РЕНОРМГРУППОВЫЕ ФУНКЦИИ ТЕОРИИ φ^4 ИЗ ВЫСОКОТЕМПЕРАТУРНЫХ РАЗЛОЖЕНИЙ

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 24 июня 2010 г.

Ранее показано, что вычисление ренормгрупповых функций скалярной теории φ^4 сводится к исследованию термодинамических свойств модели Изинга. Используя высокотемпературные разложения для последней, ренормгрупповые функции четырехмерной теории можно вычислить при произвольных значениях константы связи g с точностью 10^{-4} для функции Гелл-Манна – Лоу $\beta(g)$ и точностью 10^{-3} – 10^{-2} для аномальных размерностей. Получены разложения ренормгрупповых функций до 13-го порядка по степеням $g^{-1/2}$.

1. ВВЕДЕНИЕ

Как показано в недавних работах автора [1, 2], функцию Гелл-Манна–Лоу $\beta(g)$ и аномальные размерности теории φ^4 можно выразить через функциональные интегралы, что приводит к параметрическому представлению вида

$$g = F(g_0, m_0, \Lambda), \quad \beta(g) = F_1(g_0, m_0, \Lambda), \quad (1)$$

где g_0 и m_0 — затравочные заряд и масса, Λ параметр обрезания по импульсу, g — перенормированный заряд. Большие значения g достигаются лишь вблизи нуля одного из функциональных интегралов, где правые части уравнений (1) сильно упрощаются и параметрическое представление разрешается в явном виде, позволяя получить аналитические асимптотики β -функции и аномальных размерностей. Аналогичная программа может быть реализована и в квантовой электродинамике [3].

В целом же параметрическое представление (1) устроено следующим образом. Если выразить g_0 через g с помощью первого уравнения (1) и подставить во второе уравнение, то зависимость от m_0 и Λ исчезает согласно общим теоремам [4], так что β -функция зависит только от g. Однако при практических вычислениях это свойство автоматически не выполняется. Дело в том, что в общих теоремах предполагается взятым континуальный предел $\Lambda \to \infty,$ что физически означает выполнение условия

$$m \ll \Lambda$$
 или $\xi \gg a$, (2)

где m — перенормированная масса, ξ — корреляционный радиус, $a = \Lambda^{-1}$ — постоянная решетки, на которой предполагается определенным функциональный интеграл. При наложении условия (2) в области больших g_0 функциональные интегралы скалярной теории φ^4 сводятся к изинговским суммам, так что (1) принимает вид [2]

$$g = F(\kappa), \quad \beta(g) = F_1(\kappa)$$
 (3)

и зависимость β -функции только от g становится очевидной; параметр κ играет роль обратной температуры в модели Изинга. Формально условие (2) соответствует $-g_0^{-1}m_0^2/\Lambda^2 \gtrsim 1$, но фактически сведение к модели Изинга возможно при более слабом условии

$$g_0 \gg 1, \quad -g_0^{-1/2} m_0^2 / \Lambda^2 \gg 1,$$

 $-g_0^{-1} m_0^2 / \Lambda^2 = \kappa -$ произвольно. (4)

Поэтому параметрическое представление (3) остается справедливым в области малых κ , где достигаются большие значения g и возможны градиентные разложения.

На первый взгляд, условие $g_0 \gg 1$ соответствует режиму сильной связи и параметрическое представление (3) ограничено только им. Однако на си-

^{*}E-mail: suslov@kapitza.ras.ru

туацию можно взглянуть и с другой точки зрения. Усилим условия (4), перейдя к пределу

$$g_0 \to \infty, \quad -g_0^{-1/2} m_0^2 / \Lambda^2 \to \infty, \\ -g_0^{-1} m_0^2 / \Lambda^2 = \kappa = \text{const.}$$

$$(5)$$

Тогда переход от (1) к (3) не связан ни с какими приближениями и сохраняет строгую эквивалентность с исходной теорией φ^4 при определенном выборе ее затравочных параметров; последнее обеспечивает сохранение формы лагранжиана при перенормировках. Предел $g_0 \to \infty$ не означает такого же предела для перенормированного заряда *g*; фактически градиентные разложения позволяют утверждать, что g меняется от бесконечности до единицы при изменении к от нуля до значений порядка единицы. Поскольку параметрическое представление (3) является точным и определяет β-функцию на интервале $1 \leq g < \infty$, его можно аналитически продолжить и считать определением $\beta(g)$ при произвольных g. Но приведет ли такое определение к правильным результатам в области слабой связи?

Ответ на этот вопрос может быть получен с помощью высокотемпературных рядов [5]. Такие ряды традиционно строятся для величин χ_2, μ_2, χ_4 (см. разд. 2), которые полностью определяют правые части уравнений (3). Формально высокотемпературные разложения справедливы для малых к, но их сравнительно большая длина (до 30 членов в ряде случаев) позволяет успешно исследовать окрестность точки фазового перехода κ_c , приводя к результатам, сопоставимыми с другими методами. Поэтому фактически хорошие приближения для указанных величин могут быть получены во всем интервале $0 \leq \kappa \leq \kappa_c$. Подстановка таких результатов в правые части (3) позволяет найти ренормгрупповые $(\mathbf{P}\Gamma)$ функции в интервале $g^* \leq g < \infty$, где g^* неподвижная точка ренормгруппы. В четырехмерном случае $g^* = 0$ и указанная процедура полностью определяет РГ-функции.

Имеется много работ [6–16], в которых высокотемпературные ряды использовались для проверки логарифмических поправок к скейлингу [17]. Фактически уже эти работы позволяют дать положительный ответ на поставленный выше вопрос: параметрическое представление (3) дает правильные результаты в области слабой связи. Поэтому основная цель настоящей работы состоит в построении РГ-функций четырехмерной теории φ^4 при произвольных g: это может быть сделано с точностью 10^{-4} для β -функции и несколько хуже для аномальных размерностей. Определение вычисляемых РГ-функций подразумевает использование решеточной регуляризации, отличной от обычно используемых регуляризаций Паули-Вилларса, изотропного обрезания в импульсном пространстве, размерной регуляризации и т. д. Однако β -функция в используемой схеме определяется через наблюдаемые заряд и массу [1, 2] и не должна зависеть от способа обрезания. Для аномальных размерностей такая зависимость возможна, так как они определяются через ненаблюдаемые Z-факторы. Так или иначе, настоящий способ регуляризации отличается от обычно используемых не более, чем последние друг от друга.

2. ИСХОДНЫЕ СООТНОШЕНИЯ

Рассмотрим n-компонентную теорию φ^4 с действием

$$S\{\varphi\} = \int d^d x \left\{ \frac{1}{2} \sum_{\alpha=1}^n (\nabla \varphi_\alpha)^2 + \frac{1}{2} m_0^2 \sum_{\alpha=1}^n \varphi_\alpha^2 + \frac{1}{8} u_0 \left(\sum_{\alpha=1}^n \varphi_\alpha^2 \right)^2 \right\}, \quad u_0 = g_0 \Lambda^\epsilon, \quad \epsilon = 4 - d,$$

$$(6)$$

где g_0 и m_0 — затравочные заряд и масса, d — размерность пространства, Λ — параметр обрезания по импульсу. Наиболее общий функциональный интеграл этой теории содержит в предэкспоненте M множителей поля φ ,

$$Z^{(M)}_{\alpha_1...\alpha_M}(x_1,...,x_M) = \int D\varphi \,\varphi_{\alpha_1}(x_1)\varphi_{\alpha_2}(x_2)...$$
$$\dots \varphi_{\alpha_M}(x_M) \exp\left(-S\{\varphi\}\right), \quad (7)$$

и будет обозначаться как $K_M\{p_i\}$ после перехода в импульсное представление и выделения δ -образных множителей,

$$Z^{(M)}_{\alpha_1...\alpha_M}(p_1,\ldots,p_M) = K_M\{p_i\} \mathcal{N} \,\delta_{p_1+\ldots+p_M} I_{\alpha_1...\alpha_M}, \quad (8)$$

где $I_{\alpha_1...\alpha_M}$ есть сумма членов типа $\delta_{\alpha_1\alpha_2}\delta_{\alpha_3\alpha_4}...$ со всевозможными спариваниями, \mathcal{N} — число узлов решетки, на которой предполагается определенным функциональный интеграл. Интегралы $K_M\{p_i\}$, как правило, оцениваются при нулевых импульсах и лишь один интеграл $K_2(p)$ потребуется при малых p,

$$K_2(p) = K_2 - \tilde{K}_2 p^2 + \dots$$
 (9)

В дальнейшем рассматриваем случай d = 4, n = 1,но общие формулы выписываем для произвольных d и n.

Ниже рассматриваются РГ-функции $\beta(g)$, $\eta(g)$, $\eta_2(g)$, входящие в уравнение Каллана-Симанчика [4]

$$\left[\frac{\partial}{\partial \ln m} + \beta(g) \frac{\partial}{\partial g} + \left(L - \frac{N}{2}\right) \eta(g) - L\eta_2(g)\right] \times \Gamma^{(L,N)} = 0, \quad (10)$$

для вершины $\Gamma^{(L,N)}$ с N внешними линиями поля φ и L внешними линиями взаимодействия. Выражение этих функций через функциональные интегралы приводит к параметрическому представлению [2]

$$g = -\left(\frac{K_2}{\tilde{K}_2}\right)^{d/2} \frac{K_4 K_0}{K_2^2},$$
 (11)

$$\beta(g) = -\left(\frac{K_2}{\tilde{K}_2}\right)^{d/2} \times \\ \times \frac{K_4 K_0}{K_2^2} \left\{ d + 2 \, \frac{(\ln K_4 K_0 / K_2^2)'}{(\ln K_2 / \tilde{K}_2)'} \right\}, \quad (12)$$

$$\eta(g) = 2 \, \frac{(\ln K_2/K_0)' + (\ln K_2/\tilde{K}_2)'}{(\ln K_2/\tilde{K}_2)'}, \qquad (13)$$

$$\eta_2(g) = -2 \frac{\left(\ln K_0/K_2\right)'' + \left[\left(\ln K_0/K_2\right)'\right]^2}{\left(\ln K_2/\tilde{K}_2\right)' \left(\ln K_0/K_2\right)'}, \quad (14)$$

где штрихами отмечаются производные по m_0^2 . При условии (4) функциональный интеграл скалярной теории может быть записан в виде [2]

$$Z_M\{\mathbf{x}_i\} = (2\kappa)^{\frac{N+M}{2}} \int \left(\prod_{\mathbf{x}} d\varphi_{\mathbf{x}}\right) \varphi_{\mathbf{x}_1} \dots \varphi_{\mathbf{x}_M} \times \\ \times \exp\left\{-\kappa \sum_{\mathbf{x}, \mathbf{x}'} J_{\mathbf{x}-\mathbf{x}'} \varphi_{\mathbf{x}} \varphi_{\mathbf{x}'}\right\} \prod_{\mathbf{x}} \delta(\varphi_{\mathbf{x}}^2 - 1) \quad (15)$$

и превращается в изинговскую сумму по значениям $\varphi_{\mathbf{x}} = \pm 1.$

Теперь введем величины, изучаемые в высокотемпературных разложениях,

$$\chi_{2} = \sum_{\mathbf{x}} \langle \varphi_{\mathbf{x}} \varphi_{\mathbf{0}} \rangle^{c}, \quad \mu_{2} = \sum_{\mathbf{x}} \mathbf{x}^{2} \langle \varphi_{\mathbf{x}} \varphi_{\mathbf{0}} \rangle^{c},$$
$$\chi_{4} = \sum_{\mathbf{x}, \mathbf{y}, \mathbf{z}} \langle \varphi_{\mathbf{x}} \varphi_{\mathbf{y}} \varphi_{\mathbf{z}} \varphi_{\mathbf{0}} \rangle^{c}$$
(16)

8 ЖЭТФ, вып. 2

(индекс «*c*» отмечает связные диаграммы), которые с точностью до множителей совпадают с отношени-

ями $K_2/K_0, K_2/K_0, K_4/K_0$ введенных выше функ-

циональных интегралов; более точно

$$\frac{K_2}{\tilde{K}_2} = 2d\frac{\chi_2}{\mu_2} \equiv \frac{1}{\kappa} f_0(\kappa),$$

$$\frac{K_2}{K_0} = 2\kappa \chi_2 \equiv \kappa f_2(\kappa),$$

$$\frac{K_4 K_0}{K_2^2} = \frac{1}{3} \frac{\chi_4}{\chi_2^2} \equiv -f_4(\kappa),$$
(17)

где мы ввели определения функций $f_i(\kappa)$, которые будут использоваться в дальнейшем. При этом учтено, что в разложении μ_2 по κ нулевой член отсутствует (см. ниже (20)), так что все функции $f_i(\kappa)$ регулярны, а их разложение начинается с нулевого члена. Подстановка (17) в (11)–(14) дает

$$g = \left(\frac{f_0(\kappa)}{\kappa}\right)^{d/2} f_4(\kappa),$$

$$\frac{\beta(g)}{g} = d - 2\kappa \frac{[\ln f_4(\kappa)]'}{1 - \kappa [\ln f_0(\kappa)]'},$$

$$\eta(g) = -2\kappa \frac{[\ln f_0(\kappa) f_2(\kappa)]'}{1 - \kappa [\ln f_0(\kappa)]'},$$
 (18)
$$= -2 \frac{(1 + \kappa [\ln f_2(\kappa)]')^2 + 1 - \kappa^2 [\ln f_2(\kappa)]''}{(1 - \kappa [\ln f_0(\kappa)]') (1 + \kappa [\ln f_2(\kappa)]')}.$$

В пределе $\kappa \to 0$ легко получить асимптотики РГ-функций [2]

$$\beta(g) = dg, \quad \eta(g) = 0, \quad \eta_2(g) = -4 \quad (g \to \infty).$$
 (19)

Для простой гиперкубической решетки со взаимодействием ближайших соседей первые члены разложения функций (16) при *d* = 4, *n* = 1 имеют вид [18]

$$\chi_2 = 1 + 16\kappa + 224\kappa^2 + \dots ,$$

$$\mu_2 = 16\kappa + 512\kappa^2 + 33920/3\kappa^3 + \dots , \qquad (20)$$

$$\chi_4 = -2 - 128\kappa - 4672\kappa^2 - \dots$$

Подстановка в (18) позволяет получить разложение РГ-функций по степеням $g^{-2/d}$, и в частности — более точную асимптотику для $\eta(g)$:

$$\eta(g) = \frac{16}{9} \frac{1}{g}, \quad g \to \infty.$$
(21)

Универсальность этой асимптотики не проверялась, и строго говоря она относится к указанной модели. В дальнейшем используются 14 членов разложения (20), приведенные для n = 1 в табл. 5, 8, 11 работы [18].

 $\eta_2(g)$

3. ОКРЕСТНОСТЬ ФАЗОВОГО ПЕРЕХОДА

3.1. Общая стратегия

Применение высокотемпературных рядов к исследованию критического поведения основано на следующем. Пусть некоторая величина $F(\kappa)$ имеет вблизи точки перехода $\kappa_c = 1/T_c$ степенное поведение

$$F \propto (T - T_c)^{-\lambda} \propto (\kappa_c - \kappa)^{-\lambda}.$$
 (22)

Тогда радиус сходимости разложения по κ ограничен величиной κ_c . В актуальных случаях κ_c оказывается ближайшей сингулярностью к началу координат, что облегчает ее исследование. Легко видеть, что для логарифмической производной

$$(\ln F)' = \frac{F'}{F} \sim \frac{-\lambda}{\kappa - \kappa_c} \tag{23}$$

ближайшая особенность является простым полюсом с вычетом $-\lambda$ и может быть исследована с помощью паде-аппроксимации. Паде-аппроксиманта [M/N] определяется как отношение полиномов степени M и N

$$(\ln F)' = \frac{P_M(\kappa)}{Q_N(\kappa)} = \frac{p_0 + p_1 \kappa + \dots + p_M \kappa^M}{1 + q_1 \kappa + \dots + q_N \kappa^N}, \quad (24)$$

коэффициенты которых подобраны так, чтобы воспроизводить первые M + N + 1 коэффициентов разложения $(\ln F)'$ по κ . Известно, что паде-аппроксиманты хорошо предсказывают ближайшие особенности аппроксимируемой функции, если последние являются простыми полюсами [5, 19]. Обычно используются диагональные (M = N) или квазидиагональные $(M \approx N)$ аппроксиманты, для которых сходимость к соответствующей функции доказана при наиболее общих предположениях.

Использование этой стратегии в четырехмерном случае затрудняется существованием логарифмических поправок к скейлингу [4,17]:

$$\begin{aligned} \chi_2 &\sim \tau^{-1} |\ln \tau|^p, \quad \xi^2 \sim \frac{\mu_2}{\chi_2} \sim \tau^{-1} |\ln \tau|^p, \\ \chi_4 &\sim \tau^{-4} |\ln \tau|^{4p-1}, \quad p = -\frac{\zeta_1}{\beta_2} = \frac{n+2}{n+8}, \end{aligned}$$
(25)

где $\tau \sim (\kappa_c - \kappa)$ — расстояние до перехода, а показатель *p* определяется первыми членами разложения РГ-функций:

$$\beta(g) = \beta_2 g^2 + \beta_3 g^3 + \dots ,$$

$$\eta(g) = \delta_2 g^2 + \delta_3 g^3 + \dots ,$$

$$\eta_2(g) = \zeta_1 g + \zeta_2 g^2 + \dots ,$$
(26)

где

$$\beta_2 = S_4 \frac{n+8}{2}, \quad \beta_3 = -S_4^2 \frac{9n+42}{4}, \quad (27)$$
$$\delta_2 = S_4^2 \frac{n+2}{8}, \quad \zeta_1 = -S_4 \frac{n+2}{2}$$

и $S_4 = 1/8\pi^2$. Для введенных функций f_i имеем из формул (25)

$$f_0 \sim \tau |\ln \tau|^{-p}, \quad f_2 \sim \tau^{-1} |\ln \tau|^p, f_4 \sim \tau^{-2} |\ln \tau|^{2p-1}.$$
(28)

Отметим еще поведение заряда g,

$$g = \frac{c_0}{|\ln \tau|}, \quad c_0 = \frac{2}{\beta_2} \quad (\tau \to 0),$$
 (29)

для которого коэффициент при логарифмическом множителе является универсальным. При условии справедливости формул (28) и (29) параметрическое представление (18) автоматически обеспечивает результаты $\beta(g) = \beta_2 g^2$, $\eta(g) = 0 \cdot g$, $\eta_2(g) = \zeta_1 g$, т.е. правильное поведение РГ-функций при малых g.

Объективная проверка соотношений (25) для решеточных моделей проводилась во многих работах [6–15]. В частности, в работах [6, 7] убедительно показано, что высокотемпературные ряды для модели Изинга позволяют надежно предсказать значение показателя *p*. Соотношение (29) с удовлетворительной точностью подтверждено в работах [7, 9]. Уже эти результаты позволяют положительно ответить на вопрос, поставленный во введении: параметрическое представление (18) дает правильные результаты для РГ-функций в области слабой связи.

3.2. Нулевое приближение

Паде-анализ соотношений (28) проводится методом последовательных приближений. В нулевом приближении мы игнорируем логарифмические множители и обрабатываем функции f_i в предположении их степенной зависимости от τ . Результаты такого анализа, приведенные в табл. 1, показывают существенное отличие показателей степени от точных (см. (28)) и дают грубую оценку критической точки:

$$\kappa_c = 0.07476 - 0.07490.$$

Более точную оценку κ_c можно получить, если заметить [6], что в скалярном случае имеем p = 1/3, так что комбинация $\chi_4/\chi_2 \sim f_4 f_2$ ведет себя как τ^{-3} и не содержит логарифмов. Как ясно из табл. 2, паде-анализ этой величины действительно дает показатель степени, близкий к точному, а соответствующая оценка κ_c ,

$$\kappa_c = 0.07481 \div 0.07487,\tag{30}$$

N	$[\ln f_0(\kappa)]'$	$[\ln f_2(\kappa)]'$	$[\ln f_4(\kappa)]'$
2	0.07519 (1.130)	$0.07510 \ (-1.113)$	$0.07442 \ (-1.832)$
3	$0.07521 \ (1.131)^*$	$0.07543\ (-1.085)$	$0.07419\ (-1.814)$
4	$0.07502 \ (1.116)$	$0.07497\ (-1.101)$	$0.07476\ (-1.879)$
5	$0.07480\ (1.063)$	$0.07513\ (-1.103)$	$0.07477\ (-1.881)$
6	$0.07486\ (1.082)$	$0.07490\ (-1.088)$	$0.07476\ (-1.879)$

Таблица 1. Положение полюса, соответствующего критической точке κ_c , и вычет в нем (в скобках) для падеаппроксимант [N/N] функций $[\ln f_i(\kappa)]'$

Примечание. В табл. 1–4 звездочкой отмечены дефектные аппроксиманты. «Дефектом» в паде-анализе называют появление пары близких по величине полюса и корня, в результате чего соответствующая паде-аппроксиманта фактически сводится к аппроксиманте более низкого порядка. Дефектность аппроксиманты может приводить к потере точности и является основанием для ее дискриминации.

Таблица 2. Положение полюса, соответствующего критической точке, и вычет в нем (в скобках) для различных паде-аппроксимант функции $[\ln f_4 f_2)]'$

N	[N+1/N]	[N/N]	[N/N + 1]
2	$0.07418 \ (-2.871)$	$0.07461 \ (-2.936)$	$0.07558 \ (-2.963)$
3	$0.07488\ (-2.993)$	$0.07450\ (-2.923)$	$0.07465\ (-2.946)$
4	$0.07486\ (-2.988)$	$0.07485\ (-2.986)$	$0.07486\ (-2.988)$
5	$0.07487\ (-2.989)$	$0.07486 \ (-2.987)^*$	$0.07491 \ (-2.998)^*$
6	$0.07481 \ (-2.970)$	$0.07484\ (-2.983)$	$0.07483\ (-2.978)$

является почти окончательной и лишь немного уточнится в дальнейшем. Центральное значение (30) практически совпадает с результатом $\kappa_c =$ = 0.074834(15), полученным в работе [6] в результате более изощренной обработки.

3.3. Первое приближение

В этом приближении полагаем

$$f_0 = \tilde{f}_0 |\ln \tau|^{-p}, \quad f_2 = \tilde{f}_2 |\ln \tau|^p, f_4 = \tilde{f}_4 |\ln \tau|^{2p-1}$$
(31)

и подвергаем паде-анализу функции \tilde{f}_i . Поскольку соотношение $\tau = A(\kappa_c - \kappa)$ содержит неуниверсальный множитель A, можно принять

$$|\ln \tau| = A_0 - \ln \left(1 - \frac{\kappa}{\bar{\kappa}_c}\right), \qquad (32)$$

где свободный параметр A_0 и пробное значение $\bar{\kappa}_c$ для критической точки используются для точной подгонки показателя степени и получения самосогласованного результата для κ_c . Как ясно из табл. 3, такая подгонка не представляет проблемы, а хорошие результаты для показателя степени получаются в широком интервале значений A_0 . Оптимальные значения A_0 лежат в интервале 0.13–0.63, а новая оценка критической точки

$\kappa_c = 0.07483 - 0.07489$

лишь слегка сдвинута по сравнению с (30). Результаты для константы c_0 в соотношении (29) представлены на рис. 1*a*: они близки к теоретическому значению $c_0^{th} = 35.09$, но оказываются систематически выше его.

Аналогичные неточности в определении c_0 наблюдались в других работах. Использование констант A, B, D для простой гиперкубической решетки из табл. 5 работы [7] дает оценку $c_0 = B/A^2D^4 =$ = 142.8 вместо теоретического результата 105.2, относящегося к используемой нормировке. Еще более худшая оценка получена в работе [10]; совсем плохие результаты (расхождение в 9 и 18 раз) получаются для других решеток [7]. Удовлетворительная проверка соотношения (29) декларирована в работе [9],

Рис.1. *а*) Зависимость константы *c*₀ в соотношении (29) от параметра *A*₀ в главном логарифмическом приближении; *б*) зависимость *c*₀ от *g* во втором логарифмическом приближении

A_0	$[\ln \widetilde{f}_0(\kappa)]'$	$[\ln \widetilde{f}_2(\kappa)]'$	$[\ln \tilde{f}_4(\kappa)]'$
	$[6/6], \bar{\kappa}_c = 0.074842$	$[6/6], ar\kappa_c = 0.074834$	$[6/5],ar\kappa_c=0.074890$
2.0	$0.07491 \ (1.037)^*$	$0.07486 \ (-1.023)$	$0.07488 \ (-1.968)^*$
1.0	$0.07487\ (1.018)$	$0.074844 \ (-1.007)$	$0.07493 \ (-1.989)^*$
0.625	_	$0.074834\ (-1.00005)$	_
0.5	$0.074855\ (1.0085)$	$0.07482 \ (-0.996)$	$0.07477 \ (-1.960)$
0.25	$0.074846\ (1.0029)$	$0.07475\ (-0.973)$	$0.07488 \ (-1.996)$
0.2	_	_	$0.074890\ (-1.9994)$
0.13	$0.0748420\ (1.00005)$	_	-
0.1	$0.074840\ (0.9993)$	$0.07483 \ (-0.990)^*$	$0.07490 \ (-2.0044)$
0.06	$0.07487\ (1.0033)$	$0.07482 \ (-0.988)^*$	$0.07491 \ (-2.0063)$

Таблица 3. Паде-анализ функций $\tilde{f}_i(\kappa)$, введенных согласно формуле (31)

в которой проверялось не само соотношение (29), а его следствие $dg^{-1}/d \ln \tau = 1/c_0$; при этом центральное значение c_0 примерно соответствует рис. 1a, а согласие с теорией достигнуто за счет увеличения неопределенности результатов, происходящего из-за дифференцирования.

3.4. Второе приближение

Результаты (25), (28) получены в главном логарифмическом приближении. Во втором логарифмическом приближении (см. Приложение А) они принимают вид

$$f_0 = h_0 \tau (f_{sing})^{-p}, \quad f_2 = h_2 \tau^{-1} (f_{sing})^p h_{sing}, \\ f_4 = h_4 \tau^{-2} (f_{sing})^{2p-1},$$
(33)

где функции $h_i(\kappa)$ регулярны при $\kappa \to \kappa_c$, а сингулярные функции выбраны в виде

$$f_{sing}(\kappa) = 1 - \bar{g}\ln\tau + s\bar{g}\ln\left(1 - \bar{g}\ln\tau\right), \qquad (34)$$

$$h_{sing}(\kappa) = 1 + q \frac{\bar{g}}{f_{sing}(\kappa)}, \quad \tau = 1 - \frac{\kappa}{\kappa_c}, \qquad (35)$$

где

$$s = \frac{2\beta_3}{\beta_2^2} - \frac{\zeta_1}{\beta_2} = \frac{n^2 - 8n - 68}{(n+8)^2},$$

$$q = \frac{2\delta_2}{\beta_2^2} = \frac{n+2}{(n+8)^2}.$$
 (36)

Основное отличие от формул (28) сводится к замене $|\ln \tau|$ на $|\ln \tau| + s \ln |\ln \tau|$ с известным параметром s; неоднозначность нормировки τ приводит к необходимости рассмотрения комбинаций $A + |\ln \tau| + s \ln(B + |\ln \tau|)$, где константы A и B различны для разных функций; формально последние не влияют на характер сингулярности, однако их неудачный выбор может сильно исказить результаты. Во избежание большого числа подгоночных параметров мы приняли для $f_{sing}(\kappa)$ функциональную форму, следующую из теории возмущений. Разумность такого выбора, на наш взгляд, определяется

\bar{g}	$[\ln \tilde{f}_{0}(\kappa)]'$ [6/6], $\bar{\kappa}_{c} = 0.074843$	$[\ln \tilde{f}_{2}(\kappa)]'$ [6/6], $\bar{\kappa}_{c} = 0.074840$	$[\ln { ilde f}_4(\kappa)]'$ [6/5], $ar \kappa_c = 0.074867$
0.5	$0.07492 \ (1.036)^*$	0.07488 (-1.024)	$0.07487 (-1.968)^*$
0.7	$0.07488 \ (1.019)^*$	$0.07485 \ (-1.0096)$	$0.07491 \ (-1.988)^*$
0.85	_	$0.074840 \ (-1.0008)$	-
0.9	$0.07485\ (1.0052)$	$0.074836\ (-0.998)$	$0.074877 \; (-1.994)$
0.99	$0.074843\ (1.00005)$	_	_
1.0	$0.074842\ (0.9995)$	$0.07483 \ (-0.994)$	$0.074865\ (-1.997)$
1.06	_	-	$0.074867\ (-2.0001)$
1.2	$0.07482\ (0.988)$	$0.07476 \ (-0.976)^*$	$0.07488\ (-2.010)$

Таблица 4. Паде-анализ функций $\tilde{f}_i(\kappa)$, введенных согласно формуле (37)

следующим. Параметр \bar{g} имеет смысл числа Гинзбурга и определяет размер критической области, в которой существенны логарифмические поправки; его оценка представляет физический интерес, так как число Гинзбурга часто оказывается малым даже при отсутствии на то теоретических оснований. При малых \bar{g} функция $f_{sing}(\kappa)$ почти везде близка к единице, но резко возрастает в окрестности κ_c ; при неудачном выделении сингулярности регулярные функции $h_i(\kappa)$ в формуле (33) окажутся быстро меняющимися в окрестности к_с и будут плохо воспроизводиться паде-аппроксимантами. Однако для малых \bar{g} форма (34) является фактически точной, так что функции $h_i(\kappa)$ оказываются почти постоянными. При $\bar{g} \gtrsim 1$ форма (34) не является вполне правильной, но в этом случае неточность в выделении сингулярностей не столь критична, так как функция $f_{sing}(\kappa)$ меняется сравнительно медленно.

Универсальный выбор $f_{sing}(\kappa)$ для всех функций возможен в пренебрежении вкладами $O(\bar{g})$ на фоне единицы (см. Приложение А), так что учет множителей типа $h_{sing}(\kappa)$, строго говоря, является превышением точности. Однако в некоторых случаях такие множители имеют качественное значение и в формуле (33) они учтены «минимальным» образом: при такой записи комбинация f_0f_2 имеет правильную сингулярность и обеспечивает правильное поведение $\eta(g)$ при малых g; аналогично, комбинация f_4f_2 получается не вполне свободной от логарифмов, что позволяет несколько подправить отклонения, наблюдаемые в табл. 2.

Если функци
и \tilde{f}_i вместо (31) ввести соотношениями

$$f_{0} = \tilde{f}_{0} (f_{sing})^{-p}, \quad f_{2} = \tilde{f}_{2} (f_{sing})^{p} h_{sing}, f_{4} = \tilde{f}_{4} (f_{sing})^{2p-1},$$
(37)

то их паде-анализ приводит к табл. 4; оценка параметра c_0 в формуле (29) иллюстрируется на рис. 1*б.* Легко видеть, что актуальный интервал значений \bar{g} оказывается значительно более узким, чем в главном логарифмическом приближении (где $1/A_0$ аналогично \bar{g}). Разброс оптимальных значений \bar{g} для разных функций составляет 0.85–1.06, что дает для c_0 оценку

$$c_0 = 36.3 \pm 1.8 \tag{38}$$

в хорошем согласии с теоретическим значением 35.09. Точное значение c_0 реализуется при $\bar{g} \approx 1.02$ (рис. 16). Наконец, табл. 4 дает максимально точную оценку критической точки

$$\kappa_c = 0.074840 - 0.074867, \tag{39}$$

доступную в пределах имеющейся информации. В дальнейшем принимаем значение $\kappa_c = 0.074850$ из середины интервала (39) и значение $\bar{g} = 1.020385$, обеспечивающее точное значение c_0 для аппроксиманты [3/3].

4. РЕЗУЛЬТАТЫ ДЛЯ РГ-ФУНКЦИЙ

Производные от сингулярных функций могут быть записаны в виде

$$[\ln f_{sing}]' = \frac{u_1(\tau)}{\kappa_c \tau}, \quad [\ln f_{sing}]'' = \frac{u_2(\tau)}{(\kappa_c \tau)^2},$$

$$[\ln h_{sing}]' = \frac{v_1(\tau)}{\kappa_c \tau}, \quad [\ln h_{sing}]'' = \frac{v_2(\tau)}{(\kappa_c \tau)^2},$$

$$(40)$$

где

$$u_{1}(\tau) = \frac{\bar{g}}{f_{sing}} \left(1 + \frac{s\bar{g}}{1 - \bar{g}\ln\tau} \right),$$

$$u_{2}(\tau) = \frac{\bar{g}}{f_{sing}} \left\{ 1 + \frac{s\bar{g}}{1 - \bar{g}\ln\tau} - \frac{s\bar{g}^{2}}{(1 - \bar{g}\ln\tau)^{2}} \right\} - u_{1}(\tau)^{2}, \quad (41)$$

$$v_1(\tau) = -\frac{qg}{f_{sing}(f_{sing} + q\bar{g})} \left(1 + \frac{sg}{1 - \bar{g}\ln\tau}\right),$$

0

$$v_2(\tau) = -\frac{q\bar{g}^2}{f_{sing}(f_{sing} + q\bar{g})} \times \\ \times \left\{ 1 + \frac{s\bar{g}}{1 - \bar{g}\ln\tau} - \frac{s\bar{g}^2}{(1 - \bar{g}\ln\tau)^2} - \left(\frac{\bar{g}}{f_{sing}} + \frac{\bar{g}}{f_{sing} + q\bar{g}}\right) \left(1 + \frac{s\bar{g}}{1 - \bar{g}\ln\tau}\right)^2 \right\}.$$

Подставляя (33) в (18) с учетом (40), получим параметрическое представление для РГ-функций в виде

$$g = \frac{H(\kappa)}{\kappa^2 f_{sing}}, \quad H(\kappa) = h_4 h_0^2,$$

$$\frac{\beta(g)}{g} = \frac{2\kappa_c \tau \left(2 - \kappa \left[\ln h_4 h_0^2\right]'\right) + 2\kappa u_1}{\kappa_c \tau \left(1 - \kappa \left[\ln h_0\right]'\right) + \kappa \left(1 + p u_1\right)}, \quad (42)$$

$$\eta(g) = \frac{-2\kappa_c \tau \kappa \left[\ln h_0 h_2\right]' - 2\kappa v_1}{\kappa_c \tau \left(1 - \kappa \left[\ln h_0\right]'\right) + \kappa \left(1 + p u_1\right)},$$

$$\eta_2(g) = -2\left\{\left(\kappa_c \tau\right)^2 \left(1 - \kappa^2 \left[\ln h_2\right]''\right) + \left(1 + p u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + p u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + p u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + p u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + p u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + p u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + p u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + p u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + \mu u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + \mu u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + \mu u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + \mu u_1 + v_1\right)\right]^2 - \frac{1}{\kappa_c \tau} \left(1 + \kappa \left[\ln h_2\right]'\right) + \kappa \left(1 + \kappa \left[\ln h_2$$

$$-\kappa^{2}(1 + pu_{2} + v_{2})\} \times \\ \times \{\kappa_{c}\tau (1 - \kappa[\ln h_{0}]') + \kappa(1 + pu_{1})\}^{-1} \times \\ \times \{\kappa_{c}\tau (1 + \kappa[\ln h_{2}]') + \kappa(1 + pu_{1} + v_{1})\}^{-1}$$

Независимо от вида регулярных функций при
 $\kappa \to 0$ получаются асимптотики (19), тогда как пр
и $\tau \to 0$ имеем

$$g = \frac{2\bar{g}}{\beta_2 f_{sing}}, \quad \frac{\beta(g)}{g} = \frac{2\bar{g}}{f_{sing}} + \frac{2(s-p)\bar{g}^2}{f_{sing}^2},$$

$$\eta(g) = \frac{2q\bar{g}^2}{f_{sing}^2}, \quad \eta_2(g) = -\frac{2p\bar{g}}{f_{sing}},$$
(43)

что воспроизводит в (26) два первых члена разложения для $\beta(g)$ и первые члены для $\eta(g)$ и $\eta_2(g)^{1}$.

Рис.2. Регулярные функции $H(\kappa)$, $[\ln h_i(\kappa)]'$, полученные в результате паде-аппроксимации

0.5

0

В пренебрежении членами с τ выражения (42) дают для РГ функций регулярные разложения по g (разумеется, не воспроизводя правильных коэффициентов), а члены с τ дают сингулярность вида $\exp(-\text{const}/g)$, которая должна существовать из-за факториальной расходимости рядов теории возмущений [20, 21]. Таким образом, параметрическое представление оказывается достаточно «умным» и обеспечивает правильные аналитические свойства при $g \to 0$.

Точность всего построения определяется точностью определения регулярных функций $h_i(\kappa)$; из соотношений (33) для них получается разложение по κ , по которому затем строятся паде-аппроксиманты. Последние имеют регулярное поведение на интервале $(0, \kappa_c)$, поскольку все сингулярности уже выделены. Полученные регулярные функции показаны на рис. 2. Для функций $H(\kappa)$ и $[\ln h_0(\kappa)]'$ все аппроксиманты дают практически совпадающие результаты; для функции $[\ln h_4(\kappa)]'$ имеются небольшие различия в окрестности κ_c (рис. 2). Менее удовлетворительна ситуация с функцией $[\ln h_2(\kappa)]'$, для которой повышение порядка паде-аппроксимации приводит к нарастающим отклонениям от регулярного поведения, предсказываемого низшими аппроксимантами. Остается неясным, в достаточной ли степени сошлась последовательность аппроксимаций или такие отклонения будут нарастать и дальше. Бо-

[7/6], [6/7]

 κ/κ_c

6/6].

1.0

¹⁾ Заметим, что коэффициентами β_2 , β_3 , δ_2 , ζ_1 исчерпывается инвариантная (не зависящая от схемы) информация об РГ-функциях и дальнейшее уточнение процедуры (построение третьего и т. д. логарифмического приближения) требует вычисления последующих коэффициентов для соответствующей решеточной регуляризации.

лее того, эти отклонения могут оказаться артефактом, связанным с неполной согласованностью в выделении сингулярностей, в результате чего функция $[\ln h_2(\kappa)]'$ (в используемом приближении) содержит остаточную сингулярность, которую «чувствуют» высшие аппроксиманты. В последнем случае поведение, предсказываемое аппроксимантами [3/3], [2/3], [3/2], может оказаться более достоверным. К счастью, эта дилемма может быть разрешена с помощью разложений сильной связи (разд. 5), которые однозначно указывают на правильность использования высших паде-аппроксимант и удовлетворительность получаемых при этом результатов. В Приложении В приведены параметры используемых аппроксимант для $H(\kappa)$, $[\ln h_i(\kappa)]'$, что позволяет использовать параметрическое представление (42) для практических целей.

Для представления результатов удобно использовать так называемую естественную нормировку заряда, получаемую путем замены $g \to (16\pi^2/3)g$ и соответствующую записи члена взаимодействия в виде²⁾ $(16\pi^2/4!)g_0\varphi^4$; тогда параметр *a* в асимптотике Липатова $ca^N \Gamma(N+b)$ [20, 21] равен единице и ближайшая особенность в борелевской плоскости лежит на единичном расстоянии от начала координат [21], что определяет функции, меняющиеся на масштабе порядка единицы. На рис. 3 сплошными кривыми показаны полученные РГ-функции; штриховые линии соответствуют асимптотикам сильной и слабой связи. Выход на асимптотику сильной связи оказывается сильно затянутым, в соответствии с результатами работы [22]. Однако отмеченная в этой работе затянутость однопетлевого закона для β -функции не подтверждается: она оказывается артефактом, связанным с тем, что предельное значение $\beta(g)/g$ получено в работе [22] в несколько раз большим, чем на рис. 3 [1].

Чтобы дать представление о точности построения, пунктирными линиями показаны результаты в случае, когда функции $h_i(\kappa)$ заменены на константы; при этом из результатов выпадает всякая информация об этих функциях, так как $[\ln h_i]' = 0$, а постоянное значение $H(\kappa)$ фиксируется соотношением (29). Нетрудно видеть, что даже при полном отсутствии информации о регулярных функциях для $\beta(g)/g$ и $\eta_2(g)$ достигается точность около 1 %³⁾. Реальная неточность построения примерно на 2 порядка меньше, чем отличие сплошных кривых от пунктирных, поскольку регулярные функции (рис. 2) определены на уровне лучше, чем 10⁻², за исключением области $\kappa > 0.8\kappa_c$, где ошибка для функции [ln h_2]' может достигать 10 %. Но эта область соответствует значениям заряда g < 0.5 (рис. 4), где влияние регулярных функций незначительно.

5. РАЗЛОЖЕНИЯ СИЛЬНОЙ СВЯЗИ

Раскладывая правые части (18) в ряды по
 κ и выражая κ через
 g,легко убедиться, что для функций
 $\beta(g)/g,~\eta(g),~\eta_2(g)$ справедливы регулярные разложения по
 $g^{-2/d}$

$$\frac{\beta(g)}{g} = \sum_{N=0}^{\infty} B_N \left(-g^{-2/d}\right)^N$$
 и т. д. (44)

Коэффициенты разложения до N = 13, пересчитанные из высокотемпературных рядов, приведены в табл. 5⁴⁾. Легко убедиться, что отношения B_{N+1}/B_N при изменении N остаются одного порядка, что указывает на конечный радиус сходимости. Паде-анализ рядов (44) дает полюса в области $|g^{-1/2}| \sim 0.1$, которые для большинства аппроксимант не лежат на положительной полуоси в соответствии с регулярностью РГ-функций. Чтобы получить правильное степенное поведение при $g \to 0$, нужно использовать аппроксиманты [N/N + 2] для $\beta(g)/g$ и $\eta_2(g)$ и аппроксиманты [N/N+4] для $\eta(g)$. Такая процедура предсказывает δ_2 с точностью около 20 %, тогда как β_2 и ζ_1 оцениваются лишь по порядку величины. Поэтому в области малых g суммирование рядов (44) дает менее точные результаты, чем описанная выше процедура.

В области больших g все аппроксиманты дают практически совпадающие результаты; с точностью около 1 % такое совпадение сохраняется до g = 0.5

²⁾ Традиционная запись $g_0 \varphi^4 / 8$ в *n*-компонентном случае мотивируется тем, что вершина $\Gamma^{(4)}_{\alpha\beta\gamma\delta} = g I_{\alpha\beta\gamma\delta}$ в низшем порядке равна $g_0 I_{\alpha\beta\gamma\delta}$, что обеспечивает соотношение $g = g_0$ при $g_0 \to 0$. В скалярном случае тензор $I_{\alpha\beta\gamma\delta}$ сводится к трем и в определение заряда вносится дополнительная тройка, поэтому взаимодействие записывается как $g_0 \varphi^4 / 4!$. Эта, на первый взгляд, логичная мотивация в действительности оказывается иллюзорной, так как затравочный заряд не имеет никакого физического смысла.

³⁾ Причина этого состоит в наличии перед $[\ln h_i]'$ (см. (42)) множителя $\kappa\kappa_c\tau = \kappa(\kappa_c - \kappa)$, малого как при $\kappa \to 0$, так и при $\kappa \to \kappa_c$; в середине интервала $\kappa = \kappa_c/2$ этот множитель равен $\kappa_c^2/4$, тогда как прочие члены имеют порядок κ_c . С учетом $\kappa_c \approx 1/15$ ясно, что влияние регулярных функций на $\beta(g)/g$ и $\eta_2(g)$ находится на уровне около 1%. Для $\eta(g)$ ситуация другая из-за отсутствия в числителе члена порядка $\kappa_c \tau$.

⁴⁾ Мы приводим формально 14 знаков, как они даются компьютером. Фактически начиная с N = 3 происходит постепенное ухудшение точности и при N = 13 последние четыре знака ненадежны.

Рис. 3. Сплошные кривые — результаты для РГ-функций. Штриховыми линиями показаны асимптотики сильной и слабой связи. Пунктирные линии — результаты, полученные в предположении постоянства регулярных функций $h_i(\kappa)$, при котором вся информация о них выпадает из уравнений (42)

(в естественной нормировке). Для функций $\beta(g)$ и $\eta_2(g)$ такие оценки согласуются с полученными выше более точными результатами. В случае функции $\eta(g)$ эти оценки однозначно указывают, что для $[\ln h_2]'$ следует использовать аппроксиманты максимально высокого порядка, а получаемые результаты подтверждаются на уровне около 1 %. По-видимому, ряды (44) можно использовать более эффективно, но исследование этой возможности выходит за пределы работы.

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученная β -функция является знакоопределенной и имеет асимптотическое поведение $\beta(g) = 4g$ при $g \to \infty$. По классификации Боголюбова и

Ширкова [23] (см. обсуждение в работе [1]) это означает возможность построения континуальной теории с конечным взаимодействием на больших расстояниях. Последний вывод противоречит широко распространенным представлениям о «тривиальности» теории φ^4 [24–28]. Фактически, как обсуждалось в работах [1, 30], в литературе были смешаны два определения: тривиальности по Вильсону [24] и тривиальности в математическом смысле [25, 26]. Если первую можно считать твердо установленной (она соответствует положительности β -функции), то свидетельства в пользу второй немногочисленны [27] и допускают другую интерпретацию [1, 30]. В результате проведенного выше анализа можно констатировать, что в отношении свойств решеточной теории φ^4 у нас нет противоречий ни с одной из работ, цитированных в [1, 30]. Однако имеется про-

Рис. 4. Зависимость перенормированного заряда g(a) и перенормированной массы m(b) от κ/κ_c

N	eta(g)/g	$\eta(g)$	$\eta_2(g)$
0	4.000000000000000000000000000000000000	0.0000000000000	-4.000000000000000000000000000000000000
1	-26.127890589687	0.0000000000000	26.127890589687
2	106.66666666666666666666666666666666666	1.777777777777777777777777777777777777	-60.4444444444444
3	-557.39499924665	-11.612395817638	81.286770723472
4	3214.222222221	29.708641975308	-44.879012345695
5	-16396.702894504	22.708685154477	-1208.7213779957
6	67356.44444432	-961.13125612398	9071.1992161454
7	-139720.34647768	7188.4949076856	-49662.878604241
8	-717634.37037244	-27680.892323840	197619.39191503
9	9878174.8209247	-7609.7703277375	-226822.08364126
10	-59767955.489704	938372.27840847	-3873286.8465521
11	186179701.36334	-7226487.6363735	41826925.334797
12	355069103.58896	27981910.625966	-249549251.38460
13	-8851453360.7421	7407298.5714308	794136522.54618

Таблица 5. Коэффициенты разложения по степеням $g^{-2/d}$ для функций $\beta(g)/g$, $\eta(g)$ и $\eta_2(g)$

тиворечие концептуального характера, которое мы хотим подчеркнуть: оно относится к роли и месту решеточной теории.

Обычная точка зрения исходит из того, что решеточная теория φ^4 дает разумное приближение для истинной полевой теории. Из этой интерпретации следует естественное условие $\xi \gg a$, согласно которому на характерном масштабе изменения поля $\varphi(x)$ должно быть много узлов решетки. Это условие можно либерализовать до $\xi \gtrsim a$ или ужесточить до $\xi/a \to \infty$. В первом случае для перенормированного заряда получается ограничение $g \lesssim 1$ (в «естественной» нормировке) [28], во втором (соответствующем точке фазового перехода) — результат g = 0. Таким

образом, мы приходим к обычным утверждениям: в континуальном пределе $(\Lambda/m \to \infty)$ теория тривиальна, тогда как при наличии обрезания взаимодействие ограничено сверху и не может быть сильным. Последнее обстоятельство используется для верхней оценки массы хиггсовского бозона [28, 29].

Наша позиция состоит в том, что решеточная теория не должна рассматриваться как какое-то приближение к истинной (хотя это и возможно при $g_0 \ll 1$). Континуальная теория в принципе не содержит никакой решетки; решетка же возникает лишь в затравочной теории, которая является вспомогательной конструкцией и в дальнейшем полностью устраняется. Затравочная теория не имеет физического смысла и никакие физические требования к ней неуместны. Если же отказаться от ограничения $\xi \geq a$, то перенормированный заряд может принимать любое значение (рис. 4). Высказанная концепция находится в полном соответствии с «правилами игры», принятыми в математических работах [25, 26], согласно которым континуальный предел $a \rightarrow 0$ берется при произвольно выбранных зависимостях $g_0(a)$ и $m_0(a)$; мы подчиняем их условиям (5).

Фактически единственная альтернатива пертурбативному подходу состоит в том, чтобы все величины, относящиеся к континуальной теории, выразить через функциональные интегралы. Последние зависят от g_0, m_0, Λ и с учетом размерности для заряда, массы и прочих физических величин A_i (наблюдаемых, РГ-функций и пр.) получим

$$g = F_g \left(g_0, m_0 / \Lambda \right), \quad m = \Lambda F_g \left(g_0, m_0 / \Lambda \right),$$

$$A_i = \Lambda^{d_i} F_i \left(g_0, m_0 / \Lambda \right),$$
(45)

где d_i — физическая размерность величины A_i . Из соотношений (45) ясно, что реальное назначение затравочной теории — в том, чтобы обеспечить запись интересующих нас величин в параметрической форме. Физический интерес представляют соотношения величин g, m, A_i между собой; параметрическое же представление не имеет глубокого смысла просто в силу его неоднозначности — его можно записывать в разных формах, переходя от g_0 и m_0/Λ к любой другой паре переменных. Поэтому попытка придать физический смысл затравочной теории сталкивается прежде всего с вопросом: почему какой-то одной из бесчисленного множества параметризаций нужно придавать особое значение?

Исключая g_0 и m_0/Λ в пользу g и m/Λ , имеем

$$A_i = m^{d_i} \tilde{F}_i \left(g, m/\Lambda \right). \tag{46}$$

Для ситуации общего положения исключение зависимости от Λ требует перехода к пределу $m/\Lambda \to 0$, который соответствует критической точке и возвращает нас к «нулю заряда». Однако центральный момент состоит в том, что ситуация общего положения не имеет места в формуле (46): после преобразования к модели Изинга (справедливом при условиях (5)) все функции в формулах (45) зависят от одного параметра κ , в результате чего зависимость от m/Λ в (46) полностью отсутствует⁵⁾:

$$A_i = m^{d_i} F_i(g) \,. \tag{47}$$

Тем самым программа перенормировок полностью выполнена и никаких дополнительных предельных переходов не требуется. Это означает, что а) мы можем сохранить решетку в затравочной теории (как удобный технический инструмент для представления функциональных интегралов) и б) соотношение m и Λ можно считать произвольным, что обеспечивает достижимость произвольного значения g (рис. 4).

Изложенное мы считаем реальной схемой построения континуальной теории φ^4 с конечным взаимодействием. Фактически выше уже получены зависимости *g* и *m* от затравочных параметров (рис. 4) и результаты для РГ-функций (рис. 3).

приложение А

Второе логарифмическое приближение

Приведем основные формулы, относящиеся ко второму логарифмическому приближению, на основе которых записано представление (33). Исходим из уравнения Каллана–Симанчика в схеме обрезания⁶⁾

$$\left[\frac{\partial}{\partial \ln \Lambda} + \beta(g_0) \frac{\partial}{\partial g_0} - \gamma(g_0)\right] F\left(g_0, \frac{\Lambda}{m}\right) = 0, \quad (A.1)$$

где для функции *F* справедливо логарифмическое разложение

$$F\left(g_0, \frac{\Lambda}{m}\right) = \sum_{N=0}^{\infty} g_0^N \sum_{K=0}^N A_N^K \left(\ln\frac{\Lambda}{m}\right)^K.$$
 (A.2)

⁵⁾ В действительности никакого чуда в этом нет, так как переход к континуальному пределу был проведен в процессе преобразования к модели Изинга [2], что определялось потребностями перенормированной (а не затравочной) теории.

⁶⁾ Его отличие от уравнения (10) в данном случае не имеет значения, так как первые коэффициенты β_2 , β_3 , δ_2 , ζ_1 не зависят от ренормировочной схемы.

Подстановка (А.2) в (А.1) с учетом разложений

$$\beta(g_0) = \sum_{M=2}^{\infty} \beta_M g_0^M, \quad \gamma(g_0) = \sum_{M=1}^{\infty} \gamma_M g_0^M$$

приводит к системе рекуррентных соотношений для коэффициентов A_N^K :

$$-KA_N^K = \sum_{M=1}^{N-K+1} \left[\beta_{M+1}(N-M) - \gamma_M \right] A_{N-M}^{K-1}, \quad (A.3)$$
$$K = 1, 2, \dots, N.$$

В частности, для К близких к N имеем

$$-NA_N^N = [\beta_2(N-1) - \gamma_1] A_{N-1}^{N-1}, \qquad (A.4)$$

$$\begin{split} &-(N-1)A_N^{N-1} = \left[\beta_2(N-1)-\gamma_1\right]A_{N-1}^{N-2} + \\ &+ \left[\beta_3(N-2)-\gamma_2\right]A_{N-2}^{N-2}, \end{split}$$

$$-(N-2)A_N^{N-2} = [\beta_2(N-1) - \gamma_1]A_{N-1}^{N-3} + [\beta_3(N-2) - \gamma_2]A_{N-2}^{N-3} + [\beta_4(N-3) - \gamma_3]A_{N-3}^{N-3}$$

и т. д. Первое уравнение (А.4) решается непосредственно, после чего последующие уравнения могут быть решены одно за другим методом вариации постоянной.

Вершина $\Gamma^{(1,2)}$. Для этой вершины $\gamma(g_0) = \eta_2(g_0)$ и все коэффициенты A_N^N отличны от нуля, причем $A_0^0 = 1$; первые два уравнения (А.4) дают

$$A_N^N = (-\beta_2)^N \frac{\Gamma(N+p)}{\Gamma(p)\Gamma(N+1)},$$

$$p = -\frac{\gamma_1}{\beta_2} = -\frac{\zeta_1}{\beta_2},$$
(A.5)

$$A_N^{N-1} = (-\beta_2)^{N-1} \frac{\Gamma(N+p)}{\Gamma(1+p)\Gamma(N)} \times \left\{ p \frac{\beta_3}{\beta_2} \sum_{n=1}^{N-1} \frac{1}{n+p} + O(1) \right\}.$$

Подстановка в формулу (А.2) и суммирование соответствующих последовательностей с помощью формул

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\Gamma(n-\alpha)}{\Gamma(-\alpha)\Gamma(n+1)} \, (-x)^n, \qquad (A.6)$$

$$(1+x)^{\alpha}\ln(1+x) = \sum_{n=0}^{\infty} \frac{\Gamma(n-\alpha)}{\Gamma(-\alpha)\Gamma(n+1)} (-x)^n \sum_{k=0}^{n-1} \frac{1}{\alpha-k}$$

дает

$$\Gamma^{(1,2)} = \left\{ 1 + O(g_0) + \beta_2 g_0 \ln \frac{\Lambda}{m} + g_0 \frac{\beta_3}{\beta_2} \ln \left(1 + \beta_2 g_0 \ln \frac{\Lambda}{m} \right) \right\}^{-p}.$$
 (A.7)

Члены $O(g_0)$, имеющиеся здесь и в последующих выражениях, в дальнейшем будем опускать.

Перенормированный заряд д удовлетворяет уравнению (А.1) с $\gamma(g_0) \equiv 0$, тогда как в разложении (А.2) все коэффициенты A_N^N равны нулю, а $A_1^0 = 1$. Аналогично (А.5) и (А.7) имеем

$$A_N^{N-1} = (-\beta_2)^{N-1},$$

$$A_N^{N-2} = (-\beta_2)^{N-2} (N-1) \times$$

$$\times \left\{ \frac{\beta_3}{\beta_2} \sum_{n=1}^{N-1} \frac{1}{n} + O(1) \right\}$$
(A.8)

И

$$g = g_0 \left\{ 1 + \beta_2 g_0 \ln \frac{\Lambda}{m} + g_0 \frac{\beta_3}{\beta_2} \ln \left(1 + \beta_2 g_0 \ln \frac{\Lambda}{m} \right) \right\}^{-1}, \quad (A.9)$$

что легко получить и просто из уравнения Гелл-Манна-Лоу.

Перенормированная масса. В пренебрежении *Z*-фактором тождество Уорда

$$\Gamma^{(1,2)} = \frac{d}{dm_0^2} \Gamma^{(0,2)} = \frac{d}{dm_0^2} \frac{m^2}{Z}$$
(A.10)

можно записать в виде $dm_0^2/dm^2 = 1/\Gamma^{(1,2)}$; интегрирование по m^2 с нужной точностью сводится к умножению на m^2 ,

$$m^{2} = (m_{0}^{2} - m_{c}^{2}) \left\{ 1 + \beta_{2}g_{0}\ln\frac{\Lambda}{m} + g_{0}\frac{\beta_{3}}{\beta_{2}} \times \ln\left(1 + \beta_{2}g_{0}\ln\frac{\Lambda}{m}\right) \right\}^{-p}, \quad (A.11)$$

где m_c^2 — значение m_0^2 , соответствующее точке перехода. Вводя безразмерное расстояние до перехода $\tau \propto (m_0^2 - m_c^2)$ и исключая итерационным образом m из правой части, имеем

$$m^{2} = \tau \left[1 + \bar{g} \ln \frac{1}{\tau} + s\bar{g} \ln \left(1 + \bar{g} \ln \frac{1}{\tau} \right) \right]^{-p},$$
(A.12)
$$\bar{g} = \frac{\beta_{2}g_{0}}{2},$$

	$H(\kappa)$		$[\ln h_0(\kappa)]'$	
n	p_n	q_n	p_n	q_n
0	0.166666	1.000000	-2.389114	1.000000
1	2.173343	12.28756	39.93594	1.218909
2	-8.874246	-6.056224	134.2565	-14.76806
3	103.5876	-124.8396	-1759.943	498.1762
4	0	0	14434.97	-2468.179
	$[\ln h_2(\kappa)]'$		$[\ln h_4(\kappa)]'$	
n	p_n	q_n	p_n	q_n
0	2.416517	1.000000	5.530725	1.000000
1	-50.63241	-3.794992	13.37787	21.09480
2	-345.9676	-201.7335	630.6971	57.28333
3	9156.772	738.3887	3430.220	252.1934
4	-1285.833	4787.275	0	10511.06
5	-267488.9	-26827.13	0	0
6	109199.7	363530.4	0	0

Таблица 6. Параметры паде-аппроксимации (24) регулярных функций

где *s* определено в формуле (36). Аналогично, (А.9) примет вид

и опуская несущественный постоянный множитель, имеем с нужной точностью

$$g = \frac{1}{\beta_2} \times \bar{g} \left\{ 1 + \bar{g} \ln \frac{1}{\tau} + s\bar{g} \ln \left(1 + \bar{g} \ln \frac{1}{\tau} \right) \right\}^{-1}.$$
 (A.13)

Z-фактор удовлетворяет уравнению (А.1) с $\gamma(g_0) = -\eta(g_0)$, а в разложении (А.2) $A_0^0 = 1$, $A_1^0 = A_1^1 = 0$ и все коэффициенты A_N^N с $N \ge 2$ равны нулю. Аналогично (А.8) имеем для $N \ge 2$

$$A_N^{N-1} = A_2^1 (-\beta_2)^{N-2} ,$$

$$A_N^{N-2} = A_2^1 (-\beta_2)^{N-2} (N-1) \times$$

$$\times \left\{ -\frac{\beta_3}{\beta_2^2} \sum_{n=2}^{N-1} \frac{1}{n} + O(1) \right\} ,$$
(A.14)

что после суммирования дает

 $\mathbf{2}$

$$Z = 1 + \frac{A_2^1 g_0}{\beta_2} - \frac{A_2^1 g_0}{\beta_2} \left\{ 1 + \beta_2 g_0 \ln \frac{\Lambda}{m} + g_0 \frac{\beta_3}{\beta_2} \ln \left(1 + \beta_2 g_0 \ln \frac{\Lambda}{m} \right) \right\}^{-1}.$$
 (A.15)

Учитывая связь $A_2^1 = -\delta_2$, выражая m через au

$$Z = 1 + \frac{2\delta_2}{\beta_2^2} \bar{g} \left\{ 1 + \bar{g} \ln \frac{1}{\tau} + s\bar{g} \ln \left(1 + \bar{g} \ln \frac{1}{\tau} \right) \right\}^{-1}.$$
 (A.16)

Учитывая соотношения

$$\frac{K_2}{\tilde{K}_2} = m^2, \quad \frac{K_2}{K_0} = \frac{Z}{m^2}, \quad \frac{K_4 K_0}{K_2^2} = -\frac{g}{m^4} \quad (A.17)$$

и подставляя (А.12), (А.13), (А.16), придем к формулам (ЗЗ) для $f_i(\kappa)$. Отличие Z-фактора от единицы соответствует поправкам порядка $g_0/\ln \tau$, которыми мы систематически пренебрегали, и строго говоря, является превышением точности. Однако без учета Z-фактора комбинация f_0f_2 окажется регулярной функцией, что приведет к неправильному поведению $\eta(g)$ при малых g. Поэтому функция h_{sing} , соответствующая Z-фактору, введена в формулах (ЗЗ) минимальным образом для обеспечения правильной сингулярности в f_0f_2 .

приложение в

Паде-аппроксимация регулярных функций

В табл. 6 приведены коэффициенты p_n , q_n в выражении (24) для паде-аппроксимации регулярных функций $H(\kappa)$, $[\ln h_i(\kappa)]'$; даются аппроксиманты наиболее низкого порядка, которые по нашим представлениям имеют полную точность. При выделении сингулярностей использовались значения $\kappa_c = 0.074850$ и $\bar{g} = 1.020385$.

ЛИТЕРАТУРА

- 1. И. М. Суслов, ЖЭТФ 134, 490 (2008).
- **2**. И. М. Суслов, ЖЭТФ **138**, 508 (2010).
- **3**. И. М. Суслов, ЖЭТФ **135**, 1129 (2009).
- 4. E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in *Phase Transitions and Critical Phenomena*, ed. by C. Domb, M. S. Green, Academic, New York (1976), Vol. VI.
- D. S. Gaunt and A. J. Guttmann, in *Phase Transitions* and *Critical Phenomena*, ed. by C. Domb, M. S. Green, Academic, New York (1974), Vol. 3.
- S. Mc Kenzie, M. F. Sykes, and D. S. Gaunt, J. Phys. A: Math. Gen. 12, 871 (1979).
- S. Mc Kenzie and D. S. Gaunt, J. Phys. A: Math. Gen. 13, 1015 (1980).
- S. Mc Kenzie, M. F. Sykes, and D. S. Gaunt, J. Phys. A: Math. Gen. 12, 743 (1978).
- 9. P. Butera and M. Comi, hep-th/0112225.
- 10. J. K. Kim and A. Patrascioiu, Phys. Rev. D 47, 2588 (1993).
- 11. A. Vladikas and C. C. Wong, Phys. Lett. B 189, 154 (1987).

- 12. R. Kenna and C. B. Lang, Phys. Rev. E 49, 5012 (1994).
- W. Bernreuther, M. Cockeler, and M. Kremer, Nucl. Phys. B 295 [FS21], 211 (1988).
- 14. A. J. Guttmann, J. Phys. A: Math. Gen. 11, L103 (1978).
- C. A. de Carvalho, S. Caracciolo, and J. Frölich, Nucl. Phys. B 215 [FS7], 209 (1983).
- 16. P. Grassberger, R. Hegger, and L. Schafer, J. Phys. A: Math. Gen. 27, 7265 (1994).
- А. И. Ларкин, Д. Е. Хмельницкий, ЖЭТФ 56, 2087 (1969).
- 18. M. Lüscher and P. Weisz, Nucl. Phys. B 300, 325 (1988).
- G. A. Baker, Essentials of Pade-Approximants, Academic, New York (1975).
- 20. Л. Н. Липатов, ЖЭТФ 72, 411 (1977).
- **21**. И. М. Суслов, ЖЭТФ **127**, 1350 (2005).
- **22**. И. М. Суслов, ЖЭТФ **120**, 5 (2001).
- **23**. Н. Н. Боголюбов, Д. В. Ширков, Введение в теорию квантованных полей, Наука, Москва (1976).
- 24. К. Вильсон, Дж. Когут, Ренормализационная группа и є-разложение, Мир, Москва (1975).
- 25. J. Frölich, Nucl. Phys. B 200 [FS4], 281 (1982).
- 26. M. Aizenman, Comm. Math. Soc. 86, 1 (1982).
- 27. B. Freedman, P. Smolensky, and D. Weingarten, Phys. Lett. B 113, 481 (1982).
- M. Lüscher and P. Weisz, Nucl. Phys. B 290 [FS20], 25 (1987); 295 [FS21], 65 (1988); 318, 705 (1989).
- 29. R. F. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983).
- 30. I. M. Suslov, arXiv: 0806.0789.