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STRONG-COUPLING REGIME OF THE NONLINEARLANDAU�ZENER PROBLEM FOR PHOTO- ANDMAGNETOASSOCIATION OF COLD ATOMSR. Sokhoyan a;b, H. Azizbekyan a, C. Leroy b, A. Ishkhanyan a*aInstitute for Physi
al Resear
h, National A
ademy of S
ien
es of Armenia0203, Ashtarak-2, ArmeniabInstitut Carnot de Bourgogne, UMR 5209 CNRS, Université de BourgogneBP 47870, 21078 Dijon, Fran
eRe
eived May 28, 2009Revised version O
tober 7, 2010We dis
uss the strong-
oupling regime of the nonlinear Landau�Zener problem o

urring at 
oherent photo-and magneto-asso
iation of ultra
old atoms. We apply a variational approa
h to an exa
t third-order nonlineardi�erential equation for the mole
ular state probability and 
onstru
t an a

urate approximation des
ribing thetime dynami
s of the 
oupled atom�mole
ule system. The resultant solution improves the a

ura
y of the previ-ous approximation [22℄. The obtained results reveal a remarkable observation that in the strong-
oupling limit,the resonan
e 
rossing is mostly governed by the nonlinearity, while the 
oherent atom�mole
ule os
illationso

urring soon after 
rossing the resonan
e are prin
ipally of a linear nature. This observation is supposedlygeneral for all nonlinear quantum systems having the same generi
 quadrati
 nonlinearity, due to the basi
attributes of the resonan
e 
rossing pro
esses in su
h systems. The 
onstru
ted approximation turns out tohave a larger appli
ability range than it was initially expe
ted, 
overing the whole moderate-
oupling regime forwhi
h the proposed solution a

urately des
ribes all the main 
hara
teristi
s of the system evolution ex
ept theamplitude of the 
oherent atom�mole
ule os
illation, whi
h is rather overestimated.1. INTRODUCTIONIn 
ontrast to atomi
 Bose 
ondensates [1; 2℄,a
hieving mole
ular 
ondensates via standard laser
ooling te
hniques [3�5℄ is di�
ult sin
e the laser 
oo-ling freezes only the 
entre-of-mass motion of a quan-tum obje
t. In the 
ase of atoms this is su�
ient. Butmole
ules have rotational and vibrational degrees offreedom. Hen
e, to 
reate ultra
old mole
ules, di�er-ent approa
hes should be used. Currently, there areseveral approa
hes to this problem, among whi
h themost widely used te
hniques are opti
al laser photoas-so
iation [6; 7℄ and magneti
 Feshba
h resonan
e [8; 9℄.For theoreti
al dis
ussion of the spe
i�
 �eld 
on-�gurations applied within these te
hniques, the Lan-dau�Zener model of linear resonan
e 
rossing (Æt(t) == 2Æ0t, Æ0 = 
onst) at 
onstant �eld amplitude(U(t) = U0 = 
onst) is parti
ularly interesting [10; 11℄.This is be
ause to a
hieve a high 
onversion e�
ien
y,*E-mail: aishkhanyan�gmail.
om

a level-
rossing �eld 
on�guration must be used [12℄.Then, as is well appre
iated, the Landau�Zener modelinevitably emerges as a natural starting point for study-ing su
h models. For this reason, this model has been asubje
t of intensive investigations over the last de
adesin di�erent physi
al and mathemati
al 
ontexts (see,e. g., [13�22℄).In this paper, we re-examine the strong-
ouplingregime of the resonan
e 
rossing in nonlinear systemsinvolving quadrati
 nonlinearities generi
 for all boson�eld theories. We reveal the general property of su
hpro
esses that the time dynami
s of the transition pro-
ess is e�e
tively divided into two distin
t regimes. We�nd that in the strong-
oupling limit, the time dynam-i
s of the atom�mole
ule 
onversion pro
ess 
onsists in
rossing the resonan
e in an essentially nonlinear man-ner, whi
h is followed by atom�mole
ule 
oherent os-
illations that are prin
ipally of a linear nature. Thisseparation of the two pro
esses is rather unexpe
tedbe
ause of generi
 mixing of the 
orresponding terms627
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t is due to the basi
 attributes of the spe
i�
 formof the quadrati
 nonlinearity involved.Applying a variational approa
h to an exa
tthird-order nonlinear di�erential equation obeyedby the mole
ular state probability, we develop anapproximation that a

urately des
ribes the timedynami
s of the 
oupled atom�mole
ule system inthe strong-
oupling limit. The formulas improve thea

ura
y of the previous result in [22℄ by providingthe next approximation term. It turns out that theproposed approximation is also appli
able for theintermediate regime of moderate 
oupling. In thisregime, the solution a

urately des
ribes all the main
hara
teristi
s of the system dynami
s ex
ept theamplitude of 
oherent atom�mole
ule os
illationso

urring at the end of the asso
iation pro
ess.2. MATHEMATICAL TREATMENTIn the mean-�eld two-mode approximation, bothphotoasso
iation and Feshba
h resonan
e are des
ribedby a basi
 semi
lassi
al time-dependent nonlineartwo-state model [12; 23; 24℄:ida1dt = U(t)e�iÆ(t)a�1a2;ida2dt = U(t)2 eiÆ(t)a1a1; (1)where a1 and a2 are the respe
tive probability ampli-tudes of atomi
 and mole
ular states, and ��� denotes
omplex 
onjugation. Real fun
tions U(t) and Æ(t) arethe 
hara
teristi
s of the applied �eld. When the pho-toasso
iation terminology is used, U(t) is referred toas the Rabi frequen
y of the laser �eld, and Æ(t) asthe frequen
y detuning modulation fun
tion. The timederivative of this fun
tion, Æt(t), is the detuning of thelaser �eld frequen
y from that of transition from theatomi
 state to the mole
ular one. Hereafter, an alpha-beti
al subs
ript denotes di�erentiation with respe
t tothe 
orresponding variable. We note that system (1)des
ribes a lossless pro
ess, and hen
e the total num-ber of parti
les is 
onserved:ja1j2 + 2ja2j2 = 
onst = 1:We also note that ja1j2 2 [0; 1℄, whereas ja2j2 2 [0; 1=2℄.Our previous experien
e (see, e. g., Refs. [21; 22; 25℄)has revealed that the exa
t equation obeyed by thequantity p = ja2j2 (
onventionally referred to as themole
ular state probability) is quite helpful in treatingthe nonlinear two-state problem in (1). Be
ause the

above equation plays a de
isive role in the subsequentdevelopment, we brie�y outline its derivation. First, it
an be veri�ed by dire
t di�erentiation that the fun
-tion p = ja2j2 satis�es the relationspt = a�2ta2 + a�2a2t == U2i �a21a�2eiÆ(t) � a�21 a2e�iÆ(t)� ; (2)ptt = UtU pt + U22 (1� 8p+ 12p2) ++ U2 Æt �a21a�2eiÆ(t) + a�21 a2e�iÆ(t)� : (3)Next, straightforward di�erentiation shows that thefun
tion Z = a21a�2eiÆ(t) + a�21 a2e�iÆ(t) (4)satis�es the relationZt = �Æt 2ptU : (5)Finally, di�erentiation of Eq. (5) followed by some al-gebrai
 transformations yields a nonlinear third-orderordinary di�erential equation for the mole
ular stateprobability in the form [25℄pttt ��ÆttÆt + 2UtU � ptt ++�Æ2t+4U2(1�3p)��UtU �t+UtU �ÆttÆt +UtU �� pt++ U22 �ÆttÆt � UtU � (1� 8p+ 12p2) = 0: (6)It is worth stressing that the normalization 
onditionis in
orporated in this equation.The exa
t equation (6) for the mole
ular state pro-bability is 
onsiderably simpli�ed in the 
ase of theLandau�Zener model: in this 
ase, Eq. (6) is written inthe fa
tored form� ddt � 1t��ptt � �2 (1� 8p+ 12p2)�+ 4t2pt = 0: (7)Here, we have passed to dimensionless time by the s
a-ling transformation t! t=pÆ0 and have introdu
ed the
onventional Landau�Zener parameter � = U20 =Æ0. Be-
ause the initial set of equations (1) and, 
onsequently,the exa
t equation for the mole
ular state probability(7) 
ontain only one 
ombined parameter � to 
hara
-terize the external �eld, we 
on
lude that the appli
a-tion of high laser �eld intensities U20 along with largesweep rates 2Æ0 or, alternatively, small laser �eld inten-sities U20 together with small sweep rates 2Æ0 results in628
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oupling regime of the nonlinear Landau�Zener problem : : :the same �nal mole
ular population as t ! 1 if theratio � = U20 =Æ0 remains un
hanged.We assume that the system starts from the all-atom state, su
h that the initial 
onditions for sys-tem (1) are a1(�1) = 1 and a2(�1) = 0, and hen
ep(�1) = 0. Then, to �nd the remaining initial 
on-ditions for Eq. (7), we use Eqs. (2) and (3) that de-�ne the derivatives pt and ptt in terms of atomi
 andmole
ular state probability amplitudes. Equation (2)immediately implies that pt(�1) = 0. As regards these
ond derivative of p, we note that the fa
tor Æt in thelast term in the right-hand side of Eq. (3) diverges ast ! �1. Hen
e, to de�ne the 
orre
t limit of ptt ast ! �1, we should take the asymptoti
 behavior ofthe fun
tions a1(t) and a2(t) into a

ount. This behav-ior 
an be found from the governing set of equations(1) using Pi
ard's su

essive approximations and tak-ing the linear Landau�Zener solution as the appropri-ate physi
al limit at vanishing nonlinearity. As a result,we obtain ptt(�1) = 0. Thus the initial 
onditions forEq. (7) be
omep(�1) = 0; pt(�1) = 0; ptt(�1) = 0: (8)Be
ause we 
onsider the strong-
oupling regime,we suppose that the Landau�Zener parameter is large(equivalently, the �eld intensity U20 is large enough orthe detuning sweep a
ross the resonan
e is su�
ientlyslow, i. e., the sweep rate 2Æ0 is small). Hen
e, the se
-ond term in the square bra
kets in Eq. (7) takes largevalues in general. Be
ause for large t the last term ofthe equation also takes a large value, we suppose thatthe leading terms in Eq. (7) are the last two, and we
an therefore temporarily negle
t the term ptt, thus ar-riving at a limit nonlinear equation of the �rst order.This equation admits two trivial stationary solutions,p = 1=2 and p = 1=6, and a nontrivial one.Unfortunately, for the initial 
ondition p(�1) = 0,the nontrivial solution diverges as t ! 1 [22℄, andhen
e 
annot be dire
tly applied as a proper initial ap-proximation. In Ref. [22℄, an appropriate initial ap-proximation was 
onstru
ted via 
ombination of thenontrivial solution with the trivial one p = 1=2. Withthe 
onstru
ted fun
tion as the zeroth-order appro-ximation, the nonadiabati
 transition probability hasbeen 
al
ulated, and it turned out that the �nal tran-sition probability is expressed as a power of the Lan-dau�Zener parameter [17; 22℄, in 
ontrast to the fami-liar exponential predi
tion of the linear theory [10; 11℄.However, this approa
h is rather 
ompli
ated and doesnot provide a 
lear treatment of the time dynami
s ofthe asso
iation pro
ess.

Here, we make a step forward by proposing a mu
hsimpler treatment of the problem that gives 
ompre-hensive understanding of the whole time evolution ofthe system. For this, we use an augmented limit equa-tion that di�ers from that used in Ref. [22℄ by a termof the form A=t, where A is a 
onstant that is sup-posed to be small 
ompared with other involved termsin order not to 
hange the leading asymptotes. Due tothis modi�
ation of the limit equation, we manage to
onstru
t a simple two-term approximation that a

u-rately des
ribes the whole time dynami
s of the system.Importantly, the 
onstru
ted solution reveals the main
hara
teristi
s of the pro
ess in a simple and naturalmanner.The augmented limit equation, involving a �tting
onstant A, is written as� ddt�1t����2 (1�8p+12p2)+A�+4t2pt = 0: (9)This equation is integrated via transformation of theindependent variable followed by inter
hange of the de-pendent and independent variables. This results in afourth-degree polynomial equation for the limit solu-tion p0(t): �4t2 = C0 + p0(p0 � �1)(p0 � �2)9(p0 � �1)2(p0 � �2)2 ; (10)where C0 is the integration 
onstant and�1;2 = 13 � 16r1 + 6A� ; �1;2 = 12 �r A2� : (11)For the initial 
ondition p0(�1) = 0, the integration
onstant C0 = 0. We note that at A = 0, quarti
equation (10) redu
es to a quadrati
 one be
ause threeof the four parameters �1;2, �1;2 then be
ome equal,�2 = �1 = �2 = 1=2. The solution of this quadrati
equation diverges as t ! 1. However, for positive A,the solution of quarti
 equation (10) de�nes a bounded,monotoni
ally in
reasing fun
tion that tends to a �nitevalue less than 1/2 as t ! 1 (Fig. 1). This solutionhas all the needed features to be used as an appropriateinitial approximation for solving the problem. We thussee that the introdu
tion of the parameter A is, indeed,an essential point.We 
onsider the properties of the limit solution p0(t)de�ned by Eq. (10) with C0 = 0. The �nal valuep0(1) is easily found by noting that the left-hand sideof Eq. (10) tends to zero as t ! 1. It is then seenthat either p0(1) = 0 or p0(1) = �1, or p0(1) = �2should hold. Be
ause p0(t) is a monotoni
ally in
reas-ing fun
tion with p0(�1) = 0 and be
ause �2 > 1=2,629
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Fig. 1. The limit solution p0(t) for positive A > 0 anda �xed �we dedu
e that p0(1) = �1. In a similar way, we �ndthat p0(0) = �1. Thus,p0(0) = 13�16r1+6A� ; p0(1) = 12�r A2� : (12)To determine the appropriate value of the parame-ter A, we substitute p0(t; A) in the exa
t equation forthe mole
ular state probability (7) and examine the re-mainder R = � ddt � 1t� [p0tt �A℄: (13)Obviously, the better the approximation p0 is, thesmaller the remainder. We next note that if p0tt�A 6=6= 0, the remainder diverges at the resonan
e 
rossingpoint t = 0, while it is �nite at all other points of time.We 
an therefore eliminate this divergen
e by requiringA to obey the equationp0tt(0)�A = 0: (14)After some algebra, this equation is rewritten asA = 29� �1 + 1� 18A=�(1 + 6A=�)3=2� : (15)An approximate solution of the derived equation 
anbe 
onstru
ted by Newton's su

essive approximationsstarting, e. g., from A = 0. It turns out that the �rstapproximation is already good enough. We thereforeset A = 0 in the right-hand side of the equation andobtain A = 49� : (16)This value of A leads to a good zeroth-order ap-proximation p0(t). Numeri
al simulations show thatfor large �, this fun
tion a

urately des
ribes the time

evolution of the system in the interval 
overing the pre-history (up to the resonan
e point) and an interval af-ter the resonan
e has been 
rossed. After that, how-ever, p0 misses several essential features of the pro
ess.For instan
e, the 
oherent os
illations between atomi
and mole
ular populations that o

ur at a 
ertain timepoint after the resonan
e has been passed are not 
ap-tured by this solution. Furthermore, the �nal transitionprobability as t ! 1 predi
ted by p0 is always lowerthan what is shown by numeri
al solution of the exa
tequation.It is understood that the short
omings of the sug-gested limit solution are due to the singularity of thepro
edure used to obtain it. Indeed, we have 
on-stru
ted p0 by negle
ting the term ptt in the squarebra
kets in Eq. (7), i. e., the two highest-order deriva-tive terms of the equation. Certainly, when determi-ning the appropriate value of A by imposing Eq. (14),we have taken these terms into a

ount (in fa
t, tosome extent). Yet, this was an indire
t pro
edure andwe have 
onvin
ed ourselves that it does not su�
e.Therefore, to improve the result, we need a 
or-re
tion that a

ounts for the se
ond and third-orderderivatives of p. This is not a simple task be
ause theequation obeyed by the 
orre
tion term u � p � p0 isstill essentially nonlinear. Moreover, attempting to li-nearize the exa
t Eq. (7) using p0 as the zeroth-orderapproximation and supposing the 
orre
tion u to besmall 
ompared with p0 (u� p0), we arrive at a 
om-pli
ated equation with variable 
oe�
ients (dependingon p0), whose solution is not known.We now introdu
e an approa
h that allows over
om-ing these di�
ulties. Importantly, the resultant solu-tion not only 
orre
tly a

ounts for the higher-orderderivate terms in the equation for the 
orre
tion termu but also takes the nonlinear terms into a

ount toa very good extent. The 
onstru
ted solution displaysmu
h more improved results. It both treats the os
illa-tions a

urately and �ts the �nal transition probabilitywell. For the most part of the variation range of theLandau�Zener parameter � � 1, the resultant graphsare pra
ti
ally indistinguishable from the numeri
al so-lution.We 
onsider a 
orre
tion u de�ned asp = p0 + u: (17)This fun
tion obeys the exa
t equation� ddt � 1t��utt + 4�(1� 3p0)u+ p0tt �� A� 6�u2�+ 4t2ut = 0: (18)630
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oupling regime of the nonlinear Landau�Zener problem : : :Taking the initial 
onditions dis
ussed here into a
-
ount, we impose the 
onditionsu(�1) = 0; ut(�1) = 0; utt(�1) = 0: (19)Be
ause the limit solution p0(t) is supposed to be agood approximation, the 
orre
tion u is expe
ted tobe small. We therefore temporarily negle
t the nonli-near term �6�u2 in Eq. (18), thus arriving at a linearequation. Although we now have a linear equation,there is only little progress sin
e the solution of the de-rived equation is not known in the general 
ase of avariable p0(t). However, we note that in the 
ase ofa 
onstant p0, we 
an 
onstru
t the solution using thes
aling transformationu = A2�(1� 3p0) �: (20)As a result, we then obtain a linear Landau�Zener prob-lem for � with the e�e
tive Landau�Zener parameter�1 = �(1� 3p0).This observation suggests the 
onje
ture that theexa
t solution of Eq. (18) 
an be approximated asu = C1 pLZ(�1; t)pLZ(�1;1) ; (21)where pLZ(�1; t) is the solution of the linear Lan-dau�Zener equation with an e�e
tive Landau�Zenerparameter �1,� ddt�1t� (pLZtt+4�1pLZ�2�1)+4t2pLZt = 0; (22)satisfying initial 
onditions (8). This solution is 
onve-niently written in terms of the Kummer hypergeometri
fun
tions [26℄ (see, e. g., [21℄).This proves to be a good 
onje
ture. Numeri
al si-mulations show that C1, �1, and A 
an always be foundsu
h that approximate solution (21) a

urately �ts thenumeri
al solution of Eq. (18).Now, to derive analyti
 formulas for the �tting pa-rameters C1 and �1, we substitute expression (21) inthe exa
t Eq. (18) and try to minimize the remainderR = � ddt � 1t��4 [�(1� 3p0)� �1℄ pLZ(�1; t)pLZ(�1;1) ++ 2�1pLZ(�1;1) + 1C1 (p0tt �A)�� 6�C1 p2LZ(�1; t)p2LZ(�1;1)� (23)by appropriately 
hoosing these parameters.
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2Fig. 2. Behavior of the fun
tions 4[�(1 � 3p0) � �1℄(dashed line) and pLZ(�1; t)=pLZ(�1;1) (solid line)The �rst term in the 
urly bra
kets is a produ
tof two fun
tions. The fun
tion pLZ(�1; t)=pLZ(�1;1)is an in
reasing (although os
illating) fun
tion thatstarts from zero at t = �1 and noti
eably di�ers fromzero only for t > 0. On the other hand, the fun
tion4[�(1 � 3p0) � �1℄ is a monotoni
ally de
reasing fun
-tion that tends to a large �nal value as t ! 1 sin
e� is a large parameter (Fig. 2). It is then understoodthat this term is highly suppressed if we 
hoose�1 = � [1� 3p0(1)℄ : (24)For �� 1, this gives �1 � ��=2 (25)and hen
e for large �, the value of �1 be
omes a largenegative parameter. Interestingly, this 
hoi
e of �1leads to other relevant observations. First, it is knownthat limt!1 pLZ(�1; t) = 1� exp(���1); (26)and therefore, in the 
ase of negative �1, the fun
tionpLZ(�1;1) in
reases exponentially with j�1j. Conse-quently, with this 
hoi
e of �1, the se
ond term in the
urly bra
kets in Eq. (23) is also essentially suppressed.Se
ond, in 
ontrast to positive �1, for negative �1, theLandau�Zener fun
tion pLZ(�1; t) starts to noti
eablydi�er from zero not merely for nonnegative times t � 0but ex
lusively for those of the order of or larger thanp��1=2 (see Fig. 2). Hen
e, the �rst term in the 
urlybra
kets in Eq. (23) is even smaller than it was initiallyexpe
ted. Thus, the 
hoi
e made in (24) essentiallysuppresses the �rst two terms in Eq. (23).Regarding the two last terms in Eq. (23), we shouldminimize them with respe
t to the parameter C1. Thisimplies the 
ondition631
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ause the last term of this equation is proportionalto (large) � and pLZ(�1; t)=pLZ(�1;1) is an in
reasingfun
tion of time, it is 
lear that the �worst� point ist =1. Hen
e, we 
onsider the minimization at t =1.This immediately leads to the following value for C1:C1 =pA=6� : (28)This result, together with relation (24), is of 
onside-rable general importan
e. Indeed, we see that althoughwe use the solution pLZ(�1; t) of a linear equation, theparameters of this solution, �1 and C1, are essentially
hanged due to the nonlinear terms involved.The obtained formulas (24) and (28) provide arather good approximation. As 
an be 
he
ked nume-ri
ally, solution (17), p = p0 + u, where p0 is the ex-a
t solution of the limit equation (9) and u is a linearLandau�Zener fun
tion, des
ribes the pro
ess qualita-tively well. This solution 
an then be used as an ini-tial approximation for linearization of the initial equa-tion (7).However, more elaborate approa
hes 
an be sug-gested. For example, an immediate observation is thatif we try approximation (17), (21) without imposingthe initial restri
tion that the introdu
ed parameter Abe already determined by Eq. (14), we 
an modify thislast equation su
h that the resultant value of A wouldtake the 
orre
tion term u into a

ount. Following thisapproa
h leads to the formulas�1 = ��2 + � ln�1 + 1�� ; (29)C1 = 14� + 127�3 : (30)These formulas de�ne a fairly good approximation.Indeed, starting already from � = 3, the produ
edgraphs (Fig. 3) are pra
ti
ally indistinguishable fromthe numeri
al solution of the exa
t Eqs. (1). Thederived approximation notably improves the a

ura
yof the previous approximation in Ref. [22℄. However,importantly, it is appli
able far beyond the strong-
oupling limit and provides a su�
iently good des
rip-tion also for the intermediate regime of moderate �eldintensities (or sweeping rates) down to � = 1 and evenslightly less (0:95 < � < 1) (Fig. 4). Although the am-plitude of os
illations predi
ted in this regime di�ersfrom that displayed by the numeri
al solution, it is seen
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Fig. 3. Mole
ular state probability versus time at � = 4(the dashed line is the approximate solution with pa-rameters (16), (29), and (30), and the dotted line is thelimit solution). It is seen that in the strong-
ouplinglimit �� 1, the prehistory of the system and the reso-nan
e 
rossing are basi
ally de�ned by the limit solutionp0, while the atom�mole
ule os
illations are des
ribedby the 
orre
tion u
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Fig. 4. The same as in Fig. 3 at � = 1. The limit solu-tion p0 is small, and hen
e the �
orre
tion� u basi
allyde�nes the time evolution of the system in the regimeof moderate 
ouplings � � 1from Fig. 4 that the approximation 
orre
tly des
ribesmany properties of the system time evolution in
ludingthe e�e
tive transition time, the �nal transition pro-bability, and the period of atom�mole
ule os
illations.This is, indeed, a rather unexpe
ted result, espe
iallyif we note that at moderate 
ouplings � � 1 : : : 1:5, thefun
tion p0(t) is very far from the exa
t solution, as 
anbe seen from Fig. 4. An immediate 
on
lusion followingfrom this result is that the time evolution of the systemin this regime is basi
ally determined not by the limitsolution p0 but by the �
orre
tion� u, whi
h during our632
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oupling regime of the nonlinear Landau�Zener problem : : :
al
ulation was assumed to be small 
ompared with thelimit solution.We note in 
on
lusion that the obtained formulasshow that the �nal probability of the mole
ular stateis given by the simple formulap(1) = �1 + C1: (31)Hen
e, the formula derived in Ref. [22℄ for thestrong-
oupling limit �� 1 is modi�ed to also in
ludethe intermediate regime of moderate 
ouplings � � 1as follows:p(1) = 12 � p23 � 14! 1� + 127�3 �� 12 � 0:2214� + 127�3 : (32)Therefore, for the quadrati
 nonlinear intera
tion wehave dis
ussed here, the �nal probability for the sys-tem to stay in its initial all-atom state, ja1(1)j2 == 1�2p(1), is not given by an exponential as predi
tedby the linear Landau�Zener theory [10; 11℄. Instead, inthe strong-
oupling limit, it is a linear fun
tion of thesweep rate 2Æ0 � 1=� if the leading order of the approx-imation is dis
ussed [17; 22℄. This linear dependen
e ofthe nontransition probability on the sweep rate is also
on�rmed by many-body 
al
ulations [18�20℄. We �-nally note that formula (32) suggests the next approx-imation term as 1=27�3.To 
on
lude this se
tion, we dis
uss the relation ofthe Landau�Zener model to 
ontemporary physi
al ex-periments. The ramping of an external magneti
 �elda
ross a Feshba
h resonan
e is the most 
ommonlyadopted s
heme to form Feshba
h mole
ules. A typ-i
al example is the 85Rb experiment by Hodby and 
o-workers at JILA [27℄, where a 
oherent formation ofRb2 mole
ules via sweeping the magneti
 �eld a
rossthe Feshba
h resonan
e is realized. The magneti
 �eldis 
hanged at a given linear sweep rate _B, and themole
ule 
onversion e�
ien
y is measured as a fun
tionof the inverse sweep rate. The external �eld 
on�gura-tion used in this experiment therefore 
orresponds tothe Landau�Zener model.Another experiment that 
an be des
ribed bythe Landau�Zener model was performed by Xu and
oworkers at MIT [28℄. In this experiment, a quan-tum-degenerate gas of 105 
old sodium mole
ules hasbeen 
reated. This was a
hieved with a fast mag-neti
 �eld sweep through a Feshba
h resonan
e, fol-lowed by qui
k removal of the remnant atoms with re-sonant light. This puri�
ation was ne
essary to avoid

heating and de
ay of the mole
ules via inelasti
 
olli-sion pro
esses. 3. CONCLUSIONWe have presented an analysis of a quadrati
allynonlinear version of the Landau�Zener problem thato

urs in various physi
al situations, e. g., in photo-asso
iation of an atomi
 Bose�Einstein 
ondensate, in
ontrolling the s
attering length of an atomi
 
onden-sate by means of a Feshba
h resonan
e, in se
ond-harmoni
 generation, and generally in nonlinear �eldtheories involving a Hamiltonian with a 2 : 1 resonan
e.Using an exa
t third-order nonlinear di�erential equa-tion for the mole
ular state probability, we have de-veloped an e�e
tive variational method for 
onstru
t-ing the approximate solution of the problem in thestrong-
oupling limit 
orresponding to large values ofthe Landau�Zener parameter, � � 1. In the 
ase ofphotoasso
iation, this implies that the intensity of theapplied laser �eld is large enough or, equivalently, thesweep rate a
ross the resonan
e is su�
iently slow.We have shown that the approximation des
ribingtime evolution of the mole
ular state probability 
anbe written as a sum of two distin
t terms. In thestrong-
oupling limit, the �rst term, being a solutionof a limit �rst-order nonlinear di�erential equation, ef-fe
tively des
ribes the pro
ess of mole
ule formation,while the se
ond one, being the s
aled solution of thelinear Landau�Zener problem (but with a negative ef-fe
tive Landau�Zener parameter as long as the strong-
oupling limit of high �eld intensities or, equivalently,slow sweeping rates are 
onsidered), des
ribes the os-
illation that o

urs some time after the system haspassed through the resonan
e. From this, we 
an 
on-
lude that in the strong-
oupling limit, the time dy-nami
s of the atom�mole
ule 
onversion 
onsists of theessentially nonlinear pro
ess of resonan
e 
rossing fol-lowed by atom�mole
ule 
oherent os
illations that areprin
ipally linear in nature. The possibility of su
h ade
omposition is quite surprising be
ause the Hamilto-nian of the system is essentially nonlinear.The 
onstru
ted approximation des
ribes themole
ule formation pro
ess with high a

ura
y. For� > 3, the produ
ed graphs are pra
ti
ally indis-tinguishable from the exa
t numeri
al solution (seeFig. 3). Interestingly, the approximation also worksrather well in the regime of moderate 
ouplings downto � = 1 (see Fig. 4) and slightly less, 0:95 < � < 1.It 
orre
tly des
ribes many properties of the systemtime evolution, in
luding the e�e
tive transition633
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ule os
illations. The only noti
eabledis
repan
y is that the approximate solution overes-timates the amplitude of the os
illations (the largestdeviation is observed at the points of maxima andminima of the probability within the time interval
overing �rst several periods of os
illations). Theappli
ability of the proposed approximation to theintermediate regime of moderate 
oupling is, indeed, arather unexpe
ted result be
ause at � � 1 : : : 1:5, thelimit solution p0(t) is very far from the exa
t solution;hen
e, it is not the limit solution that mostly de�nesthe evolution of the system in this regime. Using the
onstru
ted approximation, we 
an easily �nd themain 
hara
teristi
s of the asso
iation pro
ess su
h asthe tunneling time, the frequen
y of the os
illationsof the transition probability that start soon after
rossing the resonan
e, as well as the �nal transitionprobability to the mole
ular state. In parti
ular, wehave 
on�rmed that the nontransition probability inthe leading approximation order is a linear fun
tion ofthe sweep rate. In addition, we have found that thenext approximation term is 1=27�3.We �nally note that the presented approa
h is notrestri
ted to the Landau�Zener model only. It 
an alsobe generalized to other time-dependent level-
rossingmodels [29; 30℄. Also, it 
an be used in exploringother nonlinear regimes beyond by the Landau�Zenermodel [31℄. Importantly, the developed approa
hallows treating the extended version of the nonlineartwo-state state problem, when higher-order nonlineari-ties involving fun
tions of the transition probability areadded to the basi
 system (1). For example, one 
ananalyze the role of the inter-parti
le elasti
 s
atteringdes
ribed by Kerr-type 
ubi
 nonlinear terms [32℄.Hen
e, the developed method may serve as a generalstrategy for atta
king analogous nonlinear two-stateproblems involving the generi
 quadrati
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