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RADIATIVE RECOIL CORRECTIONS TO HYPERFINE SPLITTING:POLARIZATION INSERTIONS IN THE ELECTRON FACTORM. I. Eides a*, V. A. Shelyuto b**aDepartment of Physis and Astronomy, University of KentukyKY 40506, Lexington, USAbMendeleev Institute of Metrology190005, St. Petersburg, RussiaReeived July 9, 2009We onsider three-loop radiative reoil orretions to hyper�ne splitting in muonium due to insertions of theone-loop polarization operator in the eletron fator. The ontribution generated by eletron polarization in-sertions is a ubi polynomial in the large logarithm of the eletron�muon mass ratio. The leading logarithmubed and logarithm squared terms are well known for some time. We alulate all single-logarithmi andnonlogarithmi radiative reoil orretions of the order �3(m=M)EF generated by diagrams with the eletronand muon polarization insertions.1. INTRODUCTIONLeading three-loop logarithm ubed and logarithmsquared radiative reoil ontributions to hyper�ne split-ting (HFS) in muonium were alulated long time ago(see, e.g., reviews [1, 2℄). Reently, we started the al-ulation of all single-logarithmi and nonlogarithmiradiative reoil orretions (see review [3℄). Below, weonsider single-logarithmi and nonlogarithmi radia-tive reoil orretions due to insertions of eletron andmuon polarization operators in the radiative photonline, shown in Figs. 1 and 2.Three-loop diagrams in Figs. 1 and 2 an be ob-tained from the diagrams with two-photon exhangesby insertion of radiative orretions in Fig. 3. Thetwo-photon diagrams in Fig. 3 produe the leading ra-diative reoil orretion when the loop momentum ismuh larger than the eletron mass, and the insertionof a radiative orretion an only inrease the integra-tion momentum. Therefore, alulating the diagramsin Figs. 1 and 2 we may forget about external virtu-alities and alulate matrix elements in the satteringregime between the free eletron and muon spinors. Toturn the matrix element into ontribution to HFS, we*Also at Petersburg Nulear Physis Institute, 188300,Gathina, St. Petersburg Russia; E-mail: eides�pa.uky.edu,eides�thd.pnpi.spb.ru**E-mail: shelyuto�vniim.ru

+2 +Fig. 1. Eletron polarization insertionsmultiply the sattering matrix element by the squaredCoulomb�Shrödinger bound state wave funtion at theorigin and alulate the di�erene between spin-one andspin-zero states. We use the Feynman gauge to obtainmatrix elements of the gauge invariant sets of diagramsin Figs. 1 and 2. Eah of the diagrams in Figs. 1 and 2ontains a polarization operator insertion in one of theradiative photon lines. We aount for this insertionusing the massive photon propagator for radiative pho-tons (but not for exhanged photons) with the photonmass squared �2 = 4m21� v2or �2 = 4M21� v2 ;wherem andM respetively are the eletron and muonmasses. Insertion of the polarization operator in the24
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+2 +Fig. 2. Muon polarization insertions

+Fig. 3. Two-photon exhangesradiative photon line is aompanied by an additionalintegration over veloity v with the weight1Z0 dv1� v2 v2�1� v23 � : (1)Besides single-logarithmi and nonlogarithmi on-tributions, the diagrams in Fig. 1 also generate wellknown muh larger nonreoil and logarithm-squared re-oil ontributions [1℄. We alulate the ontributions ofthe diagrams in Figs. 1 and 2 with linear auray inthe small eletron�muon mass ratio m=M . In partiu-lar, we reprodue the nonreoil and logarithm-squaredreoil ontributions, whih serves as an additional hekof our new results. The paper is organized as follows.In Set. 2, we desribe alulations of the diagramswith the eletron polarizations in Fig. 1, and Set. 3deals with the diagrams with the muon polarizationsin Fig. 2. The results are olleted in the last setion.2. ELECTRON POLARIZATION OPERATOR2.1. Calulation of the mass operatorontributionWe alulate matrix elements of eah of the dia-grams in Fig. 1 separately. The respetive integralsan be obtained by inserting radiative orretions inthe expression for the ontribution of the skeleton di-agrams in Fig. 3 to HFS. Contribution of the diagramwith the self-energy insertion in Fig. 1 has the form(f. [4℄)

��� = 3i8�2�2 1Z0 dx xZ0 dy 1Z0 dv1� v2 v2�1� v23 ��� Z d4kk4 2k2k4 � ��2k20 1�k2 + 2k0 + a21(x; y)� i0 �� �h1(x; y)k0 � h2(x; y)3 (2k2 + k20)� �� ���1 +���2; (2)where the dimensionless energy ��� is related to theenergy shift �E� as1)�E� = �2(Z�)�3 mMEF���;� = m=(2M), k is the dimensionless Minkowski ex-hange momentum, ���1 and ���2 are the integralsorresponding to the two terms in the square brakets,and h1(x; y) = 1 + xy ;h2(x; y) = 1� xy �1� 2(1 + x)yx2 + �2(1� x)� ;a21(x; y) = x2 + �2(1� x)(1� x)y : (3)The integration over v in Eq. (2) aounts for the ele-tron loop that is inluded in the integrand via the �nitemass � = p4=(1� v2) of the radiative photon. Wealulate two leading terms in the expansion of the di-mensionless energy ��� in Eq. (2) with respet to thesmall parameter � (the term of the order 1=� and theterm independent of �).2.1.1. Nonrelativisti ontributionAs a �rst step of the alulation, we obtain the lead-ing term of the order 1=� from the expression for ���in Eq. (2). This term gives the leading nonreoil ontri-bution to HFS and arises, as all nonreoil ontributions,in the external �eld approximation. To extrat the non-reoil ontribution from the expression in Eq. (2), wetake the residue at the muon pole, whih with a linearauray in � amounts to the substitution2k2k4 � ��2k20 ! �2�i�Æ(k0 � �k2): (4)Then we obtain the nonrelativisti ontribution for themuon in the form1) The Fermi energy is de�ned as EF = (8=3)(Z�)4(m=M)m.25



M. I. Eides, V. A. Shelyuto ÆÝÒÔ, òîì 137, âûï. 1, 2010���(NR) = 34�� 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 ��� Z d3kk2[k2(1 + 2�) + a21(x; y)℄ �� ��h1(x; y) + 23h2(x; y)� : (5)This last integral ontains both reoil and nonreoilontributions. The reoil ontribution is be treated onequal grounds with other reoil ontributions onsid-ered below. Integrating over the momentum in Eq. (5)and expanding the result with respet to the small pa-rameter �, we obtain���(NR) = 1Z0 dx xZ0 dy 1Z0 dv1� v2 v2 �1� v23 ��� � 1� �a1(x; y)h2(x; y) ++ �2a1(x; y) (3h1(x; y)� 2h2(x; y))� == 0:4462� + 2:2372 � ��(�)� (NR) + ��()� (NR): (6)2.1.2. �- and -integralsWe return to the alulation of the �rst two termsin the expansion of the ontributions to HFS in Eq. (2)with respet to �. An attempt to alulate the integralin Eq. (2) with the help of Feynman parameters leadsto the integrands that do not admit expansion in thesmall parameter � before the integration. Therefore,we use another approah to the alulation of the inte-gral in Eq. (2) (as well as to the alulation of other in-tegrals of this type below), and diretly integrate overthe exhange momentum k in four-dimensional polaroordinates. After the Wik rotation and integrationover angles (and omitting some higher-order terms in�), we obtain an integral representation for the ontri-butions ���1 and���2 de�ned in Eq. (2). The integralrepresentation for ���1 (f. [5℄) is���1 = �3 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 �h1(x; y)�� 1Z0 dk2 � 1(k2 + a21)2 ��kp1 + �2k2 � �2k2� �� 14k2 � 1k2 + a21q(k2 + a21)2 + 4k2 � 1�� ; (7)

and the integral representation for ���2 (f. [4℄) is���2 = 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 �h2(x; y)�� 1Z0 dk2( 1k2 + a21 � 1�kp1 + �2k2 �� 12 ��kp1 + �2k2 � �2k2��++ "�p(k2 + a21)2 + 4k2(k2 + a21)2 ++ 18k2 �q(k2 + a21)2 + 4k2 � (k2 + a21)�#) : (8)Eah integrand in Eq. (7) and Eq. (8) is a sum of �-de-pendent and �-independent integrals, and we alulatethem separately. While both integrals are onvergent,a naive separation of �-dependent and �-independentterms in the integrands sometimes leads to integralsthat are ultravioletly divergent at large integration mo-menta k. For example, the integral over k of the �-de-pendent term in the integrand in Eq. (7) onverges atlarge integration momenta, while the respetive inte-gral in Eq. (8) diverges. This divergene arises beause�-dependent terms in the integrand beome �-indepen-dent onstants at high momenta. In suh ases, we re-de�ne the �-dependent terms in the integrand by sub-trating the leading asymptoti onstant, and add thisonstant to the �-independent terms in the integrand.A universal reipe for suh restruturing of the inte-grands in Eqs. (7) and (8) is desribed by the substitu-tions 1�kp1 + �2k2 ! 1�k �p1 + �2k2 � �k� ;��kp1 + �2k2 � �2k2�!! ��kp1 + �2k2 � �2k2 � 12� : (9)We subtrat 1 in the �rst ase, and 1=2 in the seondase. In both ases, we add the terms orrespondingto these onstants to the �-independent terms in theintegrands. After this restruturing (when needed), wewrite integrals (7) and (8) as sums of what we all �-and -integrals, �� = ��(�) +��(): (10)We onsider �rst the alulation of the �-integrals.The integral over k in Eq. (7) onverges, the integrand26



ÆÝÒÔ, òîì 137, âûï. 1, 2010 Radiative reoil orretions to hyper�ne splitting : : :does not require any restruturing, and the �-integralhas the form��(�)�1 = �3 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2 �1�v23 �h1(x; y)�� 1Z0 dk2(k2 + a21)2 ��kp1 + �2k2 � �2k2� : (11)This integral is of the order �, and therefore, with ourauray, it does not give any ontribution��(�)�1 = 0: (12)We next alulate the �-integral arising from the inte-gral in Eq. (8):��(�)�2 = 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2 �1�v23 �h2(x; y)�� 1Z0 dk2 1k2 + a21 � 1�k �p1 + �2k2 � �k� �� 12 ��kp1 + �2k2 � �2k2 � 12�� : (13)Unlike in the ase of ��(�)�1 , the naive integral over kof the �-dependent terms in Eq. (8) diverges at largek, and we restruture the integrand in aordane withEq. (9). Besides the reoil ontribution, the integral inEq. (13) also ontains the nonrelativisti ontribution��(�)� (NR) that we alulated separately in Eq. (5).This nonrelativisti ontribution is generated by theleading 1=(�k) term in the small-�k expansion of theexpression in the square brakets in Eq. (13). It oin-ides with the ontribution generated by the �rst termin the square brakets in Eq. (6). To avoid doubleounting, we subtrat this ontribution from the in-tegrand in Eq. (13) by the substitution1�kp1 + �2k2 ! 1�k �p1 + �2k2 � 1� (14)in the integrand. This substitution gives a universalreipe for subtrating the nonreoil orretions in all�-integrals to be onsidered below. We emphasize thatit is needed only in the �rst of the two typial strutureswith square roots in Eq. (9) that arise in the expres-sions for �-integrals. The leading term in the small-�kexpansion of the seond struture is nonsingular anddoes not generate a nonreoil ontribution.

Finally, the seond �-integral for the mass operatorinsertion in the eletron line has the form��(�)�2 ���(�)�2 (NR) = 1Z0 dx xZ0 dy �� 1Z0 dv1� v2 v2�1� v23 �h2(x; y) 1Z0 dk2k2 + a21 �� � 1�k �p1 + �2k2 � �k � 1� �� 12 ��kp1 + �2k2 � �2k2 � 12�� : (15)Other integrals of this type arise in alulations ofother ontributions to HFS below. To extrat the�rst term in the small-� expansion of integrals of thistype, we introdue an auxiliary parameter �, suh that1 � � � 1=� (see, e.g., [6, 4℄). Then we separate thelarge and small integration momenta regions with thehelp of this parameter � and use di�erent approxima-tions in the di�erent regions. In the region of smallintegration momenta 0 � k � �, we expand the inte-grand with respet to �k � 1 and obtain��(�<)�2 ��E(�<)�2 (NR) � �16 ln3 � + 1924 ln2 � ++���2 + 58972 � ln� + 1:3220: (16)In the region of large integration momenta k � �, weexpand the integrand with respet to 1=k � 1 and ob-tain��(�>)�2 ���(�>)�2 (NR) � 16 ln3 (2�) + 124 ln2 (2�) ++�13�212 � 33536 � ln (2�) + 14�(3)� 215�2144 ++ 1038 + 16 ln3 � � 1924 ln2 � +��2 � 58972 � ln�: (17)In the intermediate region k � �, both approximations�k � 1 and 1=k � 1 are valid simultaneously, and alldependene on the auxiliary parameter � anels in thesum of the ontributions in Eq. (16) and Eq. (17):��(�)�2 ���(�)�2 (NR) � 16 ln3 (2�) + 124 ln2 (2�) ++�13�212 � 33536 � ln (2�) + 14�(3)� 215�2144 ++ 1038 + 1:3220: (18)27



M. I. Eides, V. A. Shelyuto ÆÝÒÔ, òîì 137, âûï. 1, 2010We next turn to the -integrals de�ned in Eqs. (10),(7), and (8). We easily perform the momentum inte-gration in the integral for ��()�1,��()�1 = 34 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 �h1(x; y)�� 1Z0 dk2k2 � 1k2 + a21q(k2 + a21)2 + 4k2 � 1� == 3 1Z0 dx xZ0 dy 1Z0 dv1� v2 v2�1� v23 �h1(x; y)�� � 1a1 tg�1 1a1 � 12 ln 1 + a21a21 � : (19)As in the ase of the �-integrals above, we want to avoiddouble ounting, and subtrat the respetive nonrela-tivisti ontribution already aounted for in Eq. (6).This nonrelativisti ontribution has the form��()�1(NR) = 3 1Z0 dx xZ0 dy �� 1Z0 dv1� v2 v2�1� v23 � h1(x; y)a1 : (20)We now see that due to the identitytg�1� 1a1� = �2 � tg�1 a1;subtration of the nonrelativisti ontribution from theintegral in Eq. (19) redues to the substitutiontg�1� 1a1�! � tg�1 a1: (21)This is a universal rule for subtration of nonrela-tivisti ontributions in all -integrals onsidered below(f. [5℄). Finally, the �rst -integral is��()�1 ���()�1(NR) = 1Z0 dx xZ0 dy �� 1Z0 dv1� v2 v2�1� v23 �h1(x; y)�� �� 3a1 tg�1 a1 � 32 ln 1 + a21a21 � = �2:6215: (22)Next, we turn to the seond -integral de�ned in

Eq. (10) and Eq. (8), and start with the momentumintegration (f. [4℄)��()�2 = 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 �h2(x; y)�� 1Z0 dk2 " (k2 + a21)�p(k2 + a21)2 + 4k2(k2 + a21)2 ++ 18k2 �q(k2 + a21)2 + 4k2 � (k2 + a21)� 2k2k2 + a21�# == 1Z0 dx xZ0 dy 1Z0 dv1� v2 v2�1� v23 �h2(x; y)�� �� 2a1 tg�1 1a1+34 ln 1+a21a21 +14�a214 ln 1+a21a21 � : (23)Subtration of the nonreoil ontribution is needed toavoid double ounting, and it is done with the help ofuniversal rule Eq. (21). Then we obtain��()�2 ���()�2(NR) = 1Z0 dx xZ0 dy �� 1Z0 dv1� v2 v2�1� v23 �h2(x; y) � 2a1 tg�1 a1 ++ 34 ln 1 + a21a21 + 14 � a214 ln 1 + a21a21 � = 0:4370: (24)We now ollet all ontributions in Eqs. (6), (12),(18), (22), and (24) to obtain the total result for theontribution of the diagram with the self-energy inser-tion in Fig. 1:��� = ���(NR) + (��(�)�1 ���(�)�1 (NR)) ++ (��(�)�2 ���(�)�2 (NR)) ++ ���()�1 ���()�1(NR)�+ ���()�2 ���()�2(NR)� == 0:4462� + 16 ln3 (2�) + 124 ln2 (2�) ++�13�212 � 33536 � ln (2�)� 0:1856: (25)2.2. Calulation of the spanning photonontributionThe ontribution of the spanning photon diagramsin Fig. 1 is obtained from the ontribution of the skele-ton diagrams in Fig. 3 by insertion of a radiative photonwith the polarization bubble, and is desribed by theexpression (f. [4℄)28



ÆÝÒÔ, òîì 137, âûï. 1, 2010 Radiative reoil orretions to hyper�ne splitting : : :��� = � i16�2�2 1Z0 dx xZ0 dy(x� y) 1Z0 dv1� v2 v2�1� v23 ��� Z d4kk4 � 1k2 + ��1k0 + i0 + 1k2 � ��1k0 + i0��2(3k20 � 2k2) �� �1� 3y� + �k2y2(1� y) + 2bk0y2(1� y)� 2 + x(2� x)(1� y)�2 ��� 6bk0 �3(1� y)� + k2y(1� y)(2� y)� 2bk0y(1� y)2 + x(2� x)(1� y)�2 �� ; (26)where�(x; y) = y(1� y)(�k2 + 2bk0 + a2 � i0);a2(x; y) = x2 + �2(1� x)y(1� y) ; b(x; y) = 1� x1� y : (27)We simplify this expression using the identities�k2y2(1�y)+2bk0y2(1�y)+x(2�x)(1�y) == y�+ 2x(1� y)� x2 � �2(1� x)y;k2y(1� y)(2� y)� 2bk0y(1� y)2 ++x(2� x)(1� y) = �(2� y)� ++2bk0y(1� y) + 2x(1� y) + x2 ++�2(1� x)(2� y); (28)and obtain��� = � i16�2�2 1Z0 dx xZ0 dy(x� y)�� 1Z0 dv1� v2 v2�1� v23 ��� Z d4kk4 � 1k2 + ��1k0 + i0 + 1k2 � ��1k0 + i0����2(3k20�2k2) �1�2y� +�2+2x(1�y)�x2�2 ++ ��2(1�x)y�2 ��6bk0 �1�2y� +2x(1�y)+x2�2 ++ �2(1� x)(2� y)�2 + 2bk0y(1� y)�2 �� �� ���1 +���2; (29)where the ontributions ���1 and ���2 orrespond tothe expressions in the �rst and seond square braketsin the right-hand side of (29).To alulate the integrals in Eq. (29), we use thesame triks as in the ase of the mass operator on-tribution. We skip the alulation details and olletintermediate results in Table 1. Finally, we obtain the

ontribution of the diagram with the spanning photoninsertion in Fig. 1 in the form��� = 0:4139� + 16 ln3(2�)� 524 ln2(2�) ++��212 + 1336� ln(2�)� 0:6314: (30)2.3. Calulation of the vertex ontributionThe ontribution of the diagram with the vertex in-sertion in Fig. 1 is obtained from the ontribution ofthe skeleton diagrams in Fig. 3 by insertion of the ver-tex funtion instead of one of the skeleton verties. Wehave derived a onvenient expression for the one-loopvertex funtion with a massive photon�� = �2� 1Z0 dx xZ0 dy� � �� n(k2 � 2k0)h(x� y)(1� 2y) + y(1� y)i ++ 2�1� x� x22 � ���0�0 ++ (�p�m)x(1� x)���0�0 ++ 2k0h1�x+(x�y)2i�(�p��k�m)(1�x)o == i=5Xi=1 �(i)� ; (31)where �0(x) = x2 + �2(1� x)and the terms �(i)� orrespond to the �ve terms in thebraes in Eq. (31).This is essentially the same expression as the onein [4℄. But unlike the respetive expression in [4℄, wherethe photon mass merely served as a regularization pa-rameter and was preserved only when neessary, we29



M. I. Eides, V. A. Shelyuto ÆÝÒÔ, òîì 137, âûï. 1, 2010Table 1. Spanning photon ontributions�1 �2��(NR) 0:41386� � 0:1186 0:7213��(�) ���(NR) 16 ln3(2�)� 524 ln2(2�) +��212 + 1336� ln(2�) + 14�(3)� 5�2144 � 98 + 0:5259 0��() ���(NR) 0:1201 �0:7130here restored the full dependene on the �nite pho-ton mass � that e�etively desribes the polarizationoperator insertion. It an be shown that the gauge in-variant anomalous magneti moment does not generateradiative reoil orretions (see, e.g., [5, 7℄). Therefore,the anomalous magneti moment and some other termsthat do not ontribute to HFS are omitted in Eq. (31).We insert the vertex in Eq. (31) into the skeletonexpression for the ontribution to HFS and obtain �veintegrals orresponding to the �ve terms in the right-hand side of (31). These integrals are alulated alongthe same lines as in the ase of the mass operator dis-ussed above in detail. We ollet all intermediate re-sults in Table 2. The total ontribution of the diagramwith the vertex insertion in Fig. 1 is given by��� = �1:1968� � 16 ln3(2�) + 1124 ln2(2�) ++��13�212 + 809 � ln(2�) + 3:9489: (32)We now ollet all the ontributions in Eqs. (25),(30), and (32) generated by the diagrams with eletronpolarization insertions in Fig. 1 to obtain��(e) = ��� + 2��� +��� = �1:5335� ++ 34 ln2(2�) +���2 + 536 � ln(2�) + 7:0807: (33)The �rst term in the right-hand side is the well-knownnonreoil ontribution to HFS [8℄, the seond term isthe leading logarithm squared ontribution obtainedin [9℄, and the single-logarithmi and onstant termsare the subjet of this work.3. MUON POLARIZATION OPERATORInsertion of the muon polarization operator in theradiative photons in the diagrams in Fig. 2 lifts hara-teristi integration momenta to the sale of the muon

mass. Hene, these diagrams do not generate nonre-oil ontributions to HFS, all of whih originate fromthe region of nonrelativisti muon momenta. Moreover,due to high harateristi momenta, these diagrams donot even generate reoil ontributions logarithmi inthe mass ratio that originate from the wide integrationregion between the eletron and muon masses. As aresult, the leading reoil ontributions of the diagramsin Fig. 2 are pure numbers, and their alulation issigni�antly simpler than in the ase of the eletronpolarization insertions in Fig. 1.As in the previous setion, insertion of the muonpolarization operator in the diagrams in Fig. 2 is a-ounted for by the introdution of a photon mass, fol-lowed by an additional integration over the veloitywith the weight in Eq. (1). For the muon polarization,the e�etive photon mass in the integrals is large,�2 = 4M21� v2in dimensional units and it determines harateristimomenta in all the integrals. We an obtain the ex-pressions for the energy shift due to muon polariza-tion from the formulas for the respetive eletron po-larization ontributions above by resaling the dimen-sionless integration momenta k ! k=� (we reall that� = m=2M). In addition, we should adjust the ex-pression for the photon mass; in terms of the resaledintegration momenta measured in units of 2M , it is�2 = 1�2(1� v2) :After these substitutions, the expressions for the di-mensionless ontributions to HFS that are due to ele-tron polarization beome the expressions for the on-tributions due to muon polarization.a. Mass operator ontribution. To obtain an ex-pliit expression for the diagrams with the mass op-erator insertions in Fig. 2, we resale the integrationmomentum k ! k=� in Eqs. (7) and (8), and rede�nethe photon mass squared as30



ÆÝÒÔ, òîì 137, âûï. 1, 2010 Radiative reoil orretions to hyper�ne splitting : : :Table 2. Vertex ontributions��(NR) ��(�) ���(NR) ��() ���(NR)�1 �1:1356� + 0:3385 �16 ln3(2�) + 1124 ln2(2�) +��5�212 + 198 � ln (2�) + 3:2201 �0:3315�2 �0:0507� + 0:1007 �2�23 � 46972 � ln Mm + 0:0371 �0:0604�3 �0:0104� + 0:0160 �3��23 � 11936 � �0:0106�4 3:0460 0 �2:4323�5 �1:1758 0 1:1540�2 = 1�2(1� v2) :The auxiliary funtions used in Eqs. (7) and (8) arede�ned in Eq. (3). After resaling, they simplify ash2(x; y)! 1� xy ; a1(x; y)! 1y�2(1� v2) : (34)All the dependene on � beomes expliit after thesemanipulations. It turns out that ���1 vanishes to-gether with �. The total leading reoil ontributiongenerated by the diagrams with the mass operator in-sertions in Fig. 2 oinides with ���2. Its alulationis straightforward, and we obtain��� = 1Z0 dx xZ0 dy 1Z0 dv v2�1� v23 ��� 1Z0 dk2 1� xk2y(1� v2) + 1 �1k �p1 + k2 � k� �� 12 �kp1 + k2 � k2 � 12�� = 0:1329: (35)b. Spanning photon ontribution. We obtain anexpression for the spanning photon ontribution withthe muon polarization insertion in Fig. 2 by resal-ing the integration momentum and the photon massin Eq. (29). Under these transformations, the auxiliaryfuntion �(x; y) in Eq. (27) simpli�es as�(x; y)! y(1� y)�2 ��k2 + �2�2 (1� x)y(1� y) � : (36)After resaling, only the �rst and third terms in the�rst square braket in the right-hand side of (29) pro-due ontributions nonvanishing with � ontributionsand we obtain

��� = 1Z0 dx xZ0 dy 1Z0 dv v2�1�v23 � 1Z0 dk2(x�y)�� � 1� 2yk2y(1� y)(1� v2) + 1� x �� (1� x)y[k2y(1� y)(1� v2) + 1� x℄2 ��� �1k �p1 + k2 � k� �� 12 �kp1 + k2 � k2 � 12�� = 0:3105: (37). Vertex ontribution. Resaling the integrationmomentum and the photon mass in the expressions or-responding to the �ve terms �(i)� , we obtain an expliitexpression for the vertex diagram ontribution in Fig. 2to HFS. It is easy to see that after the resaling, allthe terms in the expression for the vertex funtion inEq. (31) are suppressed by at least one power of � inomparison with the �rst term. This means that onlythe �rst term generates the leading reoil orretion inthe ase of a muon polarization insertion. Expliitly,the leading reoil orretion generated by the vertexinsertions in Fig. 2 has the form��� = � 1Z0 dx xZ0 dy 1Z0 dvv2�1� v23 ��� 1Z0 dk2 (x� y)(1� 2y) + y(1� y)k2y(1� y)(1� v2) + 1� x �� �1k �p1 + k2 � k�� 12 �kp1 + k2 � k2 � 12�� == �0: 8738: (38)31



M. I. Eides, V. A. Shelyuto ÆÝÒÔ, òîì 137, âûï. 1, 2010Colleting all the leading radiative reoil orretionsin Eqs. (35), (37), and (38) orresponding to the dia-grams with muon polarization insertions in Fig. 2, weobtain��(�) = ��� + 2��� +��� = �1:3042: (39)4. CONCLUSIONSRestoring the overall dimensional fator in Eq. (33)and disregarding the nonreoil and logarithm-squaredterms known earlier, we obtain single-logarithmi andnonlogarithmi ontributions to HFS generated by thediagrams with one-loop eletron polarization insertionsin Fig. 1:�E(e) = ���2 � 536 � ln Mm + 7:0807��� �2(Z�)�3 mMEF : (40)The radiative reoil ontribution generated by the di-agrams with one-loop muon polarization insertions inFig. 2 is nonlogarithmi. We obtain it by restoring theoverall dimensional fator in Eq. (39):�E(�) = �1:3042 �(Z2�)(Z�)�3 mMEF : (41)The total ontribution to HFS obtained above an bewritten as (Z = 1 in muonium)�E = �E(e) +�E(�) == ���2 � 536 � ln Mm + 5:7765� �3�3 mMEF : (42)The theoretial auray of HFS in muonium is ur-rently about 70 Hz. A realisti goal is to redue this un-ertainty to below 10 Hz (see a more detailed disussionin [1, 2℄). The result in Eq. (42) together with otherthree-loop radiative reoil results in [10�12℄ makes thisgoal loser.
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