НЕРАВНОВЕСНАЯ КРИТИЧЕСКАЯ РЕЛАКСАЦИЯ СТРУКТУРНО НЕУПОРЯДОЧЕННЫХ СИСТЕМ В КОРОТКОВРЕМЕННОМ РЕЖИМЕ: РЕНОРМГРУППОВОЕ ОПИСАНИЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

В. В. Прудников^{*}, П. В. Прудников, И. А. Калашников, М. В. Рычков

Омский государственный университет им. Ф. М. Достоевского 644077, Омск, Россия

Поступила в редакцию 3 августа 2009 г.

Исследовано влияние неравновесных начальных состояний на эволюцию анизотропных систем с замороженными некоррелированными дефектами структуры в критической точке. Впервые реализовано теоретико-полевое описание неравновесного критического поведения непосредственно трехмерных систем и проведен расчет динамического критического индекса коротковременной эволюции в двухпетлевом приближении без использования ε -разложения. Численные значения динамических критических индексов, полученные с применением методов суммирования асимптотических рядов, были сопоставлены с результатами проведенного в данной работе компьютерного моделирования неравновесного критического поведения трехмерной неупорядоченной модели Изинга в коротковременном режиме. Показано, что значения вычисленных в данной работе критических индексов находятся в лучшем соответствии с результатами компьютерного моделирования, чем результаты применения метода ε -разложения.

1. ВВЕДЕНИЕ

Данная работа посвящена исследованию одновременного влияния эффектов нарушения пространственной трансляционной симметрии системы, создаваемых присутствием дефектов структуры, и эффектов нарушения временной трансляционной симметрии, обусловленных неравновесными начальными условиями системы, на характеристики аномально медленного неравновесного критического поведения различных систем.

В последние годы исследование систем, характеризующихся медленной динамикой, вызывает значительный интерес как с теоретической, так и с экспериментальной точки зрения. Это обусловлено предсказываемыми и наблюдаемыми при медленной эволюции систем из неравновесного начального состояния свойствами старения, характеризуемыми нарушениями флуктуационно-диссипативной теоремы. Хорошо известными примерами подобных систем с медленной динамикой и эффектами старения являются такие комплексные неупорядоченные системы, как спиновые стекла [1, 2]. Однако данные особенности неравновесного поведения, как показали различные аналитические и численные исследования [3, 4], могут наблюдаться и в обычных системах, испытывающих фазовые переходы второго рода, так как их критическая динамика характеризуется аномально большими временами релаксации. Отметим, что введенное ранее для спиновых стекол флуктуационно-диссипативное отношение, связывающее двухвременную спиновую функцию отклика и двухвременную корреляционную функцию и обобщающее флуктуационно-диссипативную теорему на случай неравновесного поведения, оказывается новой универсальной характеристикой для критического поведения различных систем [5].

В последнее десятилетие существенный прогресс был достигнут в понимании и описании неравновесного критического поведения макроскопических систем, далеких от состояния равновесия. Это, прежде всего, относится к явлениям критической релаксации систем при фазовых переходах второго рода и фазовых переходах первого рода близких ко второму [6–8]. Определяющими особенностями неравновесного критического поведения подобных систем

^{*}E-mail: prudnikv@univer.omsk.su

Рис. 1. Схематический график эволюции намагниченности в критической точке из начального состояния с намагниченностью m_0

являются критическое замедление времени релаксации системы и аномально большие времена корреляции различных состояний системы. Данные особенности приводят к реализации динамического скейлингового поведения даже когда системы находятся в состояниях, далеких от состояния равновесия. Основываясь на скейлинговом характере временной зависимости термодинамических и корреляционных функций для неравновесных систем при температурах, близких к критической, в работах [6, 9] был дан ренормгрупповой анализ неравновесной эволюции системы в зависимости от начальных состояний системы, обоснован и предложен численный метод коротковременной динамики. В работе [6] было предсказано, что если начальное состояние ферромагнитной системы характеризуется достаточно высокой степенью хаотизации спиновых переменных со значением относительной намагниченности, далеким от состояния насыщения $(m_0 \ll 1)$, то в критической точке процесс релаксации системы из данного начального неравновесного состояния на макроскопически малых временах будет характеризоваться не уменьшением, а увеличением намагниченности со временем по степенному закону с показателем, характеризуемым новым независимым динамическим критическим индексом θ' : $M(t) \propto t^{\theta'}$. При этом с увеличением времени коротковременная динамика роста параметра порядка сменяется на привычную долговременную динамику уменьшения параметра порядка со временем по степенному закону $M(t) \propto t^{-\beta/z\nu}$ с показателем, определяемым отношением $\beta/z\nu$ со статическими критическими индексами β и ν и динамическим критическим индексом z(рис. 1). Наряду с этим в работе [6] предсказывалась двухвременная зависимость для функции отклика $G(t, t_w)$ и корреляционной функции $C(t, t_w)$, которая в коротковременном режиме принимает вид степенной зависимости от отношения переменных t/t_w $(t_w - время ожидания)$, характеризуемой показателем θ :

$$G(t, t_w) \propto (t/t_w)^{\theta}, \quad C(t, t_w) \propto (t/t_w)^{\theta-1}.$$
 (1)

Для показателе
й θ и θ' было получено [6] связывающее их скейлинговое соотношение

$$\theta' = \theta + (2 - z - \eta)/z,$$

поэтому независимым критическим индексом является лишь один из них. С использованием метода ε -разложения в работе [6] был проведен расчет нового динамического критического индекса θ' (как и показателя θ) в двухпетлевом приближении.

В нашей работе [10] осуществлено расширение проведенного в работе [6] описания неравновесного критического поведения однородных систем на случай учета следующего по порядку теории трехпетлевого приближения при использовании в расчетах метода ε -разложения. Полученное нами [10] значение динамического критического индекса θ' коротковременной эволюции оказалось в очень хорошем согласии с результатами численного исследования трехмерной модели Изинга в коротковременном режиме [7], значительно лучшем, чем результаты двухпетлевого приближения [6].

Структурный беспорядок, обусловленный присутствием примесей или других дефектов структуры, наличие в эффективном гамильтониане нескольких типов конкурирующих взаимодействий, задающих состояние неупорядоченной системы, зачастую играют важную роль в поведении реальных материалов и физических систем. Эти факторы, действующие по отдельности или проявляющиеся одновременно в структурно-неупорядоченных системах, могут индуцировать новые типы фазовых переходов, задавать новые классы универсальности критического поведения, модифицировать кинетические свойства систем и обусловливать низкочастотные особенности в динамике системы [11]. Типичными и важными примерами подобных систем являются неупорядоченные магнитные системы с примесью немагнитных атомов, антиферромагнетики во внешнем магнитном поле, в которых структурный беспорядок индуцирует случайные магнитные поля, спиновые стекла. Статистические особенности описания неупорядоченных систем с замороженным беспорядком и эффекты критического замедления, усиливаемые дефектами структуры, создают значительные трудности как для аналитического описания, так и для численного моделирования поведения

подобных систем. Поэтому для их исследования требуется развитие новых концепций и методов описания.

При низкой концентрации дефектов структуры обычно можно пренебречь их корреляцией в пространственном распределении внутри образца. В этом приближении можно считать, что вызываемые наличием дефектов структуры эффекты типа флуктуаций локальной температуры фазового перехода $T_c(\mathbf{x})$ или случайные поля $h(\mathbf{x})$, сопряженные параметру порядка, описываются гауссовыми законами распределения и являются некоррелированными (δ -коррелированными). Существенность влияния подобного рода дефектов на критическое поведение системы определяется критерием Харриса [12], согласно которому некоррелированные дефекты модифицируют критическое поведение лишь изингоподобных систем.

В работе [13] впервые было исследовано влияние некоррелированных замороженных дефектов структуры на характеристики неравновесного критического поведения и проведен расчет функции отклика, корреляционной функции и показателей их степенной зависимости от времени в коротковременном режиме в первом порядке теории с использованием метода є-разложения. В работе [14] было осуществлено расширение проведенного в работе [13] исследования на второй порядок теории также при использовании метода *є*-разложения. Однако для структурно-неупорядоченных систем, описываемых однокомпонентным параметром порядка, из-за возникающего случайного вырождения ренормгрупповых уравнений (β-функций) критическое поведение наиболее интересных изингоподобных систем приходится описывать с использованием разложения по «малому» параметру $\sqrt{\varepsilon}$. Поэтому адекватность анализа результатов расчета характеристик критического поведения для трехмерных неупорядоченных систем при использовании є-разложения $(\varepsilon = 4 - d = 1, d -$ размерность системы) оказывается еще более проблемной, чем для однородных систем, даже при применении к получающимся рядам методов суммирования асимптотических рядов. В работе [14] для динамического критического индекса θ' коротковременной эволюции в силу взаимного сокращения слагаемых низшего порядка по $\sqrt{\varepsilon}$ было получено выражение $\theta' \approx 0.0868\varepsilon$.

В работе [15] была численно исследована трехмерная модель Изинга методом коротковременной динамики при изменении концентрации точечных дефектов в широкой области и получено универсальное значение индекса $\theta' = 0.10(2)$, которое в пре-

делах статистических погрешностей хорошо согласуется с результатами ренормгруппового описания. Однако в работе [15] была допущена методическая некорректность, обусловленная тем, что при определении θ' было использовано только одно начальное значение намагниченности системы с $m_0 = 0.01$, в то время как, согласно работе [7], наиболее правильно было бы находить θ' в асимптотическом пределе $m_0 \rightarrow 0$ на основании результатов измерения временной зависимости намагниченности M(t)с несколькими малыми начальными значениями намагниченности то. Кроме того, при анализе данных M(t) для образцов с различными концентрациями дефектов применялась [15] методика учета поправок к скейлингу с единым для всех концентраций значением динамического индекса $z \approx 2.62$ из работы [16]. Однако данное значение индекса z не соответствует как вычисленному в нашей работе [17] значению z = 2.1792(13) при применении к описанию непосредственно трехмерных систем теоретико-полевого подхода в трехпетлевом приближении, так и значению z = 2.18(10), экспериментально измеренному [18] в слабонеупорядоченном изинговском магнетике Fe_{0.9}Zn_{0.1}F₂. Все это ставит под сомнение корректность полученного в работе [15] значения индекса $\theta' = 0.10(2)$ и позволяет рассматривать его значение и значение $\theta' = 0.0868$ из результатов ренормгруппового описания с использованием ε -разложения лишь как предварительные для последующих более точных исследований.

В данной работе ставится задача исследовать неравновесное критическое поведение слабонеупорядоченной трехмерной модели Изинга и определить динамические критические индексы θ' и z как в рамках теоретико-полевого подхода с фиксированной размерностью системы d = 3 в двухпетлевом приближении с последующим применением к рядам различных методов суммирования, так и численным методом коротковременной динамики для системы со спиновой концентрацией p = 0.80.

2. РЕНОРМГРУППОВОЕ ОПИСАНИЕ НЕРАВНОВЕСНОГО КРИТИЧЕСКОГО ПОВЕДЕНИЯ СТРУКТУРНО-НЕУПОРЯДОЧЕННЫХ СИСТЕМ

Для описания критического поведения структурно-неупорядоченных изинговских систем в состоянии равновесия используется модельный гамильтониан Гинзбурга – Ландау – Вильсона

$$H_{GL}[s] = \int d^{d}x \times \left\{ \frac{1}{2!} \left[\left(\nabla s(\mathbf{x}) \right)^{2} + \tau(\mathbf{x})s^{2}(\mathbf{x}) \right] + \frac{g}{4!}s^{4}(\mathbf{x}) \right\}, \quad (2)$$

где $s(\mathbf{x})$ — поле параметра порядка, $\tau(\mathbf{x})$ — приведенная случайная локальная температура фазового перехода второго рода, g — амплитуда взаимодействия флуктуаций параметра порядка. Случайную температуру можно представить в виде $\tau(\mathbf{x}) = \tau + V(\mathbf{x})$, где τ — приведенная температура фазового перехода для однородной системы, а $V(\mathbf{x})$ — потенциал случайного поля дефектов. Пространственное распределение системы замороженных точечных некоррелированных дефектов характеризуется гауссовым распределением P[V] и полностью определяется значениями первого и второго моментов для случайных величин $V(\mathbf{x})$:

$$\langle \langle V(\mathbf{x}) \rangle \rangle = 0, \quad \langle \langle V(\mathbf{x}) V(\mathbf{y}) \rangle \rangle = v \delta(\mathbf{x} - \mathbf{y}), \quad (3)$$

где v — положительная константа, пропорциональная концентрации дефектов и квадрату величины их потенциала.

Пусть реализация в системе любой конфигурации параметра порядка в момент времени tопределяется условием, что в начальный момент t = 0 для системы с начальной намагниченностью m_0 распределение для поля параметра порядка $s(\mathbf{x}, 0) = s_0(\mathbf{x})$ характеризуется функцией распределения $P[s_0] \propto \exp(-H_0[s_0])$, где

$$H_0[s_0] = \int d^d x \frac{\tau_0}{2} \left[s_0(\mathbf{x}) - m_0(\mathbf{x}) \right]^2, \qquad (4)$$

а τ_0^{-1} — ширина начального распределения намагниченности. Данное гауссово распределение для поля параметра порядка может быть реализовано для температур $T \gg T_c$, при которых еще не возникает дальнодействующих корреляций для флуктуаций параметра порядка.

Будем рассматривать наиболее интересный случай чисто релаксационной критической динамики параметра порядка (модель A в классификации Гальперина—Хоэнберга [19]), для которого динамический критический индекс θ' коротковременной эволюции является принципиально новым и не может быть выражен через известные статические критические индексы и индексы равновесной динамики. Релаксационная динамика параметра порядка задается уравнением Ланжевена

$$\frac{\partial s(\mathbf{x},t)}{\partial t} = -\lambda \frac{\delta H_{GL}[s]}{\delta s(\mathbf{x},t)} + \zeta(\mathbf{x},t), \tag{5}$$

где $H_{GL}[s]$ — гамильтониан Гинзбурга – Ландау – Вильсона (2), λ — кинетический коэффициент, $\zeta(\mathbf{x},t)$ — гауссова случайная сила, моделирующая короткоживущие возбуждения и задаваемая функционалом вероятности

$$P[\zeta] \propto \exp\left[-\frac{1}{4\lambda} \int d^d x \int dt (\zeta(\mathbf{x},t))^2\right],$$

$$\langle \zeta_{\alpha}(\mathbf{x},t) \rangle = 0,$$

$$\langle \zeta_{\alpha}(\mathbf{x},t) \zeta_{\beta}(\mathbf{x}',t') \rangle = 2\lambda \,\delta_{\alpha\beta} \,\delta(\mathbf{x}-\mathbf{x}') \delta(t-t').$$
(6)

В рамках теоретико-полевого описания динамики критических явлений [20, 21] вводится вспомогательное поле $\tilde{s}(\mathbf{x})$, позволяющее провести усреднение по случайным силам $\zeta(x,t)$ и осуществить эквивалентное ланжевеновской динамике описание критической динамики с помощью производящего функционала $W[h, \tilde{h}]$ для динамических корреляционных функций $C(x_1, t_1, x_2, t_2)$ и функций отклика $G(x_1, t_1, x_2, t_2)$ в виде

$$C(\mathbf{x}_{1}, t_{1}, \mathbf{x}_{2}, t_{2}) = \frac{\delta^{2} W[h, \tilde{h}]}{\delta h(\mathbf{x}_{1}, t_{1}) \delta h(\mathbf{x}_{2}, t_{2})} \bigg|_{h, \tilde{h} = 0},$$

$$G(\mathbf{x}_{1}, t_{1}, \mathbf{x}_{2}, t_{2}) = \frac{\delta^{2} W[h, \tilde{h}]}{\delta h(\mathbf{x}_{1}, t_{1}) \delta \tilde{h}(\mathbf{x}_{2}, t_{2})} \bigg|_{h, \tilde{h} = 0},$$

$$W[h, \tilde{h}] = \ln \left\{ \int \mathcal{D}(s, i\tilde{s}) P[V] \times \exp\left(-\mathcal{L}_{V}[s, \tilde{s}, V] - H_{0}[s_{0}]\right) \times \exp\left(-\mathcal{L}_{V}[s, \tilde{s}, V] - H_{0}[s_{0}]\right) \times \exp\left(\int d^{d}x \int_{0}^{\infty} dt(\tilde{h}\tilde{s} + hs)\right) \right\},$$
(7)

в котором функционал действия $\mathcal{L}_{V}[s, \tilde{s}, V]$ системы характеризуется выражением

$$\mathcal{L}_{V}[s,\tilde{s},V] = \int_{0}^{\infty} dt \int d^{d}x \,\tilde{s} \left[\frac{\partial s(\mathbf{x},t)}{\partial t} + \lambda \frac{\delta H_{GL}[s]}{\delta s(\mathbf{x},t)} - \lambda \tilde{s} \right]. \quad (8)$$

Выражение (7) для производящего функционала $W[h, \tilde{h}]$ можно усреднить по случайным полям V(x), задаваемым дефектами структуры,

$$\int dV P[V] \exp\left(-\mathcal{L}_V[s,\tilde{s},V]\right) = \exp\left(-\mathcal{L}[s,\tilde{s}]\right), \quad (9)$$

и получить функционал действия $\mathcal{L}[s, \tilde{s}]$, не зависящий от случайных полей V(x) и являющийся трансляционно инвариантным, в следующем виде [14]:

Рис.2. Диаграммы, определяющие вклад в вершинные функции $\Gamma_{1,0}^{(i)}$. Линиям соответствуют затравочные корреляторы $C_0^{(i)}$, линиям со стрелкой — затравочные функции отклика G_0 , вершине взаимодействия g — жирная точка, вершине v — волнистая линия. «Поверхность» t = 0 обозначена вертикальной чертой

$$\mathcal{L}[s,\tilde{s}] = \int_{0}^{\infty} dt \int d^{d}x \,\tilde{s} \left[\frac{\partial s}{\partial t} + \lambda (\tau - \nabla^{2})s + \frac{\lambda g}{6}s^{3} - \lambda \tilde{s} \right] - v \frac{\lambda^{2}}{2} \left[\int_{0}^{\infty} dt \int d^{d}x \,\tilde{s}s \right]^{2}.$$
 (10)

Рассмотрение гауссовой составляющей функционала (10) при g = 0, v = 0 позволяет при граничном условии Дирихле ($\tau_0 = \infty$) получить выражения для затравочной функции отклика $G_0(q, t - t')$ и затравочной корреляционной функции $C_0^{(D)}(q, t, t')$ [6]:

$$G_0(q, t - t') = \exp[-\lambda(q^2 + \tau)|t - t'|], \qquad (11)$$

$$C_0^{(D)}(q,t,t') = C_0^{(e)}(q,t-t') + C_0^{(i)}(q,t+t'), \quad (12)$$

где

$$C_0^{(e)}(q,t-t') = \frac{1}{q^2 + \tau} \exp\left[-\lambda(q^2 + \tau)|t-t'|\right], \quad (13)$$

$$C_0^{(i)}(q,t+t') = -\frac{1}{q^2 + \tau} \exp\left[-\lambda(q^2 + \tau)(t+t')\right].$$
 (14)

При ренормгрупповом анализе модели для устранения возникающих в пределе $\tau \rightarrow 0$ при учете взаимодействия критических флуктуаций параметра порядка расходимостей в динамических корреляционных функциях и функциях отклика нами были применены процедура размерной регуляризации и схема минимальных вычитаний [22] с последующим переопределением параметров гамильтониана и мультипликативной перенормировкой полей функционала (10):

$$s \to Z_s^{1/2} s, \quad \tilde{s} \to Z_{\bar{s}}^{1/2} \tilde{s}, \quad \tilde{s}_0 \to (Z_{\bar{s}} Z_0)^{1/2} \tilde{s}_0,$$

$$\lambda \to (Z_s/Z_{\bar{s}})^{1/2} \lambda, \qquad \tau \to Z_s^{-1} Z_\tau \mu^2 \tau, \qquad (15)$$

$$g \to Z_g Z_s^{-2} \mu^{4-d} g, \qquad v \to Z_v Z_s^{-2} \mu^{4-d} v,$$

где μ — размерный параметр. Вычисление всех констант Z_i перенормировки при фиксированной размерности системы d = 3, кроме Z_0 , можно найти в работе [23]. В настоящей работе представлен расчет Z_0 для структурно-неупорядоченных систем в двухпетлевом приближении теории при d = 3.

За счет введения в теорию начальных условий вида (4) возникает необходимость в перенормиров-

Рис.3. Диаграммы, определяющие вклад в вершинную функцию $\Gamma_{1,0}^{(eq)}$. Линиям соответствует равновесный коррелятор $C_0^{(e)}$ (13)

ке функции отклика $\langle s(q,t)\tilde{s}_0(-q,0)\rangle$, задающей влияние начальных состояний системы. Поправочные слагаемые в собственно-энергетической части функции отклика, возникающие за счет эффектов взаимодействия флуктуаций параметра порядка, характеризуются приводимыми динамическими диаграммами Фейнмана, поскольку их вычисление осуществляется с использованием коррелятора (12), не обладающего свойством трансляционной инвариантности во времени. В работе [6] было введено следующее представление для данной функции отклика:

$$G_{1,1}^{(i)}(q,t) = \langle s(q,t)\tilde{s}_0(-q,0) \rangle =$$

= $\int_0^t dt' \, \bar{G}_{1,1}(q,t,t') \, \Gamma_{1,0}^{(i)}(q,t')_{[\bar{s}_0]}.$ (16)

Одночастичная вершинная функция $\Gamma_{1,0}^{(i)}(q,t)_{[\bar{s}_0]}$ с одной вставкой поля \tilde{s}_0 в двухпетлевом приближении описывается диаграммами, представленными на рис. 2 и характеризуемыми требованием, чтобы они содержали хотя бы один коррелятор $C_0^{(i)}$. Множитель $\bar{G}_{1,1}(q,t,t')$ определяется равновесной составляющей $C_0^{(e)}$ коррелятора (12). Отметим, что он отличен от равновесной функции отклика $G_{1,1}^{(eq)}(q,t-t')$ по причине интегрирования в (16) по времени от начального момента t = 0 вместо $t = -\infty$. Однако между ними можно установить функциональную связь уже в двухпетлевом приближении для структурно-неупорядоченных систем [14], если воспользоваться вместо функционала (4) функционалом $H_{GL}[s_0]$ (2) с новыми вершинами взаимодействия в функционале действия (10),

$$\frac{\lambda g}{6} \int dt \int d^d x \left(\tilde{s}_0 s_0^3\right) - v \frac{\lambda^2}{2} \left[\int_0^\infty dt \int d^d x (\tilde{s}_0 s_0) \right]^2. \quad (17)$$

За счет усреднения по начальным полям возникает дополнительная вершинная функция $\Gamma_{1,0}^{(eq)}$, лока-

лизованная на «поверхности» t = 0. От первого слагаемого в (17), как показано нами ранее [10], флуктуационные поправки к $\Gamma_{1,0}^{(eq)}$ возникают только начиная с трехпетлевого приближения, в то время как за счет второго слагаемого в (17), обусловленного влиянием структурных дефектов, флуктуационные поправки к $\Gamma_{1,0}^{(eq)}$ возникают уже начиная с двухпетлевого приближения (рис. 3). Имеет место следующее выражение, аналогичное (16):

$$G_{1,1}^{(eq)}(q,t-t') = \int_{t'}^{t} dt'' \bar{G}_{1,1}(q,t,t'') \Gamma_{1,0}^{(eq)}(q,t'')_{[\bar{s}(t')]}.$$
 (18)

Решив интегральное уравнение

$$\delta(t-t') = \int_{t'}^{t} dt'' K(q,t'',t') \Gamma_{1,0}^{(eq)}(q,t)_{[\bar{s}(t'')]}, \quad (19)$$

в каждом порядке теории найдем его ядро K(q, t'', t'), флуктуационные поправки к которому для структурно-неупорядоченных систем возникают начиная со второго порядка, а для однородных систем — только с третьего порядка теории. В результате одночастичная вершинная функция $\Gamma_{1,0}(q, t)$, определяющая функцию отклика на неравновесные начальные состояния системы, определяется выражением

$$\Gamma_{1,0}(q,t) = \int_{0}^{t} dt' K(q,t,t') \Gamma_{1,0}^{(i)}(q,t')_{[\bar{s}_{0}]}$$
(20)

и задается в двухпетлевом приближении диаграммами, изображенными на рис. 2 и 3.

Используя выражения (16) и (18)–(20) и перенормируя поля в соответствии с (15), определим следующее нормировочное соотношение для определения перенормировочной константы Z_0 :

$$Z_0^{-1/2} \Gamma_{1,0}^R (q = 0, i\omega/2\lambda = \mu^2) = 1, \qquad (21)$$

где $\Gamma_{1,0}^{R}(q,\omega)$ — фурье-образ перенормированной одночастичной вершинной функции $\Gamma_{1,0}(q,t)$, рассчитываемой в удобной для нормировки точке с $\tau = 0$, импульсом q = 0 и частотой $i\omega/2\lambda = \mu^2$.

Последовательная реализация изложенной процедуры и расчет диаграмм при d = 3 позволили вычислить константу перенормировки Z_0 в двухпетлевом приближении:

$$Z_0 = 1 + \frac{2}{3}g_R + 0.012682g_R^2 - 0.608932g_R v_R, \quad (22)$$

где g_R и v_R — перенормированные константы связи. Инвариантность по отношению к ренормгрупповым преобразованиям обобщенной связной функции Грина $G_{N,\bar{N}}^{\bar{M}} \equiv \langle [s]^N [\tilde{s}]^{\bar{N}} [\tilde{s}_0]^{\bar{M}} \rangle$ можно выразить дифференциальным ренормгрупповым уравнением Каллана – Симанчика [6, 22]

$$\begin{cases} \mu \partial_{\mu} + \zeta \lambda \partial_{\lambda} + \kappa \tau \partial_{\tau} + \beta_{g} \partial_{g} + \beta_{v} \partial_{v} + \frac{N}{2} \gamma + \\ + \frac{\tilde{N}}{2} \tilde{\gamma} + \frac{\tilde{M}}{2} (\tilde{\gamma} + \gamma_{0}) + \zeta \tau_{0}^{-1} \partial_{\tau_{0}^{-1}} \end{cases} G_{N,\bar{N}}^{\bar{M}} = 0. \quad (23)$$

Ренормгрупповые функции — коэффициенты в (23) — характеризуются выражениями

$$\begin{split} \gamma &\equiv (\mu \partial_{\mu})_{0} \ln Z_{s}, \quad \tilde{\gamma} \equiv (\mu \partial_{\mu})_{0} \ln Z_{\bar{s}}, \\ \zeta &\equiv (\mu \partial_{\mu})_{0} \ln \lambda = \frac{1}{2} (\tilde{\gamma} - \gamma), \quad \kappa \equiv (\mu \partial_{\mu})_{0} \ln \tau, \quad (24) \\ \beta_{g} &\equiv (\mu \partial_{\mu})_{0} g, \quad \beta_{v} \equiv (\mu \partial_{\mu})_{0} v, \quad \gamma_{0} \equiv (\mu \partial_{\mu})_{0} \ln Z_{0}, \end{split}$$

где $(\partial_{\mu})_0 \equiv (\partial/\partial\mu)_0$ обозначает дифференцирование с постоянными затравочными параметрами g, v, λ и τ . Для коротковременного режима неравновесной критической релаксации принципиально новой является лишь ренормгрупповая функция γ_0 , которая в двухпетлевом приближении, как показали наши расчеты, описывается следующим выражением:

$$\gamma_0 = -\frac{2}{3}g_R + 0.457127g_R^2 - 0.614995g_R v_R.$$
 (25)

Неподвижная точка (g^*, v^*) ренормгрупповых преобразований определяется из уравнений

$$\beta_g(g^*, v^*) = 0, \quad \beta_v(g^*, v^*) = 0.$$
 (26)

Общее решение дифференциального уравнения (23) методом характеристик в неподвижной точке характеризуется следующей скейлинговой формой [6]:

$$\begin{aligned} G_{N,\bar{N}}^{\bar{M}}(\{x,t\},\tau,\tau_{0}^{-1},\lambda,g^{*},v^{*},\mu) &= \\ &= l^{(d-2+\eta_{s})N/2+(d+2+\eta_{\bar{s}})\bar{N}/2+(d+2+\eta_{\bar{s}}+\eta_{0})\bar{M}/2} \times \\ &\times G_{N,\bar{N}}^{\bar{M}}(\{lx,l^{2+\zeta^{*}}t\},\tau l^{-2+\kappa^{*}},\tau_{0}^{-1}l^{2+\zeta^{*}}, \\ &\lambda,g^{*},v^{*},\mu), \quad (27) \end{aligned}$$

где l — масштабный фактор, $\eta_s = \gamma^*$, $\eta_{\bar{s}} = \tilde{\gamma^*}$ и $\eta_0 = \gamma_0^*$ — показатели аномальных размерностей. Можно связать функции в (27) с критическими индексами, фигурирующими в скейлинговых соотношениях, например,

$$z = 2 + \zeta^*, \quad 1/\nu = 2 - \kappa^*, \theta = -\frac{\gamma_0^*}{2(2+\zeta^*)}, \quad \theta' = -\frac{\zeta^* + \gamma^* + \gamma_0^*/2}{2+\zeta^*},$$
(28)

и задающими динамический критический индекс z, критический индекс ν корреляционной длины, θ и θ' — динамические критические индексы неравновесной эволюции для функции отклика и намагниченности. В результате в данной работе для неупорядоченной модели Изинга были получены следующие выражения для динамических критических индексов:

$$z = 2 - 0.25v^* + 0.00840(g^*)^2 + + 0.030862g^*v^* + 0.053240(v^*)^2, \theta = \frac{1}{6}g^* - 0.1142817(g^*)^2 + 0.174582g^*v^*, \theta' = \frac{1}{6}g^* + 0.125v^* - 0.123968(g^*)^2 + + 0.14680608g^*v^* - 0.0156245(v^*)^2.$$
(29)

Для дальнейших вычислений нами были использованы значения констант связи в неподвижной точке $g^* = 2.2514(42), v^* = 0.7049(13)$. Данные значения были определены в работе [17] при применении различных методов суммирования к функциям β_q и β_v в (26), вычисленным в работе [24] при d = 3в шестипетлевом приближении. Необходимо отметить, что возникающие в теории критических явлений ряды по константам связи как для функций β_g и β_v , так и для критических индексов (29) являются факториально расходящимися, но могут рассматриваться как асимптотические. Для получения физически разумных значений критических индексов для трехмерных систем применяются специально разработанные методы суммирования асимптотических рядов [17, 25-29], из которых наиболее эффективными являются методы Паде-Бореля, Паде-Бореля-Лероя и конформного отображения. К полученным рядам для независимых динамических критических индексов z и θ' (29) были применены данные методы суммирования. В результате были вычислены следующие значения z и θ' при применении метода Паде-Бореля:

$$z = 2.2009867, \quad \theta' = 0.091898,$$

метода Паде-Бореля-Лероя (при значении параметра *b* = 2.221426 [17]):

$$z = 2.198340, \quad \theta' = 0.120284,$$

метода конформного отображения Паде-Бореля:

$$z = 2.205156, \quad \theta' = 0.104441.$$

Итоговые средние значения критических индексов:

$$z = 2.2015(20), \quad \theta' = 0.1055(82)$$

Отметим, что данные значения динамического критического индекса z, вычисленные в двухпетлевом приближении, превышают его значения (со средним z = 2.1792(13)), рассчитанные нами ранее [17, 23] в трехпетлевом приближении теории с применением различных методов суммирования. Это служит отражением наблюдаемых отклонений значений критических индексов от их асимптотических значений переменных по знаку и уменьшающихся с ростом порядка теории [26]. Полученные значения критического индекса z находятся в прекрасном согласии со значением z = 2.18(10), выявленным экспериментально [18] методом мессбауэровской спектроскопии в результате прецизионного измерения динамического уширения мессбауэровских линий в слаборазбавленном образце изинговского магнетика $Fe_{0.9}Zn_{0.1}F_2$.

Проведем теперь сопоставление рассчитанных значений критического индекса z с результатами компьютерного моделирования критической динамики неупорядоченной трехмерной модели Изинга: z = 2.19(7)для систем со спиновой концентрацией p = 0.95, z = 2.20(8) при p = 0.8, z = 2.58(9) при p = 0.6 и z = 2.65(12) при p = 0.4 [30]; z = 2.16(1)при p = 0.95, z = 2.232(4) при p = 0.9, z = 2.38(1)при p = 0.8 и z = 2.93(3) при p = 0.6 [31]. Данные результаты моделирования критической динамики находятся в достаточно хорошем согласии с результатами теоретико-полевого расчета лишь для слабонеупорядоченных систем с $p \ge 0.8$, в то время как для сильнонеупорядоченных систем наблюдается значительное расхождение результатов. При этом следует отметить, что результаты ренормгруппового описания критического поведения неупорядоченных систем справедливы лишь в области слабой неупорядоченности.

Для объяснения наблюдаемой при компьютерном моделировании зависимости индекса *z* от величины структурного беспорядка в работе [30] была предложена гипотеза ступенчатой универсальности, согласно которой в системах при спиновых кон-

центрациях выше порога спиновой перколяции может наблюдаться несколько типов различного критического поведения в зависимости от того, существует ли в системе лишь один спиновый протекающий кластер, как в случае слабонеупорядоченных систем, или наряду со спиновым протекающим кластером реализуется и примесный протекающий кластер, как в случае сильнонеупорядоченных систем, с существованием переходных режимов между областями. В работе [31] автор, исходя из концепции универсальности критического поведения неупорядоченных систем и независимости асимптотического значения индекса z при $L \to \infty$ от степени беспорядка, на основе приведенных выше эффективных значений индекса получил его асимптотическое значение z = 2.4(1). Однако данное значение индекса находится в сильном несоответствии как с полученными нами результатами, так и с экспериментально измеренным значением z = 2.18(10).

В работе [16] был проведен анализ численного исследования критической динамики трехмерной модели Изинга со спиновой концентрацией, изменяющейся в широком интервале. Авторы, предполагая универсальность критического поведения неупорядоченных систем, выделили асимптотическое значение индекса z = 2.62(7) с учетом эффектов влияния ведущих поправок к скейлинговой зависимости для динамической восприимчивости системы. При этом полученное в работе [16] значение индекса поправки к скейлингу, $\omega = 0.50(13)$, сильно не соответствует результатам теоретико-полевого расчета статических критических индексов, осуществленного с применением методов суммирования [24] и давшего значение $\omega = 0.25(10)$, а также результатам численного исследования статического критического поведения той же модели [32], проведенного также с учетом эффектов влияния ведущих поправок к скейлинговой зависимости термодинамических величин и корреляционных функций с $\omega = 0.37(6)$. При использованных в работе [16] аппроксимациях наибольшими погрешностями характеризовались результаты для слабонеупорядоченных систем. Полученное значение динамического критического индекса z = 2.62(7) [16] еще больше не соответствует результатам наших вычислений и экспериментальным исследованиям из работы [18].

Сопоставление рассчитанных в данной работе значений критического индекса θ' со значением $\theta' = 0.0867$, полученным при применении метода ε -разложения [14] в том же двухпетлевом приближении теории, показывает, что все они превышают это значение и максимальным отклонением характеризуется значение $\theta' = 0.120284$, полученное при применении метода суммирования Паде – Бореля – Лероя. Данный метод является обобщением метода Паде – Бореля с интегральным преобразованием

$$f(g) = \sum_{n=0}^{\infty} c_n g^n = \int_0^{\infty} dt \, e^{-t} B(g t^b),$$

$$B(g) = \sum_{n=0}^{\infty} B_n g^n, \quad B_n = \frac{c_n}{\Gamma(bn+1)},$$
(30)

где значение параметра b = 2.221426 было подобрано [17] на основе анализа сходимости тестового ряда для точно решаемой задачи об энергии ангармонического осциллятора с асимптотической сходимостью ряда, аналогичной рядам теории критических явлений.

Все рассчитанные значения критического индекса θ' как в данной работе, так и в работе [14] попадают в интервал погрешностей показателя $\theta' = 0.10(2)$, измеренного [15] при численных исследованиях методом коротковременной динамики трехмерной модели Изинга со спиновой концентрацией p = 0.80. Однако методические недостатки проведенного в работе [15] исследования, отмеченные нами во Введении, не дают оснований удовлетвориться данным результатом. Ниже приводятся методика и результаты осуществленного нами исследования по компьютерному моделированию неравновесного критического поведения неупорядоченной трехмерной модели Изинга с той же спиновой концентрацией p = 0.80, что и в работе [15]. В проведенном нами комплексном исследовании определены не только критический индекс θ' , но и индекс z и отношение статических индексов β/ν .

3. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ НЕРАВНОВЕСНОГО КРИТИЧЕСКОГО ПОВЕДЕНИЯ НЕУПОРЯДОЧЕННОЙ ТРЕХМЕРНОЙ МОДЕЛИ ИЗИНГА

Проведем численное исследование влияния неравновесных начальных состояний на эволюцию намагниченности M(t) ферромагнитной структурно-неупорядоченной системы в критической точке. Известно, что аномальные особенности явлений критической динамики определяются прежде всего эффектами дальнодействующей корреляции долгоживущих флуктуаций ряда термодинамических переменных. В связи с этим фундаментальный интерес представляет исследование процессов критической релаксации системы из начального неравновесного состояния, созданного, например, при температурах, много больших критической, и характеризуемого поэтому малой корреляционной длиной, в сильнокоррелированное состояние при критической температуре. В работе [6] на основе ренормгруппового анализа неравновесного критического поведения спиновой системы с начальным значением намагниченности m_0 было показано, что после микроскопически малого промежутка времени t_{mic} для k-го момента намагниченности системы реализуется скейлинговая форма

$$M^{(k)}(t,\tau,L,m_0) = = b^{-k\beta/\nu} M^{(k)} \left(b^{-z}t, \ b^{1/\nu}\tau, \ b^{-1}L, \ b^{x_0}m_0 \right), \quad (31)$$

где t — время, $\tau = (T - T_c)/T_c$ — приведенная температура, b — произвольный масштабный фактор, L — линейный размер решетки, β , ν , z — известные критические индексы, x_0 — новый независимый критический индекс, задающий масштабную размерность начального значения намагниченности m_0 . На ранней стадии эволюции системы корреляционная длина еще достаточно мала и конечность размера моделируемой системы оказывается несущественной. Полагая $b = t^{1/z}$ в выражении (31), для первого момента намагниченности (k = 1) и малой величины $m_0 t^{1/z}$ получаем следующее выражение:

$$M(t,\tau,m_0) \sim m_0 t^{\theta'} F(t^{1/\nu z}\tau, t^{x_0/z}m_0) =$$

= $m_0 t^{\theta'} (1 + a t^{1/\nu z} \tau) + O(\tau^2, m_0^2),$ (32)

где $\theta' = (x_0 - \beta/\nu)/z$. Для $\tau \to 0$ и достаточно малых t получаем асимптотическое поведение $M(t) \propto t^{\theta'}$. Временной интервал увеличения намагниченности, $t_{cr} \propto m_0^{-z/x_0}$, заметно растет с уменьшением m_0 . С течением времени коротковременная динамика увеличения параметра порядка сменяется на привычную долговременную динамику уменьшения параметра порядка со временем по степенному закону $M(t) \propto t^{-\beta/z\nu}$ с показателем, определяемым отношением $\beta/z\nu$ со статическими критическими индексами β и ν и динамическим критическим индексом z (см. рис. 1).

Для численного определения показателя θ' рассматривается модель неупорядоченной спиновой системы в виде кубической решетки с линейным размером L = 128 и наложенными граничными условиями. Микроскопический гамильтониан неупорядоченной модели Изинга задается выражением

$$H = -J \sum_{\langle i,j \rangle} p_i p_j S_i S_j, \tag{33}$$

где J > 0 — интеграл обменного взаимодействия между закрепленными в узлах решетки спинами S_i , принимающими значения ± 1 , а суммирование ведется по всем ближайшим парам спинов. Немагнитные атомы примеси образуют пустые узлы. Числа заполнения p_i при этом принимают значения 0 или 1 и описываются функцией распределения

$$P(p_i) = (1 - p)\delta(p_i) + p\delta(1 - p_i)$$
(34)

с p = 1 - c, где c — концентрация атомов примеси.

Для моделирования спиновых конфигураций в системе был применен алгоритм Метрополиса. Алгоритм Метрополиса, реализующий динамику односпиновых переворотов, наилучшим образом соответствует релаксационной модели А в классификации Гальперина – Хоэнберга [19] и позволяет провести сравнение получаемого в результате моделирования неравновесного критического поведения системы динамических критических индексов z и θ' с результатами проведенного выше ренормгруппового описания.

При реализации алгоритма Метрополиса для неупорядоченной модели Изинга численно определяется временная зависимость k-го момента намагниченности в виде

$$M^{(k)}(t) = \left[\left\langle \left(\frac{1}{N_s} \sum_{i}^{N_s} p_i S_i(t) \right)^k \right\rangle \right], \qquad (35)$$

где угловые скобки обозначают статистическое усреднение по спиновым конфигурациям, а квадратные скобки — усреднение по различным реализациям распределения дефектов структуры в системе при заданной спиновой концентрации p = 0.80, $N_s = pL^3$ — число спинов в решетке. В данной работе проводилось усреднение вычисляемых величин по 4000 различным примесным конфигурациям с 25 прогонками для каждой примесной конфигурации. Для независимого вычисления динамических критических индексов θ' и z, а также отношения статических критических индексов β/ν на каждом этапе эволюции системы наряду с намагниченностью системы определялись автокорреляционная функция

$$A(t) = \left[\left\langle \left(\frac{1}{N_s} \sum_{i}^{N_s} p_i S_i(t) S_i(0) \right) \right\rangle \right]$$
(36)

и второй момент намагниченности $M^{(2)}(t)$. Их скейлинговый анализ показывает [7], что при $m_0 = 0$ и критической температуре $T = T_c$ данные величины характеризуются степенной зависимостью от времени:

$$A(t) \propto t^{-c_a}, \quad M^{(2)}(t) \propto t^{c_2},$$
 (37)

где $c_a=d/z-\theta',\,c_2=(d-2\beta/\nu)/z,\,d$ — размерность системы.

Моделирование осуществлялось при критической температуре $T_c = 3.49948(18)$, определенной нами при численных исследованиях методом Монте-Карло неупорядоченной трехмерной модели Изинга в равновесном состоянии [33]. Временное поведение намагниченности с начальными значениями $m_0 = 0.01, 0.02, 0.03$ исследовалось на временах до 1000 шагов Монте-Карло на спин (ШМК/спин). Поскольку начальная спиновая конфигурация с намагниченностью m₀ должна быть неравновесной, нами был применен следующий способ ее получения: с помощью алгоритма Вольфа при температуре $T = 8 \gg T_c = 3.49948$ система из начального состояния «все спины вверх» с m = 1 приводилась к состоянию с намагниченностью *m*, близкой к желаемой m_0 , а затем переворотом отдельных спинов достигалось состояние с m_0 . Полученная конфигурация сохранялась, а затем исследовалась ее временная эволюция при $T_c = 3.49948$ с помощью алгоритма Метрополиса. На рис. 4 представлены усредненные по 4000 различным примесным конфигурациям с 25 прогонками для каждой примесной конфигурации временные зависимости для намагниченностей системы. Они позволяют определять показатели $\theta'(m_0)$ и их асимптотическое значение $\theta'(m_0 \rightarrow 0)$ на основе линейной аппроксимации значений $\theta'(m_0)$ при $m_0 \to 0$. На рис. 5 для данной системы, стартующей из неравновесного начального состояния с близким к нулю значением $m_0 = 0.0001$, представлены временные зависимости для второго момента намагниченности $M^{(2)}$ и автокорреляционной функции А. Анализ данных зависимостей позволяет определять значения показателей c_a и c_2 в соответствии с выражением (37).

Из рис. 4, 5 видно, что на каждом графике могут быть выделены по два линейных участка: для временных интервалов в среднем от 7 до 50 ШМК/спин и от 150 до 1000 ШМК/спин. Мы связываем это с наблюдаемым уже при моделировании структурно-неупорядоченных систем с линейными дефектами [34] явлением кроссовера, т. е. перехода от критического поведения, характерного для однородных систем, к поведению, характеризуемому влиянием дефектов структуры. Нами были определены показатели для каждого линейного участка исследуемых

	θ	c_2	c_a	θ	c_2	c_a
m_0	$t \in [7, 50]$			$t \in [150, 1000]$		
0.03	0.1016(9)	—	—	0.083(3)	_	—
0.02	0.1031(10)	—	—	0.099(5)	—	—
0.01	0.1043(12)	_	_	0.105(9)	_	—
0	0.1057(17)	0.936(4)	1.347(8)	0.122(11)	0.859(5)	1.135(10)

Таблица 1. Критические показатели, характеризующие эволюцию неупорядоченной модели Изинга с p=0.80 на разных временных интервалах

Таблица 2. Критические показатели временной эволюции неупорядоченной модели Изинга с p = 0.80, вычисленные с учетом поправок к скейлингу

m_0	heta	c_2	c_a	$(\omega/z)_{av}$	ω_{av}
0.03	$0.104(12), \omega/z = 0.074$	—	_	_	_
0.02	$0.117(10), \omega/z = 0.068$	—	_	-	—
0.01	$0.118(10), \omega/z = 0.096$	_	_	—	—
0	$0.127(16),\omega/z=0.079(9)$	$0.909(4), \omega/z = 0.112$	$1.242(10), \omega/z = 0.160$	0.117(24)	0.256(56)

Рис. 4. Временные зависимости критического поведения намагниченности M для систем со спиновой концентрацией p = 0.80 при начальных значениях $m_0 = 0.01$ (1), 0.02 (2), 0.03 (3); здесь и на рис. 5 единица измерения времени — шаг Монте-Карло на спин

величин. Полученные значения показателей приведены в табл. 1.

В данной работе были также учтены поправки к асимптотической зависимости измеряемых величин за счет влияния конечности моделируемых систем и неточности в определении их критической температуры, так как только учет данных поправок к скейлингу позволяет получать корректные значения критических индексов [15, 17, 32, 34, 35]. Для этого были применены следующие выражения для временной зависимости наблюдаемых величин X:

$$X(t) \propto t^{\delta} (1 + A_X t^{-\omega/z}), \qquad (38)$$

где A_X — неуниверсальные амплитуды, ω является хорошо известным критическим индексом поправки к скейлингу, а показатель $\delta = \theta'$ в случае $X \equiv M(t), \, \delta = -c_a$ в случае $X \equiv A(t)$ и $\delta = c_2$ в случае $X \equiv M^{(2)}(t)$. Теоретико-полевая оценка для ω в шестипетлевом приближении дает значение $\omega \approx 0.25(10)$ [24]. Для расчета значений критических индексов θ', c_a, c_2 и ω/z на временном интервале, соответствующем влиянию структурного беспорядка, был использован метод наименьших квадратов для наилучшей аппроксимации значений M(t), A(t) и $M^{(2)}(t)$ выражением (38). Процедура заключалась в следующем: 1) временной интервал проявления влияния дефектов структуры разбивался на всевозможные участки Δt , начиная от участков с $\Delta t = 50$ до участков с $\Delta t = 550; 2)$ на каждом из участков Δt определялись значения показателя δ при фиксированном значении ω/z ; 3) найденные значения δ усреднялись по выбранным участкам с определением среднего значения $\langle \delta \rangle$ и погрешности аппроксимации $\Delta \delta$; 4) показатель ω/z определялся

Рис. 5. Временные зависимости критического поведения второго момента намагниченности $M^{(2)}$ (a) и автокорреляционной функции A (б) для системы с p = 0.80

из условия минимальности значений относительных погрешностей проведенных аппроксимаций.

Наряду с аппроксимационной погрешностью $\Delta \delta$ для показателей δ определялась их статистическая погрешность. Для этого общее количество используемых для усреднения примесных конфигураций делилось на четыре группы. Для каждой из групп вычислялись показатели θ' , c_a и c_2 , а затем определялись отклонения от показателей, найденных при использовании усредненных по общему количеству примесных конфигураций значений M(t), A(t) и $M^{(2)}(t)$.

В табл. 2 приведены полученные итоговые значения критических показателей и их погрешности. На основе данных значений показателей были определены динамические критические индексы z = 2.191(42) и $\theta' = 0.127(16)$, отношение статических критических индексов $\beta/\nu = 0.504(24)$ и усредненное значение $\omega_{av} = 0.256(56)$ критического индекса поправки к скейлингу. Сопоставление данных значений динамических критических индексов z и θ' с рассчитанными выше в рамках теоретико-полевого описания значениями z = 2.202(2) и $\theta' = 0.106(8)$, полученными в результате усреднения результатов применения различных методов суммирования, показывает их достаточно хорошее согласие. Заметно лучшее согласие значений z = 2.191(42) и $\theta' = 0.127(16)$ наблюдается с результатами z = 2.198 и $\theta' = 0.120$ применения к рядам теории в (29) метода суммирования Паде-Бореля – Лероя.

Сопоставление рассчитанного нами значения $\theta' \, = \, 0.127(16)$ со значением $\theta' \, = \, 0.10(2)$ из работы [15], полученным для систем с различными спиновыми концентрациями, но одинаковыми начальными значениями намагниченности $m_0 = 0.01$, показывает их хорошее согласие в пределах статистических погрешностей измерения и погрешностей проведенных аппроксимаций, а также демонстрирует тот факт, что полученное нами асимптотическое при $m_0 \rightarrow 0$ значение θ' оказывается выше, чем $\theta'(m_0 = 0.01)$ из [15]. Это объясняется тем, что $\theta'(m_0^{(2)}) > \theta'(m_0^{(1)})$, если для начальных намагниченностей систем справедливо неравенство $m_0^{(2)} < m_0^{(1)}$. Таким образом, декларируемое в работе [15] хорошее согласие найденного показателя $\theta' = 0.10(2)$ со значением $\theta' = 0.0867$, полученным в [14] на основе применения метода є-разложения в двухпетлевом ренормгрупповом описании, оказывается неубедительным, так как найденное нами значение $\theta' = 0.127(16)$ уже не согласуется с $\theta' = 0.0867$. Результаты проведенных нами исследований дают значительно больше оснований считать, что для слабонеупорядоченных изинговских систем реальным является значение показателя $\theta' = 0.127(16)$, которое оказывается больше значения $\theta' = 0.108(2)$ для однородных изинговских систем [7, 10], а не меньше, как предсказывают результаты работ [14, 15].

Проведем теперь сопоставление полученных значений критических индексов z = 2.191(42), $\beta/\nu = 0.504(24)$ и $\omega = 0.256(56)$ с результатами исследований, проведенных в других работах. Так, найденные нами значения индексов для систем с p = 0.80 находятся в достаточно хорошем соответствии с результатами работ по компьютерному моделированию, где для слабонеупорядоченных систем были получены значения $\nu = 0.684(5)$, $\beta = 0.355(3)$, $\beta/\nu = 0.519(8)$, $\omega = 0.370(63)$ [32], $\nu = 0.683(3)$, $\beta = 0.354(2)$, $\beta/\nu = 0.518(5)$ [35], z = 2.20(8) [30], а также с результатами теоретико-полевого описания,

с помощью которого были вычислены следующие значения критических индексов: $\nu = 0.678(10)$, $\beta = 0.349(5)$, $\beta/\nu = 0.515(15)$, $\omega = 0.25(10)$ [24], z = 2.1792(13) [17], и результатами экспериментальных исследований структурно-неупорядоченных изинговских магнетиков, дающих $\nu = 0.69(1)$, $\beta = 0.350(9)$, $\beta/\nu = 0.507(20)$ (результаты представлены в обзоре [11]), z = 2.18(10) [18].

4. ВЫВОДЫ

В данной работе осуществлено как ренормгрупповое теоретико-полевое описание, так и компьютерное моделирование неравновесного критического поведения структурно-неупорядоченной ферромагнитной трехмерной модели Изинга. Проведено исследование влияния неравновесных начальных состояний системы, характеризующихся относительными значениями намагниченности $m_0 \ll 1$, на эволюцию структурно-неупорядоченной системы в критической точке в коротковременном режиме. Показано, что на временах $t < t_{cr} \propto m_0^{1/(\theta' + \beta/z\nu)}$ эволюция системы из начального неравновесного состояния сопровождается ростом намагниченности системы по степенному закону $M(t) \propto t^{\theta'}$. В работе рассчитаны независимые динамические критические индексы z и θ' в двухпетлевом приближении с применением к рядам теории различных методов суммирования. Как средние значения критических индексов z = 2.202(2) и $\theta' = 0.106(8)$, так и значения, получаемые при применении каждого метода суммирования в отдельности, оказались выше значений, вычисленных ранее в рамках метода *є*-разложения в том же приближении теории.

Проведенные численные исследования методом коротковременной динамики временного поведения намагниченности M(t), второго момента намагниченности $M^{(2)}(t)$ и автокорреляционной функции A(t) при критической температуре выявили, что в слабонеупорядоченных системах со спиновой концентрацией p = 0.80 в отличие от поведения однородных систем могут быть выявлены два универсальных динамических критических режима со степенным временным изменением величин $M, M^{(2)}$ и А, а именно, на раннем временном интервале $t \approx [7, 50]$ ШМК/спин реализуется критическое релаксационное поведение, соответствующее поведению однородной системы и определяемое динамическими критическими индексами $\theta' = 0.1057(17)$ и z = 2.065(14) с $\beta/\nu = 0.534(6)$, а лишь затем, проходя через режим кроссоверного поведения, в

интервале $t \approx [150, 1000]$ ШМК/спин реализуется динамический режим критического поведения неупорядоченной системы с критическими индексами $\theta' = 0.127(16), z = 2.191(42)$ и $\beta/\nu = 0.504(24), \omega = 0.256(56).$

Сопоставление данных значений критических индексов с рассчитанными в настоящей работе в рамках теоретико-полевого описания, $\theta' = 0.106(8)$ и z = 2.202(2) (усредненные результаты применения различных методов суммирования), показывает их достаточно хорошее согласие при заметно лучшем согласии с результатами применения метода Паде – Бореля – Лероя, $\theta' = 0.120$ и z = 2.198. Сопоставление полученных значений критических индексов z = 2.191(42), $\beta/\nu = 0.504(24)$ и $\omega = 0.256(56)$ с результатами численных исследований слабонеупорядоченных систем, проведенных в других работах, также показало их хорошее соответствие в пределах погрешностей моделирования и осуществленных алпроксимаций.

Результаты проведенных нами исследований дают основания считать, что для слабонеупорядоченных изинговских систем реальными являются значения показателей z = 2.191(42), $\theta' = 0.127(16)$, которые оказываются выше значений z = 2.042(6), $\theta' = 0.108(2)$ для однородных изинговских систем [7, 10]. Таким образом, наличие замороженного структурного беспорядка в изингоподобных системах приводит к еще большим по сравнению с однородными системами эффектам критического замедления и влиянию неравновесных начальных состояний на эволюцию системы, учет которых очень важен при подготовке различных материалов к исследованию их критических свойств.

Работа выполнена при финансовой поддержке Программы «Развитие научного потенциала высшей школы» (грант № 2.1.1/930).

ЛИТЕРАТУРА

- E. Vincent, J. Hammann, M. Ocio et al., Lect. Notes Phys. 492, 184 (1997).
- 2. A. Crisanti and F. Ritort, J. Phys. A 36, R181 (2003).
- P. Calabrese and A. Gambassi, Phys. Rev. E 65, 066120 (2002).
- 4. G. Schehr and R. Paul, Phys. Rev. E 72, 016105 (2005).
- P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).

- H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. 73, 539 (1989).
- A. Jaster, J. Mainville, L. Schulke, and B. Zheng, J. Phys. A 32, 1395 (1999).
- J. Q. Yin, B. Zheng, V. V. Prudnikov, and S. Trimper, Eur. Phys. J. B 49, 195 (2006).
- 9. D. Huse, Phys. Rev. B 40, 304 (1989).
- В. В. Прудников, П. В. Прудников, И. А. Калашников и др., ЖЭТФ 133, 1251 (2008).
- **11**. Р. Фольк, Ю. Головач, Т. Яворский, УФН **173**, 175 (2003).
- 12. A. B. Harris, J. Phys. C 7, 1671 (1974).
- 13. J. G. Kissner, Phys. Rev. B 46, 2676 (1992).
- 14. K. Oerding and H. K. Janssen, J. Phys. A 28, 4271 (1995).
- 15. G. Schehr and R. Paul, J. Phys: Conf. Series 40, 27 (2006); arXiv:cond-mat/0511571.
- G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo, Phys. Rev. E 60, 5198 (1999).
- 17. А. С. Криницын, В. В. Прудников, П. В. Прудников, ТМФ 147, 137 (2006).
- 18. N. Rosov, C. Hohenemser, and M. Eibschutz, Phys. Rev. B 46, 3452 (1992).
- 19. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
- 20. I. D. Lawrie and V. V. Prudnikov, J. Phys. C 17, 1655 (1984).
- R. Bausch, H. K. Janssen, and H. Wagner, Z. Phys. 24, 113 (1976).

- 22. А. Н. Васильев, Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике, ПИЯФ, Санкт-Петербург (1998).
- 23. В. В. Прудников, С. В. Белим, А. В. Иванов и др., ЖЭТФ 114, 972 (1998).
- 24. A. Pelissetto and E. Vicari, Phys. Rev. B 62, 6393 (2000).
- 25. G. A. Baker, B. G. Nickel, M. S. Green et al., Phys. Rev. Lett. 36, 1351 (1976); Phys. Rev. B 17, 1365 (1978).
- J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B 21, 3976 (1980).
- 27. S. A. Antonenko and A. I. Sokolov, Phys. Rev. B 51, 1894 (1995).
- 28. Д. И. Казаков, О. В. Тарасов, Д. В. Ширков, ТМФ
 38, 15 (1979); Д. И. Казаков, В. С. Попов, ЖЭТФ
 122, 675 (2002).
- **29**. И. М. Суслов, ЖЭТФ **120**, 5 (2001).
- 30. В. В. Прудников, А. Н. Вакилов, ЖЭТФ 103, 962 (1993).
- 31. H.-O. Heuer, J. Phys. A 26, L341 (1993).
- 32. H. G. Ballesteros, L. A. Fernandez, V. Martin-Mayor et al., Phys. Rev. B 58, 2740 (1998).
- В. В. Прудников, П. В. Прудников, А. Н. Вакилов,
 А. С. Криницын, ЖЭТФ 132, 417 (2007).
- 34. V. V. Prudnikov, P. V. Prudnikov, B. Zheng et al., Progr. Theor. Phys. 117, 973 (2007).
- 35. P. Calabrese, V. Martin-Mayor, A. Pelissetto et al., Phys. Rev. E 68, 036136 (2003).