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We discuss the strong-coupling regime of the nonlinear Landau-Zener problem occurring at coherent photo-
and magneto-association of ultracold atoms. We apply a variational approach to an exact third-order nonlinear
differential equation for the molecular state probability and construct an accurate approximation describing the
time dynamics of the coupled atom—molecule system. The resultant solution improves the accuracy of the previ-
ous approximation [22]. The obtained results reveal a remarkable observation that in the strong-coupling limit,
the resonance crossing is mostly governed by the nonlinearity, while the coherent atom—molecule oscillations
occurring soon after crossing the resonance are principally of a linear nature. This observation is supposedly
general for all nonlinear quantum systems having the same generic quadratic nonlinearity, due to the basic
attributes of the resonance crossing processes in such systems. The constructed approximation turns out to
have a larger applicability range than it was initially expected, covering the whole moderate-coupling regime for
which the proposed solution accurately describes all the main characteristics of the system evolution except the
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amplitude of the coherent atom—molecule oscillation, which is rather overestimated.

1. INTRODUCTION

In contrast to atomic Bose condensates [1,2],
achieving molecular condensates via standard laser
cooling techniques [3-5] is difficult since the laser coo-
ling freezes only the centre-of-mass motion of a quan-
tum object. In the case of atoms this is sufficient. But
molecules have rotational and vibrational degrees of
freedom. Hence, to create ultracold molecules, differ-
ent approaches should be used. Currently, there are
several approaches to this problem, among which the
most widely used techniques are optical laser photoas-
sociation [6, 7] and magnetic Feshbach resonance [8,9].

For theoretical discussion of the specific field con-
figurations applied within these techniques, the Lan-
dau—Zener model of linear resonance crossing (d:(t)
= 20pt, dp = const) at constant field amplitude
(U(t) = Uy = const) is particularly interesting [10, 11].
This is because to achieve a high conversion efficiency,
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a level-crossing field configuration must be used [12].
Then, as is well appreciated, the Landau—Zener model
inevitably emerges as a natural starting point for study-
ing such models. For this reason, this model has been a
subject of intensive investigations over the last decades
in different physical and mathematical contexts (see,
e.g., [13-22]).

In this paper, we re-examine the strong-coupling
regime of the resonance crossing in nonlinear systems
involving quadratic nonlinearities generic for all boson
field theories. We reveal the general property of such
processes that the time dynamics of the transition pro-
cess is effectively divided into two distinct regimes. We
find that in the strong-coupling limit, the time dynam-
ics of the atom—molecule conversion process consists in
crossing the resonance in an essentially nonlinear man-
ner, which is followed by atom—molecule coherent os-
cillations that are principally of a linear nature. This
separation of the two processes is rather unexpected
because of generic mixing of the corresponding terms
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in the governing equations. The general nature of this
effect is due to the basic attributes of the specific form
of the quadratic nonlinearity involved.

Applying a variational approach to an exact
third-order nonlinear differential equation obeyed
by the molecular state probability, we develop an
approximation that accurately describes the time
dynamics of the coupled atom-molecule system in
the strong-coupling limit. The formulas improve the
accuracy of the previous result in [22] by providing
the next approximation term. It turns out that the
proposed approximation is also applicable for the
intermediate regime of moderate coupling. In this
regime, the solution accurately describes all the main
characteristics of the system dynamics except the
amplitude of coherent atom—molecule oscillations
occurring at the end of the association process.

2. MATHEMATICAL TREATMENT

In the mean-field two-mode approximation, both
photoassociation and Feshbach resonance are described
by a basic semiclassical time-dependent nonlinear
two-state model [12, 23, 24]:
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where a; and as are the respective probability ampli-
tudes of atomic and molecular states, and «*» denotes
complex conjugation. Real functions U(t) and 0(t) are
the characteristics of the applied field. When the pho-
toassociation terminology is used, U(t) is referred to
as the Rabi frequency of the laser field, and &(¢) as
the frequency detuning modulation function. The time
derivative of this function, d(t), is the detuning of the
laser field frequency from that of transition from the
atomic state to the molecular one. Hereafter, an alpha-
betical subscript denotes differentiation with respect to
the corresponding variable. We note that system (1)
describes a lossless process, and hence the total num-
ber of particles is conserved:

a1 |* + 2|as|* = const = 1.

We also note that |aq|? € [0, 1], whereas |a2|> € [0,1/2].

Our previous experience (see, e. g., Refs. [21, 22, 25])
has revealed that the exact equation obeyed by the
quantity p = |az|? (conventionally referred to as the
molecular state probability) is quite helpful in treating
the nonlinear two-state problem in (1). Because the
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above equation plays a decisive role in the subsequent,
development, we briefly outline its derivation. First, it
can be verified by direct differentiation that the func-
tion p = |as|? satisfies the relations

* *
Pt = Qo Q2 + Ay =
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Next, straightforward differentiation shows that the
function
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satisfies the relation

2
3

Zy = —0 (5)
Finally, differentiation of Eq. (5) followed by some al-
gebraic transformations yields a nonlinear third-order
ordinary differential equation for the molecular state

probability in the form [25]
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It is worth stressing that the normalization condition
is incorporated in this equation.

The exact equation (6) for the molecular state pro-

bability is considerably simplified in the case of the

Landau—Zener model: in this case, Eq. (6) is written in
the factored form

(4t

dt
Here, we have passed to dimensionless time by the sca-
ling transformation t — t/+/8o and have introduced the
conventional Landau-Zener parameter A = UZ /dy. Be-
cause the initial set of equations (1) and, consequently,
the exact equation for the molecular state probability
(7) contain only one combined parameter A to charac-
terize the external field, we conclude that the applica-
tion of high laser field intensities UZ along with large
sweep rates 20 or, alternatively, small laser field inten-
sities U3 together with small sweep rates 20y results in
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the same final molecular population as ¢ — oo if the
ratio A = U§ /8o remains unchanged.

We assume that the system starts from the all-
atom state, such that the initial conditions for sys-
tem (1) are a1(—o0) = 1 and as(—o00) = 0, and hence
p(—o0) = 0. Then, to find the remaining initial con-
ditions for Eq. (7), we use Eqs. (2) and (3) that de-
fine the derivatives p; and py in terms of atomic and
molecular state probability amplitudes. Equation (2)
immediately implies that p;(—o0) = 0. As regards the
second derivative of p, we note that the factor §; in the
last term in the right-hand side of Eq. (3) diverges as
t — —oo. Hence, to define the correct limit of py as
t — —oo, we should take the asymptotic behavior of
the functions a;(t) and as(t) into account. This behav-
ior can be found from the governing set of equations
(1) using Picard’s successive approximations and tak-
ing the linear Landau—Zener solution as the appropri-
ate physical limit at vanishing nonlinearity. As a result,
we obtain py (—oo) = 0. Thus the initial conditions for
Eq. (7) become

p(—00) =0, pi(—00) =0, pu(—00)=0. (8)

Because we consider the strong-coupling regime,
we suppose that the Landau-Zener parameter is large
(equivalently, the field intensity UZ is large enough or
the detuning sweep across the resonance is sufficiently
slow, i.e., the sweep rate 20y is small). Hence, the sec-
ond term in the square brackets in Eq. (7) takes large
values in general. Because for large ¢ the last term of
the equation also takes a large value, we suppose that
the leading terms in Eq. (7) are the last two, and we
can therefore temporarily neglect the term py, thus ar-
riving at a limit nonlinear equation of the first order.
This equation admits two trivial stationary solutions,
p=1/2 and p = 1/6, and a nontrivial one.

Unfortunately, for the initial condition p(—oo0) = 0,
the nontrivial solution diverges as ¢ — oo [22], and
hence cannot be directly applied as a proper initial ap-
proximation. In Ref. [22], an appropriate initial ap-
proximation was constructed via combination of the
nontrivial solution with the trivial one p = 1/2. With
the constructed function as the zeroth-order appro-
ximation, the nonadiabatic transition probability has
been calculated, and it turned out that the final tran-
sition probability is expressed as a power of the Lan-
dau—Zener parameter [17,22], in contrast to the fami-
liar exponential prediction of the linear theory [10, 11].
However, this approach is rather complicated and does
not provide a clear treatment of the time dynamics of
the association process.

Here, we make a step forward by proposing a much
simpler treatment of the problem that gives compre-
hensive understanding of the whole time evolution of
the system. For this, we use an augmented limit equa-
tion that differs from that used in Ref. [22] by a term
of the form A/t, where A is a constant that is sup-
posed to be small compared with other involved terms
in order not to change the leading asymptotes. Due to
this modification of the limit equation, we manage to
construct a simple two-term approximation that accu-
rately describes the whole time dynamics of the system.
Importantly, the constructed solution reveals the main
characteristics of the process in a simple and natural
manner.

The augmented limit equation, involving a fitting
constant A, is written as

d 1 A
<ET> [—5(1—8p+12p2)+A +4t%p; = 0. (9)

This equation is integrated via transformation of the
independent variable followed by interchange of the de-
pendent and independent variables. This results in a
fourth-degree polynomial equation for the limit solu-
tion po(t):

A Co+popo —B1)(po — f)

a2 9(po — a1)*(po — a2)? 7 (10)

where (Y is the integration constant and

6A 1

A
1+ — 23Fw/5~ (11)
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For the initial condition pp(—o0) = 0, the integration
constant Cy = 0. We note that at A = 0, quartic
equation (10) reduces to a quadratic one because three
of the four parameters a; 2, (1,2 then become equal,
ay = 1 = P = 1/2. The solution of this quadratic
equation diverges as t — co. However, for positive A,
the solution of quartic equation (10) defines a bounded,
monotonically increasing function that tends to a finite
value less than 1/2 as t — oo (Fig. 1). This solution
has all the needed features to be used as an appropriate
initial approximation for solving the problem. We thus
see that the introduction of the parameter A is, indeed,
an essential point.

We consider the properties of the limit solution po(t)
defined by Eq. (10) with Cp = 0. The final value
po(00) is easily found by noting that the left-hand side
of Eq. (10) tends to zero as ¢ — oo. It is then seen
that either pg(c0) = 0 or po(oc0) = B1, or po(c0) = B
should hold. Because py(t) is a monotonically increas-
ing function with po(—o0) = 0 and because fy > 1/2,
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Fig.1. The limit solution po(t) for positive A > 0 and
a fixed A

we deduce that po(co) = f1. In a similar way, we find
that po(0) = . Thus,

1 1 6A
—_—— 1 —_— =
3 6\/ s Po(00)

To determine the appropriate value of the parame-
ter A, we substitute po(t, A) in the exact equation for
the molecular state probability (7) and examine the re-

mainde[‘
li = P' - A .
( “ ) tt ]

Obviously, the better the approximation pg is, the
smaller the remainder. We next note that if pg;; — A #
# 0, the remainder diverges at the resonance crossing
point £ = 0, while it is finite at all other points of time.
We can therefore eliminate this divergence by requiring
A to obey the equation

1

__\/QZ. (12)

po(0) 5

d 1 (13)

pott(0) — A =0. (14)
After some algebra, this equation is rewritten as
2 1—184/X
A=— |14+ ——FFFF+ ). 1
o < T 6A/>\)3/2> (15)

An approximate solution of the derived equation can
be constructed by Newton’s successive approximations
starting, e.g., from A = 0. It turns out that the first
approximation is already good enough. We therefore
set A = 0 in the right-hand side of the equation and
obtain A
A=—.
9\
This value of A leads to a good zeroth-order ap-
proximation po(t). Numerical simulations show that

for large A, this function accurately describes the time

(16)
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evolution of the system in the interval covering the pre-
history (up to the resonance point) and an interval af-
ter the resonance has been crossed. After that, how-
ever, pp misses several essential features of the process.
For instance, the coherent oscillations between atomic
and molecular populations that occur at a certain time
point after the resonance has been passed are not cap-
tured by this solution. Furthermore, the final transition
probability as t — oo predicted by pg is always lower
than what is shown by numerical solution of the exact
equation.

It is understood that the shortcomings of the sug-
gested limit solution are due to the singularity of the
procedure used to obtain it. Indeed, we have con-
structed py by neglecting the term p; in the square
brackets in Eq. (7), i.e., the two highest-order deriva-
tive terms of the equation. Certainly, when determi-
ning the appropriate value of A by imposing Eq. (14),
we have taken these terms into account (in fact, to
some extent). Yet, this was an indirect procedure and
we have convinced ourselves that it does not suffice.

Therefore, to improve the result, we need a cor-
rection that accounts for the second and third-order
derivatives of p. This is not a simple task because the
equation obeyed by the correction term u = p — pg is
still essentially nonlinear. Moreover, attempting to li-
nearize the exact Eq. (7) using pp as the zeroth-order
approximation and supposing the correction u to be
small compared with py (u < pg), we arrive at a com-
plicated equation with variable coefficients (depending
on pg), whose solution is not known.

We now introduce an approach that allows overcom-
ing these difficulties. Importantly, the resultant solu-
tion not only correctly accounts for the higher-order
derivate terms in the equation for the correction term
u but also takes the nonlinear terms into account to
a very good extent. The constructed solution displays
much more improved results. It both treats the oscilla-
tions accurately and fits the final transition probability
well. For the most part of the variation range of the
Landau—Zener parameter A > 1, the resultant graphs
are practically indistinguishable from the numerical so-
lution.

We consider a correction u defined as

p=po+u. (17)
This function obeys the exact equation
d 1
(% - ;) [uge + 4N(1 = 3po)u + pore —
— A—6\u?] +4t%u; =0. (18)
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Taking the initial conditions discussed here into ac-
count, we impose the conditions

07 ’u,t(—OO) = 07 U,tt(—OO) =0. (19)
Because the limit solution pg(t) is supposed to be a
good approximation, the correction u is expected to
be small. We therefore temporarily neglect the nonli-
near term —6Au? in Eq. (18), thus arriving at a linear
equation. Although we now have a linear equation,
there is only little progress since the solution of the de-
rived equation is not known in the general case of a
variable po(t). However, we note that in the case of
a constant py, we can construct the solution using the
scaling transformation

_ A

T AT 3

(20)
As aresult, we then obtain a linear Landau—Zener prob-
lem for v with the effective Landau—Zener parameter
Al = A(]. - 3p0)

This observation suggests the conjecture that the
exact solution of Eq. (18) can be approximated as

prz(M,t)

= ,
B 1pLZ(>\1700)

(21)
where prz(\i,t) is the solution of the linear Lan-
dau—Zener equation with an effective Landau—Zener
parameter Ap,

(

satisfying initial conditions (8). This solution is conve-
niently written in terms of the Kummer hypergeometric
functions [26] (see, e. g., [21]).

This proves to be a good conjecture. Numerical si-
mulations show that C, A1, and A can always be found
such that approximate solution (21) accurately fits the
numerical solution of Eq. (18).

Now, to derive analytic formulas for the fitting pa-
rameters C; and Ay, we substitute expression (21) in
the exact Eq. (18) and try to minimize the remainder

d 1
> (pLZtt +4)\1PLZ—2/\1)+4t2pLZt = 07 (22)

dt t

d 1 prz(A,t)
R={2 -2} Lan(1 = 3po) — A 222ALT
(dt t){ A =3po) = )
201 1
- 4+ — _A _
prz(Ai,00)  Ch (Poss )
P
~oac, Lzt } (23)
pLZ(/\l,OO)

by appropriately choosing these parameters.
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Fig.2. Behavior of the functions 4[A(1 — 3pg) — \1]
(dashed line) and pr.z(A1,t)/prz (A1, 00) (solid line)

The first term in the curly brackets is a product
of two functions. The function prz(A1,t)/prz(A1,00)
is an increasing (although oscillating) function that
starts from zero at ¢ = —oo and noticeably differs from
zero only for ¢ > 0. On the other hand, the function
4[A(1 — 3pp) — A1] is a monotonically decreasing func-
tion that tends to a large final value as t — oo since
A is a large parameter (Fig. 2). It is then understood
that this term is highly suppressed if we choose

)\1 =\ [1 — 3p0(oo)] - (24)

For A > 1, this gives

Al A —)\/2 (25)

and hence for large A, the value of A; becomes a large
negative parameter. Interestingly, this choice of A\;
leads to other relevant observations. First, it is known
that

Jim prz(Ar,t) =1 —exp(=mA1), (26)

and therefore, in the case of negative A;, the function
prz (A1, 00) increases exponentially with [A;]. Conse-
quently, with this choice of Ay, the second term in the
curly brackets in Eq. (23) is also essentially suppressed.
Second, in contrast to positive A1, for negative Ay, the
Landau—Zener function pr,z(\1,t) starts to noticeably
differ from zero not merely for nonnegative times ¢ > 0
but exclusively for those of the order of or larger than
v/—A1/2 (see Fig. 2). Hence, the first term in the curly
brackets in Eq. (23) is even smaller than it was initially
expected. Thus, the choice made in (24) essentially
suppresses the first two terms in Eq. (23).

Regarding the two last terms in Eq. (23), we should
minimize them with respect to the parameter C';. This
implies the condition
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(27)
Because the last term of this equation is proportional
to (large) A and prz(A\1,t)/prz(M\1,00) is an increasing
function of time, it is clear that the “worst” point is
t = co. Hence, we consider the minimization at t = oc.
This immediately leads to the following value for Ci:

Ci =+/AJ6X.

This result, together with relation (24), is of conside-
rable general importance. Indeed, we see that although
we use the solution py,z(A1,t) of a linear equation, the
parameters of this solution, A\; and Cy, are essentially
changed due to the nonlinear terms involved.

The obtained formulas (24) and (28) provide a
rather good approximation. As can be checked nume-
rically, solution (17), p = po + u, where pg is the ex-
act solution of the limit equation (9) and w is a linear
Landau—Zener function, describes the process qualita-
tively well. This solution can then be used as an ini-
tial approximation for linearization of the initial equa-
tion (7).

However, more elaborate approaches can be sug-
gested. For example, an immediate observation is that
if we try approximation (17), (21) without imposing
the initial restriction that the introduced parameter A
be already determined by Eq. (14), we can modify this
last equation such that the resultant value of A would
take the correction term u into account. Following this
approach leads to the formulas

(28)

A 1
1 1
4 o + CTIER (30)

These formulas define a fairly good approximation.
Indeed, starting already from A = 3, the produced
graphs (Fig. 3) are practically indistinguishable from
the numerical solution of the exact Eqs. (1). The
derived approximation notably improves the accuracy
of the previous approximation in Ref. [22]. However,
importantly, it is applicable far beyond the strong-
coupling limit and provides a sufficiently good descrip-
tion also for the intermediate regime of moderate field
intensities (or sweeping rates) down to A = 1 and even
slightly less (0.95 < A < 1) (Fig. 4). Although the am-
plitude of oscillations predicted in this regime differs
from that displayed by the numerical solution, it is seen
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Fig.3. Molecular state probability versus time at A = 4
(the dashed line is the approximate solution with pa-
rameters (16), (29), and (30), and the dotted line is the
limit solution). It is seen that in the strong-coupling
limit A > 1, the prehistory of the system and the reso-
nance crossing are basically defined by the limit solution
po, while the atom—molecule oscillations are described
by the correction u

05 ——— L - d - —
0.4
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0.1

0
-10 -5

Fig.4. The same as in Fig. 3 at A = 1. The limit solu-

tion po is small, and hence the “correction” u basically

defines the time evolution of the system in the regime
of moderate couplings A > 1

from Fig. 4 that the approximation correctly describes
many properties of the system time evolution including
the effective transition time, the final transition pro-
bability, and the period of atom—molecule oscillations.
This is, indeed, a rather unexpected result, especially
if we note that at moderate couplings A &~ 1...1.5, the
function po(t) is very far from the exact solution, as can
be seen from Fig. 4. An immediate conclusion following
from this result is that the time evolution of the system
in this regime is basically determined not by the limit
solution pg but by the “correction” u, which during our



KITD, Tom 139, BHm. 4, 2011

Strong-coupling regime of the nonlinear Landau—Zener problem ...

calculation was assumed to be small compared with the
limit solution.

We note in conclusion that the obtained formulas
show that the final probability of the molecular state
is given by the simple formula

p(o0) = B1 + Ch. (31)

Hence, the formula derived in Ref. [22] for the
strong-coupling limit A > 1 is modified to also include
the intermediate regime of moderate couplings A > 1
as follows:

1 V2 1\ 1 1
p(”)—5‘<?‘z>x+ﬁ~

1 0.2214 1

2 A 21

FEE (32)

Therefore, for the quadratic nonlinear interaction we
have discussed here, the final probability for the sys-
tem to stay in its initial all-atom state, |aj(00)|? =
= 1—-2p(0), is not given by an exponential as predicted
by the linear Landau—Zener theory [10, 11]. Instead, in
the strong-coupling limit, it is a linear function of the
sweep rate 29g ~ 1/\ if the leading order of the approx-
imation is discussed [17,22]. This linear dependence of
the nontransition probability on the sweep rate is also
confirmed by many-body calculations [18-20]. We fi-
nally note that formula (32) suggests the next approx-
imation term as 1/27\3.

To conclude this section, we discuss the relation of
the Landau—Zener model to contemporary physical ex-
periments. The ramping of an external magnetic field
across a Feshbach resonance is the most commonly
adopted scheme to form Feshbach molecules. A typ-
ical example is the 8°Rb experiment by Hodby and co-
workers at JILA [27], where a coherent formation of
Rbs molecules via sweeping the magnetic field across
the Feshbach resonance is realized. The magnetic field
is changed at a given linear sweep rate B, and the
molecule conversion efficiency is measured as a function
of the inverse sweep rate. The external field configura-
tion used in this experiment therefore corresponds to
the Landau—Zener model.

Another experiment that can be described by
the Landau—Zener model was performed by Xu and
coworkers at MIT [28]. In this experiment, a quan-
tum-degenerate gas of 10° cold sodium molecules has
been created. This was achieved with a fast mag-
netic field sweep through a Feshbach resonance, fol-
lowed by quick removal of the remnant atoms with re-
sonant light. This purification was necessary to avoid

heating and decay of the molecules via inelastic colli-
sion processes.

3. CONCLUSION

We have presented an analysis of a quadratically
nonlinear version of the Landau-Zener problem that
occurs in various physical situations, e.g., in photo-
association of an atomic Bose—Einstein condensate, in
controlling the scattering length of an atomic conden-
sate by means of a Feshbach resonance, in second-
harmonic generation, and generally in nonlinear field
theories involving a Hamiltonian with a 2:1 resonance.
Using an exact third-order nonlinear differential equa-
tion for the molecular state probability, we have de-
veloped an effective variational method for construct-
ing the approximate solution of the problem in the
strong-coupling limit corresponding to large values of
the Landau—Zener parameter, A > 1. In the case of
photoassociation, this implies that the intensity of the
applied laser field is large enough or, equivalently, the
sweep rate across the resonance is sufficiently slow.

We have shown that the approximation describing
time evolution of the molecular state probability can
be written as a sum of two distinct terms. In the
strong-coupling limit, the first term, being a solution
of a limit first-order nonlinear differential equation, ef-
fectively describes the process of molecule formation,
while the second one, being the scaled solution of the
linear Landau-Zener problem (but with a negative ef-
fective Landau—Zener parameter as long as the strong-
coupling limit of high field intensities or, equivalently,
slow sweeping rates are considered), describes the os-
cillation that occurs some time after the system has
passed through the resonance. From this, we can con-
clude that in the strong-coupling limit, the time dy-
namics of the atom—molecule conversion consists of the
essentially nonlinear process of resonance crossing fol-
lowed by atom—molecule coherent oscillations that are
principally linear in nature. The possibility of such a
decomposition is quite surprising because the Hamilto-
nian of the system is essentially nonlinear.

The constructed approximation describes the
molecule formation process with high accuracy. For
A > 3, the produced graphs are practically indis-
tinguishable from the exact numerical solution (see
Fig. 3). Interestingly, the approximation also works
rather well in the regime of moderate couplings down
to A = 1 (see Fig. 4) and slightly less, 0.95 < A < 1.
It correctly describes many properties of the system
time evolution, including the effective transition
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time, the final transition probability, and the period
of atom-molecule oscillations. The only noticeable
discrepancy is that the approximate solution overes-
timates the amplitude of the oscillations (the largest
deviation is observed at the points of maxima and
minima of the probability within the time interval
covering first several periods of oscillations). The
applicability of the proposed approximation to the
intermediate regime of moderate coupling is, indeed, a
rather unexpected result because at A ~ 1...1.5, the
limit solution pg(t) is very far from the exact solution;
hence, it is not the limit solution that mostly defines
the evolution of the system in this regime. Using the
constructed approximation, we can easily find the
main characteristics of the association process such as
the tunneling time, the frequency of the oscillations
of the transition probability that start soon after
crossing the resonance, as well as the final transition
probability to the molecular state. In particular, we
have confirmed that the nontransition probability in
the leading approximation order is a linear function of
the sweep rate. In addition, we have found that the
next approximation term is 1/27\3.

We finally note that the presented approach is not
restricted to the Landau—Zener model only. It can also
be generalized to other time-dependent level-crossing
models [29,30]. Also, it can be used in exploring
other nonlinear regimes beyond by the Landau—Zener
model [31]. Importantly, the developed approach
allows treating the extended version of the nonlinear
two-state state problem, when higher-order nonlineari-
ties involving functions of the transition probability are
added to the basic system (1). For example, one can
analyze the role of the inter-particle elastic scattering
described by Kerr-type cubic nonlinear terms [32].
Hence, the developed method may serve as a general
strategy for attacking analogous nonlinear two-state
problems involving the generic quadratic nonlinearity
as discussed here.
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