А. И. Дмитриев^а^{*}, Р. Б. Моргунов^а, С. В. Зайцев^b

^а Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

^b Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 28 июня 2010 г.

Исследованы статические и высокочастотные динамические магнитные свойства, а также фотолюминесценция двумерных полупроводниковых гетероструктур GaAs, содержащих квантовую яму InGaAs и тонкий слой марганца (δ -слой). Установлены температура Кюри $T_C \approx 35$ К и поле магнитной анизотропии $H_a \approx 600$ Э ферромагнитного δ -слоя марганца. В спектре спинового резонанса обнаружена линия в слабых полях (от -50 до 100 Э), наблюдаемая в том же температурном интервале T < 40 К, в котором происходит ферромагнитное упорядочение δ -слоя марганца. Данная линия, по-видимому, обусловлена нерезонансным вкладом спин-зависимого рассеяния носителей заряда в отрицательное магнитосопротивление. Зависимости степени поляризации фотолюминесценции от магнитного поля также свидетельствуют о ферромагнитном поведении δ -слоя марганца.

1. ВВЕДЕНИЕ

Управление спиновой поляризацией носителей заряда в полупроводниках в настоящее время пытаются реализовать двумя способами. Первый способ заключается в получении разбавленных магнитных полупроводников. В них наблюдается ферромагнитное упорядочение благодаря высокой концентрации примеси переходных ионов (как правило, марганца) и косвенному обменному взаимодействию, обеспечиваемому носителями заряда [1-3]. Низкая растворимость примеси переходных элементов в магнитных полупроводниках ограничивает их применимость. Второй способ связан с созданием гетероструктур ферромагнетик-полупроводник (рис. 1) [4-15]. Преимуществами данного метода являются сохранение относительного кристаллического совершенства полупроводника (например, GaAs) и возможность создания в нем высоких локальных концентраций магнитных ионов, обеспечивающих ферромагнетизм нанослоя. Распространенным типом гетероструктур является полупроводник GaAs, содержащий тонкий слой марганца (его называют б-слоем) и тонкий слой InGaAs. Тонкий слой полупроводника InGaAs

Рис.1. Схематическое изображение гетероструктуры, выращенной на подложке GaAs и ориентация гетероструктуры в спектрометре: θ — угол между постоянным магнитным полем спектрометра H_{dc} и касательным вектором t к плоскости гетероструктуры

^{*}E-mail: aid@icp.ac.ru

с узкой запрещенной зоной, помещенный между двумя слоями полупроводника GaAs с более широкой запрещенной зоной, называют квантовой ямой (рис. 1). Для носителей заряда в узкозонном полупроводнике гетерограница играет роль потенциального барьера. Два гетероперехода ограничивают движение носителя заряда с двух сторон и образуют потенциальную яму. В результате носитель заряда оказывается «запертым» в одном направлении, что приводит к квантованию энергии поперечного движения. Наличие носителей заряда вблизи δ-слоя Mn способствует установлению обменного взаимодействия между ионами Mn в гибридных структурах [5-12]. Например, при исследовании зеемановского расщепления и степени циркулярной поляризации спектров люминесценции квантовой ямы в гетероструктуре InGaAs/GaAs с ферромагнитным δ-слоем Mn нами были обнаружены признаки обменного взаимодействия носителей заряда с ионами Mn в δ-слое [5]. Измерения электрического сопротивления [6-8], магнитосопротивления [9-11] и планарного эффекта Холла [10, 12] косвенно свидетельствуют о ферромагнетизме δ-слоя Mn с температурой Кюри $T_C \approx 25 - 170 \text{ K}.$

Отметим, что магнитные квазидвумерные (2D) гетероструктуры на основе $Ga_{1-x}Mn_xAs$ заслуживают особого внимания с точки зрения спинтроники, поскольку создают условия для инжекции спин-поляризованных носителей в светоизлучающих диодных структурах [13,14]. Прямое внедрение Mn в 2D-канал приводит к низким значениям подвижности носителей заряда, а также к подавлению излучательной рекомбинации [15]. Пространственное разделение носителей заряда и δ -слоя Mn позволяет существенно повысить подвижность носителей в 2D-канале — более чем на два порядка величины [16, 17].

Прямые измерения намагниченности (или магнитной восприимчивости) гетероструктур, содержащих одиночный δ -слой Мп, довольно редки (имеются измерения для периодических структур, содержащих серию δ -слоев Мп, разделенных промежутками GaAs [18,19]). В тех работах, где проведены попытки измерения намагниченности [16,17], сообщалось о суммарном магнитном моменте гетероструктур, содержащих обычно несколько магнитных подсистем. Интерпретация таких данных сильно затруднена и требует введения искусственных предположений уже на стадии вычитания диамагнитного вклада кристаллической матрицы, не говоря уже о вкладах дефектов структуры в объеме образца, подложки, межслоевых границ и т. п. Эта проблема может быть решена, если помимо сверхпроводящего квантового интерференционного магнитометра (СКВИД), использовать электронный спиновый резонанс, позволяющий разделять вклады подсистем в магнитную восприимчивость образца. Работы по электронному спиновому резонансу в гетероструктурах с квантовыми ямами авторам неизвестны.

В настоящей работе с помощью СКВИД-магнитометра исследованы температурные зависимости намагниченности полупроводниковых гетероструктур GaAs, содержащих квантовую яму InGaAs и δ -слой Mn. Для разделения вкладов различных магнитных подсистем гетероструктуры в магнитную восприимчивость был использован метод электронного спинового резонанса. Цель работы заключалась в выделении вклада ферромагнитного б-слоя Mn в магнитный момент образца, в получении основных параметров ферромагнитного резонанса этого слоя, а также в поиске других подсистем, чувствительных к наличию ферромагнитного упорядочения в δ-слое Mn. Изучение фотолюминесценции квантовой ямы обнаружило чувствительность циркулярной поляризации света к ферромагнитному упорядочению в *b*-слое Mn. Это позволило в данной работе обнаруживать ферромагнетизм независимым оптическим методом.

2. МЕТОДИКА

Гетероструктуры InGaAs/GaAs с δ-слоем Mn были выращены комбинированным методом ступенчатого эпитаксиального роста. На первом этапе на подложке GaAs (001) методом металл-органической гидридной эпитаксии последовательно выращены буферный слой GaAs легированный Si, далее имеется б-слой углерода, затем идут слой нелегированного GaAs, нелегированная квантовая яма InGaAs и наконец разделяющий слой GaAs (рис. 1). На следующем этапе в том же реакторе методом лазерного распыления Mn- и GaAs-мишеней последовательно выращены δ-слой Mn и покровный слой GaAs. Подробно методика изготовления и аттестации гетероструктур InGaAs/GaAs с δ-слоем Mn описана в работе [20]. В нашей работе исследовано три типа образцов: гетероструктура, содержащая квантовую яму InGaAs/GaAs и δ-слой Mn на подложке GaAs (001) (образец 4838), контрольный образец гетероструктуры, содержащей углеродный δ-слой вместо марганцевого δ -слоя на подложке GaAs (001) (образец 4844), и контрольный образец подложки GaAs

(001) без гетероструктуры. Использование этих образцов давало возможность последовательно определить вклады подложки, кристаллической матрицы с дефектами и самого δ -слоя Mn. Углеродный слой в образце 4844 служил для установления вклада границ между слоями и парамагнитных дефектов в объеме образца, не связанных с ферромагнетизмом δ -слоя Mn.

Измерения магнитного момента образцов с размерами примерно $0.5 \times 2 \times 5$ мм³ проводили на СКВИД-магнитометре MPMX 5XL, Quantum Design в постоянном магнитном поле H = 1 кЭ. Температура изменялась в диапазоне от 2 К до 300 К. Спектры электронного спинового резонанса (в виде первой производной мнимой части магнитной восприимчивости $d\chi_{RF}^{\prime\prime}/dH$) были получены на спектрометре Bruker EMX, работающем в X-диапазоне частоты ($\nu \sim 9.4 \ \Gamma \Gamma \mu$), с прямоугольным резонатором типа Н102, частотой модуляции 100 кГц и диапазоном развертки постоянного магнитного поля от -50 до 14 кЭ. Температура изменялась в диапазоне от 4 К до 300 К в криостате ESR 900 Oxford Instruments. Для измерения угловых зависимостей спектров ЭПР вращение образца в резонаторе осуществлялось с помощью автоматического гониометра ER218PG1. Для подсчета эффективного числа спинов и калибровки чувствительности спектрометра был использован парамагнитный монокристаллический образец $CuSO_4 \cdot 5H_2O$. Эффективные *g*-факторы линий вычислялись по стандартному соотношению $h\nu = g\mu_B H_{res}$, где h — постоянная Планка, ν постоянная частота микроволнового магнитного поля, μ_B — магнетон Бора, H_{res} — резонансное поле линии [21].

Измерения степени циркулярной поляризации фотолюминесценции проводились в магнитном поле *H* = 0–50 кЭ в криостате со сверхпроводящим магнитом в сверхтекучем гелии (температура $T \approx 2$ K) или в криостате Oxford Instruments с регулируемой температурой (минимум T = 8 K), при этом образец крепился на холодном пальце в вакууме. Фотолюминесценция возбуждалась Не–Ne-лазером (632.8 нм) и регистрировалась в геометрии Фарадея (магнитное поле направлено нормально к поверхности образцов) с помощью ССД-камеры на монохроматоре со спектральным разрешением лучше 0.05 мэВ. Циркулярно-поляризованная фотолюминесценция исследовалась стандартным образом с использованием линейного поляризатора и четвертьволновой пластинки. Степень циркулярной поляризации определялась параметром $P_C = (I_+ - I_-)/(I_+ + I_-),$ где I_+ (I_-) — интенсивности компонент с правой (левой) поляризацией, полученные путем интегрирования части спектра, соответствующей оптическому переходу в квантовой яме.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

3.1. Спектры подложки и парамагнитной примеси

Спектры электронного спинового резонанса трех исследованных образцов представлены на рис. 2. Спектр образца 4838 (с *б*-слоем Mn) при низких температурах содержит семь линий: линию в нулевом магнитном поле (1) и линии при g = 4.21 (2), g = 4.18 (3), g = 3.68 (4), g = 3.11 (5), g = 2.03 (6)и g = 1.97 (7) (рис. 2*a*). (На рис. 2*a* представлен спектр при угле между постоянным магнитным полем спектрометра и плоскостью образцов $\theta = 135^{\circ}$, соответствующий наилучшему разделению линий.) При повышении температуры линии 1 и 3 резко убывают и при температурах выше 40 К не наблюдаются. При комнатной температуре спектр содержит только линию 5 (рис. 2а). Четыре изотропные линии при q = 4.21 (2), q = 3.68 (4), q = 2.03 (6) и g = 1.97 (7) наблюдаются также в образце 4844 (с δ -слоем С вместо δ -слоя Mn) и в подложке GaAs (рис. 26 и 2в). Это говорит о том, что они отвечают одним и тем же парамагнитным центрам неконтролируемой примеси, находящейся во всех трех образцах. Эти линии наблюдались в GaAs paнee другими авторами [22-24] и были отнесены к неконтролируемой примеси ионов переходных металлов (преимущественно железа Fe³⁺). Подсчет количества спинов для линий 2, 4, 6 и 7 путем вычисления площади под кривой поглощения (второго интеграла спектра ЭПР) и сравнения с этим же параметром для калибровочного образца медного купороса показал, что концентрация парамагнитной примеси менее, чем 10¹⁵ см⁻³. В дальнейшем эти изотропные линии не обсуждаются.

3.2. Спектры дефектов в гетероструктуре

Помимо упомянутых четырех изотропных линий, спектр электронного спинового резонанса в образце 4844 (с δ -слоем С вместо δ -слоя Mn) содержит еще анизотропную линию с g-фактором g = 2.82 (5). Эта линия встречается в обоих изученных образцах, содержащих углерод, и не наблюдается в подложке.

Температурные зависимости ширины ΔH и резонансного поля H_{res} линии 5 электронного спино-

Λ

Рис. 2. Спектры электронного спинового резонанса: a) в образце 4838 (с δ -слоем Mn), угол между постоянным полем спектрометра и плоскостью образцов (слоями гетероструктуры) $\theta = 135^{\circ}; \delta$) в образце 4844 (с δ -слоем С вместо δ -слоя Mn) при температурах T = 15, 300 К при $\theta = 0; e$) в подложке GaAs при $\theta = 0$. Цифрами обозначены линии в спектре

вого резонанса в образце 4838 (с δ-слоем Mn) и в образце 4844 (с δ-слоем C вместо δ-слоя Mn) близки (рис. 3 и 4). Это говорит о том, что эти линии отвечают одним и тем же центрам, находящимся в этих двух образцах и не связанных с δ-слоем Mn.

Рис. 3. Температурные зависимости ширины ΔH и резонансного поля H_{res} линий 3 и 5 электронного спинового резонанса в образце 4838 при $\theta=0$

Рис. 4. Температурные зависимости ширины ΔH и резонансного поля H_{res} линии 5 электронного спинового резонанса в образце 4844 при $\theta=0$

Логичным было бы отнести их к б-слою С и/или к объемной примеси углерода, появившегося в слоях GaAs в процессе выращивания гетероструктуры. Атомы углерода занимают узлы преимущественно в мышьяковой подрешетке арсенида галлия и являются мелкими акцепторами $\mathrm{C}_{\mathrm{As}}^{-}\left[25\right]$. Также примесь углерода может находиться в узлах галлиевой подрешетки и являться донором C⁺_{Ga} [25]. Однако подсчет количества спинов для линии 5 путем вычисления площади под кривой поглощения (второго интеграла спектра ЭПР) и сравнения с этим же параметром для калибровочного образца медного купороса показал, что число спинов, отвечающих линии 5, в 10⁶ раз превышает оцениваемое число атомов углерода

Рис. 5. Ориентационные зависимости резонансного поля H_{res} линии 3 при температуре T = 4 К и ее аппроксимация и изотропной линии 2 при T = 4 К спектра электронного спинового резонанса в образце 4838, а также линии 5 в образце 4844 при температуре T = 20 К и ее аппроксимация стандартной формулой для аксиальной симметрии кристаллического поля

в образце при T = 300 К. Кроме того, линия 5 встречается также в образцах, не содержащих δ-слой С, в которых атомы углерода распределены по объему. Поэтому данная линия, вероятнее всего, относится к дефектам структуры, генерируемым при легировании, количество которых может значительно превышать число самих атомов углерода. Температурные и ориентационные зависимости параметров линии 5 также не позволяют считать эту линию ферромагнитным резонансом, несмотря на число спинов, превышающее расчетное. Вероятно, она относится к парамагнитным дефектам, индуцированным гетерогенными границами в процессе роста. На рис. 5 представлены ориентационная зависимость резонансного поля *H_{res}* линии 5 спектра электронного спинового резонанса в образце 4844 (с δ -слоем С вместо δ -слоя Mn) при T = 20 K и ее аппроксимация стандартной формулой для аксиальной симметрии кристаллического поля [21]: $g^2 = g_{\parallel}^2 \cos^2 \theta + g_{\perp}^2 \sin^2 \theta$; $g_{\parallel} = 2.79$, $g_{\perp} = 2.58.$

3.3. Магнитный резонанс δ-слоя Mn

Линия 3 спектра электронного спинового резонанса в образце 4838 (с δ -слоем Mn) не наблюдались в других образцах без δ -слоя Mn (в образце 4844 и подложке GaAs) (рис. 2). Подсчет количества спинов для линии 3 путем вычисления площади под

Рис. 6. Температурные зависимости мнимой части динамической магнитной восприимчивости χ''_{RF} , соответствующей линиям 3 и 5 образца 4838, и линии 5 образца 4844 при $\theta = 0$

кривой поглощения (второго интеграла) и сравнения с этим же параметром для калибровочного образца медного купороса показал, что число спинов, отвечающих линии 3, в 100 раз превышает расчетное (полученное из концентрации независимых невзаимодействующих ионов марганца) при T = 4 К. Следовательно, при низких температурах наблюдаются ферромагнитные корреляции спинов δ -слоя Мп. Температурные (рис. 3, 4) и ориентационные (рис. 5) зависимости ширины ΔH и резонансного поля H_{res} линии 3 существенно отличаются от соответствующих зависимостей для остальных линий.

На температурной зависимости динамической магнитной восприимчивости χ''_{RF} образца 4838 (с *б*-слоем Mn) видна критическая температура $T_C \approx 35$ К (рис. 6), при которой перестает наблюдаться линия 3 (рис. 6). На температурной зависимости статического магнитного момента M(T) образца 4838 также видна особенность при $T_C \approx 35~{
m K}$ (рис. 7). Таким образом, данные по магнитному резонансу и данные СКВИД-магнитометрии хорошо согласуются между собой в низкотемпературной области, где доминирующий вклад в намагниченность дают центры, соответствующие линии 3. Зависимость M(T) образца 4838 хорошо описывается уравнением Блоха: $M(T) \propto (1 - \alpha (T/T_C)^{3/2})$ (здесь α — постоянная, характерная для данного вещества (из аппроксимации определено $\alpha \approx 0.3$), T_C температура Кюри (в нашем случае $T_C \approx 35$ K)) (рис. 7) [26]. Сравнение с литературными данными показывает, что найденное значение а находится между значениями $\alpha = 0.6-1.1$, характерными

Рис.7. Температурная зависимость магнитного момента образца 4838 в магнитном поле 1 кЭ при $\theta = 0$. На вставке показаны низкотемпературный фрагмент той же зависимости и ее аппроксимация — зависимость Блоха n = 3/2, для примера приведены случаи n = 1 и 2

для эпитаксиальных пленок $Ga_{1-x}Mn_xAs$ [27], и $\alpha = 0.18$, измеренным в тонкой пленке железа [28]. Такое усиление величины α является общим для неупорядоченных разбавленных магнитных полупроводников типа $Ga_{1-x}Mn_xAs$, в которых существенно возрастает вклад низкоэнергетичных возбуждений (магнонов) в M(T), как это детально обсуждается в работе [27].

Из данных по ферромагнитному резонансу известно, что преобладающий вклад в магнитную анизотропию эпитаксиальных слоев $Ga_{1-x}Mn_xAs$ дает кубическая магнитокристаллическая анизотропия [29, 30]. В нашем случае из угловой зависимости (рис. 5) следует аксиальная анизотропия с осью легкого намагничивания, находящейся в плоскости слоя. Ориентационная зависимость линии 3 в нашей работе аппроксимирована зависимостью

$$(h\nu/\mu_B g)^2 = (H_{res}\cos(\theta - \theta_a) + H_a\cos^2(\theta_a)) (H_{res}\cos(\theta - \theta_a) + H_a\cos(2\theta_a)),$$

учитывающей поле аксиальной анизотропии H_a и его направление по отношению к плоскости δ -слоя Mn [31]. Значение поля анизотропии $H_a \approx 600$ Э при температуре T = 4 K, определенное из аппроксимации, заметно меньше, чем значение магнитокристаллической анизотропии равной примерно 3000 Э в эпитаксиальных слоях Ga_{1-x}Mn_xAs [30]. Положение линии ферромагнитного резонанса определяется конкуренцией нескольких вкладов в магнитную анизотропию: магнитокристаллическая анизотропия, магнитоупругая анизотропия, анизотропия формы. Заметное отличие поля магнитной анизотропии в δ -слое Mn от соответствующего значения в эпитаксиальных слоях $Ga_{1-x}Mn_xAs$ указывает на наличие нескольких сопоставимых вкладов в магнитную анизотропию δ -слоя Mn. Перечисленные экспериментальные данные позволяют связать линию 3 с δ -слоем Mn.

3.4. Линия вблизи нулевого магнитного поля

Вблизи нулевого значения внешнего магнитного поля спектрометра в образце 4838 наблюдается линия 1. Небольшое отклонение максимума линии от нулевого значения поля может быть вызвано остаточным магнитным полем электромагнита в спектрометре ЭПР. Ее происхождение представляется важным, так как она наблюдается в той же температурной области 4-40 K, в которой существует линия ферромагнитного резонанса δ-слоя Mn. Отсутствие ферромагнитного упорядочения в δ -слое Mn при высоких температурах или отсутствие самого δ-слоя Mn (в образце 4844) приводит к исчезновению линии 1. Поскольку линия 1 изотропна, она не может быть приписана ферромагнитному резонансу в δ-слое Mn. Более того, изотропия линии 1 и сильное отличие магнитного поля, при котором она наблюдается, от типичного значения (вблизи 3450 Э) свидетельствуют о том, что линия не связана с возбуждением пара- или ферромагнитного резонансов. Известно, что поглощение микроволновой мощности I в резонаторе спектрометра ЭПР зависит от добротности резонатора с образцом Q, и, следовательно, от сопротивления образца R [32]. Поэтому вместо производной от микроволнового поглощения по магнитному полю dI/dH нами была построена зависимость поглощения микроволновой мощности от магнитного поля I(H), которую можно рассматривать как полевую зависимость высокочастотного магнитосопротивления образца MR(H) с точностью до произвольного постоянного слагаемого (вставка на рис. 8). Зависимость максимального высокочастотного магнитосопротивления MR от температуры (рис. 8) коррелирует с температурной зависимостью магнитной восприимчивости δ-слоя Mn (рис. 6).

3.5. Фотолюминесценция в магнитных полях

На рис. 9 представлены спектры фотолюминесценции для образцов 4838 (с δ -слоем Mn) и 4844 (с δ -слоем C вместо δ -слоя Mn) в разных магнит-

Рис. 8. Зависимость интенсивности линии 1 в нулевом магнитном поле от температуры T образца 4838. Сплошными линиями показаны аппроксимации функциями из теории квантовых поправок. На вставке — зависимость поглощения (интеграл линии 1) от магнитного поля I(H) при T = 4 K, которая интерпретируется как высокочастотное магнитосопротивление MR(H) образца

ных полях и низких температурах. В обоих образцах в магнитном поле, перпендикулярном плоскости структуры, полоса излучения из квантовой ямы сдвигается в фиолетовую сторону (диамагнитный сдвиг). При этом в образце 4838 (с δ-слоем Mn) линия излучения квантовой ямы расщепляется на две циркулярно-поляризованные компоненты (σ^+ и σ^-) вследствие зеемановского расщепления электронного и дырочного состояний. Степень циркулярной поляризации P_c в образце 4838 (с δ-слоем Mn) имеет положительный знак и на 20 % больше в магнитном поле H = 30 кЭ и при T = 9 К. Напротив, в образце 4844 (с б-слоем С вместо б-слоя Mn) степень поляризации мала, $P_c \approx 0$, в пределах экспериментальной ошибки (рис. 10). Таким образом, образец 4844 представляет собой пример, когда все вклады в g-фактор, определяющий знак P_c , точно скомпенсированы. В то же время в образце 4838 зависимости $P_c(H)$ демонстрируют быстрый рост уже в слабых магнитных полях H < 2 кЭ и медленный рост при H > 5 кЭ при низких температурах (рис. 10).

4. ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Переходя к обсуждению полученных результатов, важно отметить, что детальные рентгеноструктурные исследования показали существенное размы-

Рис. 9. Спектры фотолюминесценции для образца 4844 при T = 2 К (a) и образца 4838 при T = 9 К (δ) в магнитных полях H = 0 и H = 30 кЭ. На вставках схематически изображены гетероструктуры, содержащие квантовую яму (КЯ), δ -слой С и δ -слой Мп

Рис. 10. Зависимости от магнитного поля *H* степени циркулярной поляризации *P*_c в образце 4844 при *T* = 2 K (светлые ромбы) и в образце 4838 при различных температурах (остальные символы)

тие (около 2–3 нм) δ -слоев Мп вследствие сильной диффузии Мп в GaAs. При этом размытие тем сильнее, чем выше номинальная толщина δ -слоя [16, 17]. В силу такого размытия δ -слой Мп является тонким слоем твердого раствора Ga_{1-x}Mn_xAs с высокой концентрацией марганца $x \sim 4$ –10 ат. %. Структурные исследования подтвердили отсутствие Мп в квантовой яме при ширине разделяющего слоя GaAs не менее 3 нм. Этот вывод независимо подтверждается высоким квантовым выходом фотолюминесценции исследованных структур, в отличие от квантовых ям с Мп, в которых излучательная рекомбинация полностью подавляется при содержании Мп x > 0.1 ат. % [15].

4.1. Магнитооптика гетероструктур с δ -слоем Mn

В «немагнитной» структуре образца 4844 циркулярная поляризация излучения из квантовой ямы равна нулю (рис. 10). В структуре 4838 с туннельно-близким δ-слоем Mn (промежуток GaAs между квантовой ямой и *б*-слоем Mn 2–10 нм) величина P_c при низких температурах отлична от нуля и демонстрирует нелинейную зависимость с насыщением от магнитного поля [14]. Аналогичная нелинейность с быстрым насыщением наблюдалась для $P_c(H)$ при фотолюминесценции горячих электронов в эпислоях $Ga_{1-x}Mn_xAs$ [33, 34], где поляризация вызвана намагниченностью $Ga_{1-x}Mn_xAs$. Естественно объяснить наблюдаемую зависимость $P_c(H)$ туннельной связью дырок из квантовой ямы с соседним б-слоем Mn, обладающим ферромагнитным упорядочением. В этом случае ферромагнетизм в δ -слое Mn будет приводить к спиновой поляризации дырок в квантовой яме.

Обменное *p*-*d*-взаимодействие тяжелой дырки с ионами Mn²⁺ пропорционально скалярному произведению магнитного момента дырки ј и макроскопической намагниченности М [35]. Упругие напряжения в квантовой яме InGaAs/GaAs делают уровень Ферми легких дырок значительно выше по энергии, чем у тяжелых [36]. Поэтому фотолюминесценция из квантовой ямы определяется оптическими переходами между 2D-подзонами электронов и тяжелых дырок. В узких квантовых ямах (не более 20 нм) в силу пространственного квантования момент тяжелой дырки ј лежит по нормали *z* к плоскости ямы [37]. В то же время, сжатие тонких слоев $Ga_{1-x}Mn_xAs$ в матрице GaAs ориентирует ось легкого намагничивания в плоскости б-слоя Mn [38]. Поэтому при *H* = 0 спиновая поляризация тяжелых дырок в

квантовой яме не должна возникать, что и наблюдается в эксперименте: $P_c(H=0) = 0$.

В случае, когда ось легкого намагничивания лежит в плоскости гетероструктуры, приложение магнитного поля перпендикулярно легкой плоскости вызывает в малых полях линейный рост намагниченности δ -слоя Mn в направлении, перпендикулярном слою [39]. С ростом напряженности магнитного поля происходит насыщение намагниченности (поворот магнитного момента из плоскости δ -слоя Mn к направлению вдоль нормали к нему). В эксперименте для структуры 4838 поле насыщения намагниченности равно примерно 2 кЭ при низких температурах, что хорошо согласуется с известными экспериментальными данными для эпитаксиальных пленок Ga_{1-x}Mn_xAs [34].

Таким образом, нелинейная зависимость $P_c(H)$, наблюдаемая в «магнитной» структуре 4838, обусловлена постепенным выходом магнитного момента из плоскости ферромагнитного δ -слоя Mn.

4.2. Ферромагнитный резонанс δ -слоя Мп

Перечислим известные магнитные подсистемы с марганцем, которые могли бы давать наблюдаемые линии 1 и 3 в спектре электронного спинового резонанса в образце 4838 (с *δ*-слоем Mn):

— одиночные парамагнитные центры или обменно-связанные пары марганца, продиффундировавшего в GaAs, комплексы марганца с примесями в решетке GaAs, такие как $Mn_{Ga}-O_{As}$, $Mn_{Ga}-S_{As}$ и $Mn_{Ga}-Se_{As}$ (несмотря на неравновесность процесса осаждения марганца, часть его диффундирует в GaAs, замещая атомы Ga и приводя к образованию дефектов в растущей структуре, например, дефектов перестановки As_{Ga} [9, 10, 15]),

— антиферромагнитные кристаллиты α-Mn с прямым обменным взаимодействием между атомами Mn,

— ферромагнитные соединения MnAs и Mn_3As_2 (формирование этих фаз может быть вызвано сегрегацией Mn на поверхности GaAs [9, 10, 20]),

 — ферромагнитный разбавленный полупроводник Ga_{1-x}Mn_xAs и дельта-легированный ферромагнитный полупроводник GaAsMn_δ.

Рассмотрим возможность интерпретации линий 1 и 3 в рамках упомянутых выше подсистем. Линии 1 и 3 в спектре электронного спинового резонанса в образце 4838 (с δ -слоем Mn) не являются антиферромагнитным резонансом в кристаллитах α -Mn, поскольку магнитная восприимчивость антиферромагнетиков должна увеличиваться с повышением температуры. В эксперименте наблюдается противоположная зависимость (рис. 6 и 7). Кроме того, для α -Mn температура магнитного фазового перехода антиферромагнетик-парамагнетик (температура Нееля) равна 95 К, что заметно выше наблюдаемой нами критической температуры $T_C \approx 35$ К. Эффективное число спинов, определенное из спектров электронного спинового резонанса для антиферромагнетика, должно быть заметно ниже расчетного для случая невзаимодействующих парамагнитных центров. В нашем случае число спинов, отвечающих линии 3, в 100 раз превышает расчетное значение для невзаимодействующих ионов марганца. По этой причине линию 3 нельзя отнести также к одиночным парамагнитным центрам марганца, продиффундировавшего в GaAs, или к комплексам Mn_{Ga}-O_{As}, ${\rm Mn}_{\rm Ga}$ – ${\rm S}_{\rm As}$ и ${\rm Mn}_{\rm Ga}$ – ${\rm Se}_{\rm As}$. Эти парамагнитные центры дают иной спектр электронного спинового резонанса [40-42]. Линии 1 и 3 не удается объяснить также известными из других работ дефектами перестановки GaAs [43] или обменно-связанными парами марганца, которые имели бы другую ориентационную зависимость резонансного поля [44] по сравнению с полученной нами (рис. 5).

Можно исключить объяснение природы линий 1 и 3 ферромагнитным резонансом в кластерах MnAs, Mn₃As₂ или Mn_xGa_{1-x} (формирование этих фаз может быть обусловлено сегрегацией марганца на поверхности и образованием соединений с мышьяком при выращивании гетероструктуры): во-первых, в этих материалах наблюдались другие спектры ферромагнитного резонанса [45, 46]; во-вторых, температуры Кюри этих сплавов ($T_C = 320$ K для MnAs, $T_C = 273$ K для Mn₃As₂ и $T_C = 600$ K для Mn_xGa_{1-x}) [47–50] заметно выше температуры Кюри $T_C \approx 35$ K, наблюдаемой в наших экспериментах (рис. 6, 7).

Таким образом, происхождение линии 3 невозможно связать ни с одной из известных в настоящее время магнитных систем на основе арсенида галлия и марганца и, на наш взгляд, эта линия обусловлена ферромагнитным резонансом в δ -слое Mn (представляющем собой ультратонкий слой твердого раствора Ga_{1-x}Mn_xAs с высокой концентрацией марганца) существенно выше фазового перехода парамагнетик-ферромагнетик. На это указывает температурная зависимость линии 3, которая исчезает выше T_C . В пользу данного заключения свидетельствует также аксиальная анизотропия линии 3 с осью легкого намагничивания в плоскости слоя ($\theta_a = 0$, см. разд. 3.3), что согласуется с выводами магнитооптических исследований.

4.3. Высокочастотное магнитосопротивление

Здесь мы проанализируем поведение линии, наблюдаемой вблизи нулевого магнитного поля, и покажем, что эта линия обусловлена высокочастотным магнитосопротивлением *б*-слоя Mn. Ранее было установлено, что при низких температурах, $T_C < 35$ K, в аналогичных гетероструктурах с δ-слоем Mn наблюдается отрицательное магнитосопротивление (ОМС) [9-11]. В немагнитных полупроводниках и гетероструктурах ОМС обычно связано с квантовыми интерференционными поправками к проводимости [51,52], тогда как в разбавленных магнитных полупроводниках на основе GaMnAs основным механизмом, приводящим к ОМС, считается спин-зависимое рассеяние дырок в условиях сильного магнитного беспорядка [11,53]. В этой связи необходимо сравнить температурную зависимость ОМС, полученную нами для «магнитной» структуры (4838), с теорией квантовых поправок [52]. Зависимость эффекта ОМС от температуры Т имеет различный вид для двумерных и трехмерных систем [32]. Это связано с различной зависимостью электрической проводимости от времени сбоя фазы носителей заряда. Для двумерных систем MR $\propto \ln(T)$, для трехмерных систем должна наблюдаться степенная зависимость MR $\propto T^{-k}$ (показатель степени kопределяется механизмом сбоя фазы, и в нашем случае наилучшая аппроксимация достигается при k = 1/2, характерном для трехмерных систем). Сравнивая теоретические предсказания с температурной зависимостью магнитосопротивления в наших опытах (рис. 8), можно видеть, что степенная функция трехмерной системы лучше описывает экспериментальные результаты. Это согласуется также с обсужденной выше зависимостью Блоха «три вторых» и показывает, что в размытом ферромагнитном слое, по-видимому, имеют место трехмерное ферромагнитное упорядочение и высокочастотное магнитосопротивление.

5. ВЫВОДЫ

Разделены вклады магнитоупорядоченного δ -слоя Mn с температурой Кюри $T_C \approx 35$ K, δ -слоя C, парамагнитных дефектов в GaAs и примесных центров в подложке в магнитную восприимчивость двумерных полупроводниковых гетероструктур InGaAs/GaAs с δ -слоем Mn, которому отвечает линия ферромагнитного резонанса, анизотропия этой линии соответствует полю анизотропии $H_a \approx 600$ Э. Температурная зависимость динамической магнитной восприимчивости χ''_{RF} δ -слоя Mn согласуется с данными статических измерений магнитного момента, который описывается законом Блоха «три вторых», и указывает на наличие температуры Кюри $T_C \approx 35$ К. В спектрах электронного спинового резонанса обнаружена линия, которая наблюдается при наличии ферромагнитного упорядочения в δ -слое Mn и связана, по-видимому, с высокочастотным магнитосопротивлением в GaAs с δ -слоем Mn.

Работа выполнена при частичной финансовой поддержке РФФИ (гранты №№ 09-02-00770а, 10-03-00314а) и в рамках программы Президиума РАН № 27 «Основы фундаментальных исследований нанотехнологий и наноматериалов». Авторы признательны сотрудникам Научно-исследовательского физико-технического института Нижегородского государственного университета им. Н. И. Лобачевского М. В. Дорохину, Ю. А. Данилову и Б. Н. Звонкову за образцы, предоставленные для исследований.

ЛИТЕРАТУРА

- R. Morgunov, M. Farle, M. Passacantando et al., Phys. Rev. B 78, 045206 (2008).
- O. Kazakova, R. Morgunov, and J. Kulkarni, Phys. Rev. B 77, 235317 (2008).
- R. B. Morgunov, A. I. Dmitriev, and O. L. Kazakova, Phys. Rev. B 80, 085205 (2009).
- A. M. Nazmul, S. Sugahara, and M. Tanaka, J. Cryst. Growth 251, 303 (2003).
- 5. С. В. Зайцев, М. В. Дорохин, А. С. Бричкин и др., Письма в ЖЭТФ **90**, 730 (2009).
- A. M. Nazmul, S. Sugahara, and M. Tanaka, Appl. Phys. Lett. 80, 3120 (2002).
- A. M. Nazmul, S. Sugahara, and M. Tanaka, Phys. Rev. B 67, 241308 (2003).
- A. M. Nazmul, T. Amemiya, Y. Shuto et al., Phys. Rev. Lett. 95, 017201 (2005).
- О. В. Вихрова, Ю. А. Данилов, М. В. Дорохин и др., Письма в ЖТФ 35, 8 (2009).
- **10**. А. В. Кудрин, О. В. Вихрова, Ю. А. Данилов, Письма в ЖТФ **36**, 46 (2010).
- Б. А. Аронзон, А. Б. Грановский, А. Б. Давыдов и др., ФТТ 49, 165 (2007).

- A. M. Nazmul, H. T. Lin, S. N. Tran et al., Phys. Rev. B 77, 155203 (2008).
- Y. Ohno, D. K. Young, B. Beschoten et al., Nature 402, 790 (1999).
- 14. S. V. Zaitsev, V. D. Kulakovskii, M. V. Dorokhin et al., Physica E 41, 652 (2009).
- M. Poggio, R. C. Myers, N. P. Stern et al., Phys. Rev. B 72, 235313 (2005).
- 16. Б. А. Аронзон, А. С. Лагутин, В. В. Рыльков и др., Письма в ЖЭТФ 87, 192 (2008).
- М. А. Панков, Б. А. Аронзон, В. В. Рыльков и др., ЖЭТФ 136, 346 (2009).
- R. K. Kawakami, E. Johnston-Halperin, L. F. Chen et al., Appl. Phys. Lett. 77, 2379 (2000).
- 19. K. Onomitsu, H. Fukui, T. Maeda et al., J. Cryst. Growth 278, 699 (2005).
- 20. О. В. Вихрова, Ю. А. Данилов, Ю. Н. Дроздов и др., Поверхность. Рентген., синхротрон. и нейтрон. исследования 6, 9 (2007).
- A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper and Row, New York (1967).
- 22. U. Kaufman and J. Schneider, Sol. St. Comm. 20, 143 (1976).
- 23. B. Frick and D. Siebert, Phys. Stat. Sol. A 41, K185 (1977).
- 24. A. Goltzene, G. Poiblaud, and C. Schwab, J. Appl. Phys. 50, 5425 (1979).
- 25. B. T. Cunningham, L. J. Brido, J. E. Baker et al., Appl. Phys. Lett. 55, 687 (1989).
- **26**. С. В. Вонсовский, *Магнетизм*, Наука, Москва (1979).
- 27. M. Sperl, A. Singh, U. Wurstbauer et al., Phys. Rev. B 77, 125212 (2008).
- W. Kipferl, M. Sperl, T. Hagler et al., J. Appl. Phys. 97, 10B313 (2005).
- 29. C. Bihler, H. Huebl, S. Brandt et al., Appl. Phys. Lett.
 89, 012507 (2006).
- 30. X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 67, 205204 (2003).
- 31. C. Kittel, Phys. Rev. B 73, 155 (1948).
- 32. А. И. Вейнгер, А. Г. Забродский, Т. В. Тиснек,
 Г. Бискупски, ФТП 32, 557 (1998).

- 33. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
- 34. V. F. Sapega, M. Ramsteiner, O. Brandt et al., Phys. Rev. B 73, 235208 (2006).
- 35. A. O. Govorov and A. V. Kalameitsev, Phys. Rev. B 71, 035338 (2005).
- 36. G. Hendorfer and J. Schneider, Semicend. Sci. Technol.6, 595 (1991).
- 37. R. W. Martin et al., Phys. Rev. B 42, 9237 (1990).
- 38. M. Tanaka, J. Vac. Sci. Technol. B 16, 2267 (1998).
- **39**. S. Chikazumi, *Physics of Ferromagnetism*, Clarendon Press, Berlin (1998).
- 40. В. Ф. Мастеров, С. Б. Михрин, Б. Е. Саморуков, К. Ф. Штельмах, ФТП 17, 1259 (1983).
- 41. G. Kuhn, M. Hein, and S. Warlewig, Phys. Stat. Sol. A 41, K13 (1977).
- **42**. В. Ф. Мастеров, С. Б. Михрин, К. Ф. Штельмах, ФТП **19**, 1867 (1985).
- 43. W. Jost, M. Kunzer, and U. Kaufman, Semicond. Sci. Technol. 7, 1386 (1992).

- 44. Б. П. Попов, В. К. Соболевский, Е. Г. Апушкинский,
 В. П. Савельев, ФТП **39**, 521 (2005).
- 45. T. Hartmann, M. Lampalzer, P. J. Klar et al., Phot. Spectra 13, 572 (2002).
- 46. M. Cubukcu, H. J. von Bardeleben, and Kh. Khazen, J. Appl. Phys. 105, 07C506 (2009).
- 47. M. Yuzuri and M. Yamada, J. Phys. Soc. Jpn. 15, 1845 (1960).
- 48. M. Tanaka, J. P. Harbison, J. DeBoeck et al., Appl. Phys. Lett. 62, 1565 (1993).
- **49**. В. И. Николаев, А. М. Шпилин, ФТТ **45**, 1029 (2003).
- 50. X. Y. Lang, W. T. Zheng, and Q. Jiang, Phys. Rev. B 73, 224444 (2006).
- 51. G. M. Minkov, O. E. Rut, A. V. Germanenko et al., Phys. Rev. B 65, 235322 (2002).
- **52**. В. Ф. Гантмахер, Электроны в неупорядоченных средах, Наука, Москва (2003).
- 53. F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).