� heat show the famous dependenep / (��)�1= :In view of the previous suggestion,  = 13, this expo-nent beomes � � 0:077.An analogous alulation annot be done for a non-homogeneous phase beause an equilibrium solutiondoes not exist in this region.6. CONCLUSIONSA model that explains basi features of ondensa-tion is presented. The simple assumption of a relativestability of only one type of lusters statistially emer-ging in the gas immediately leads to a �rst-order phasetransition (phase separation) at some �nite tempera-ture. It is experimentally observed as a ondensationproess.We stress again that this model is by no means asimpli�ed version of Fisher's model.Mathematially, the ondensation reveals itself as aforbidden density (volume) region. The density jumpsfrom its gaseous value to the liquid one. No intermedia-te values are allowed. A orresponding region for theVan der Waals equation is the well-known S-shaped in-stability. It needs a speial auxiliary onstrution to betreated as a metastable state.This paper presents a new onept of the ritialpoint: it is a point of the density ontinuity failure.This de�nition oinides graphially with the old onebut it allows onstruting a onvenient expansion inthe lose viinity of the point under onsideration. Itdemonstrates the famous singularity with the exponent� � 0:077 that is in exellent agreement with knowndata.The author is grateful to A. Voronel andM. Shwartz for the valuable disussions. Finani-al support of A. Voronel during a part of this studyis kindly aknowledged. Extensive editorial e�orts ofE. Klep�sh made this manusript readable.REFERENCES1. A. Isihara, Statistial Physis, Aademi Press, NewYork (1971).2. J. S. Langer, Ann. Phys. 281, 941 (2000).736
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