ИЗМЕНЕНИЕ ПОВЕРХНОСТНЫХ СОСТОЯНИЙ В ТОНКИХ ПЛЕНКАХ Ag(111) ПРИ АДСОРБИРОВАНИИ МОНОСЛОЯ ОРГАНИЧЕСКИХ МОЛЕКУЛ РТСДА

Н. Л. Зайцев^{а,b*}, И. А. Нечаев^{а,c**}, Е. В. Чулков^{а,d}

^a Donostia International Physics Center (DIPC) 20018, San Sebastián, Basque Country, Spain

^b Сибирский физико-технический институт им. В. Д. Кузнецова Томского государственного университета 634050, Томск, Россия

> ^сКостромской государственный университет им. Н. А. Некрасова 156961, Кострома, Россия

^d Departamento de Física de Materiales, Facultad de Ciencias Químicas, UPV/EHU and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080, San Sebastián, Basque Country, Spain

Поступила в редакцию 13 августа 2009 г.

В рамках теории функционала электронной плотности исследуется изменение электронной структуры тонких пленок серебра разной толщины с ориентацией Ag(111), обусловленное взаимодействием с адсорбированным монослоем упорядоченных органических молекул PTCDA. Показано, что в результате взаимодействия одно из двух поверхностных состояний чистых пленок модифицируется в незанятое интерфейсное состояние, при этом сохраняя все основные черты исходного. Обсуждается связь результирующего состояния с незанятым состоянием системы PTCDA/Ag(111), наблюдаемым в эксперименте с помощью как сканирующей туннельной, так и двухфотонной фотоэмиссионной спектроскопии.

1. ВВЕДЕНИЕ

В последнее время изучение электронных свойств металлических поверхностей приобрело особое значение в связи с перспективами их использования как подложки для различных адсорбатов при создании малогабаритных электронных приборов [1]. Широкое распространение в качестве адсорбатов получили материалы на основе органических молекул. Среди последних особо выделяются молекулы 3,4,9,10-регуlепе-tetracarboxylic acid dianhydride (РТСDA, С₂₄O₆H₈), которые способны образовывать строго упорядоченные слои на поверхностях ряда металлов [2, 3].

Слои молекул РТСDА, осажденные на металлические подложки, интенсивно изучались различными экспериментальными методами [3–10]. Недавно в работе [9] при исследовании монослоя РТСDА на

поверхности Ag(111) с помощью сканирующей туннельной спектроскопии было обнаружено незанятое состояние, характеризующееся параболической зависимостью от двумерного волнового вектора электрона **k** с эффективной массой $m^* = 0.47 m_e$, где m_e — масса свободного электрона. При $\mathbf{k} = 0$ энергия этого состояния составляет примерно 0.7 эВ относительно уровня Ферми. Такая нетипичная для органических пленок дисперсия была интерпретирована в работе [9] как результат сильного непрямого взаимодействия молекул в монослое через подложку, а происхождение самого состояния связывается с понизившим свою энергию уровнем LUMO+1 (расположенным сразу под низшим незанятым уровнем) свободной молекулы РТСDА. Подобное незанятое состояние (с энергией 0.6 эВ выше уровня Ферми при **k** = 0 и параболической дисперсией с $m^* = (0.39 \pm 0.03) m_e$) было обнаружено и в работе [10] при изучении электронной структуры системы РТСДА/Ад(111) с помощью двухфотонной фо-

^{*}E-mail: nza@yandex.ru

^{**}E-mail: ianechaev@mail.ru

тоэмиссионной спектроскопии. Однако авторы работы [10] связывают происхождение такого состояния с состоянием чистой поверхности Ag (111), энергия которого увеличилась за счет взаимодействия с монослоем РТСDА. Поскольку подобные состояния играют решающую роль в процессах динамики возбужденных электронов и переноса заряда через интерфейс [15, 16], вопрос о происхождении незанятого состояния РТСDА/Ag(111) является важным.

Несмотря на интенсивные экспериментальные исследования незанятых состояний вблизи уровня Ферми, последние не изучались систематически с помощью методов *ab initio*. В небольшом количестве теоретических работ [11–14], посвященных изучению системы PTCDA/Ag(111), основное внимание уделялось исследованию геометрической структуры, взаимному расположению узлов решетки адсорбата и подложки, а также механизму их взаимодействия. При этом считалось, что достаточно рассматривать трехслойную пленку серебра для адекватного описания изучаемых явлений.

В настоящей работе в рамках теории функционала электронной плотности изучаются электронные состояния системы, представляющей собой монослой упорядоченных органических молекул PTCDA, адсорбированных на пленках серебра разной толщины (3, 6 и 9 слоев) с ориентацией (111). Особое внимание уделяется исследованию эволюции поверхностных состояний и их модификации за счет взаимодействия с монослоем молекул при изменении толщины подложки. Предполагается, что подобного рода исследование позволит продвинуться в прояснении вопроса о происхождении наблюдаемого в эксперименте незанятого состояния и его роли в переносе заряда через интерфейс.

2. МОДЕЛЬ И МЕТОД РАСЧЕТА

Геометрическое строение адсорбированного монослоя представляет собой упорядоченную периодическую структуру молекул РТСDА двух типов (A и B), разориентированных на 77° относительно друг друга [2]. Элементарная ячейка имеет размер 18.96 × 12.61 Å² (рис. 1), содержит две молекулы РТСDА и отличается от прямоугольной формы всего на один градус [12]. Расположение молекул относительно подложки изучалось в работах [11, 12]. В соответствии с их результатами продольная ось молекулы типа A проходит параллельно ряду атомов серебра, а центр молекулы попадает в их междоузлие. В то же время, молекулы типа B разориентиро-

Рис.1. Геометрическое строение монослоя молекул PTCDA на поверхности Ag(111). Показаны две элементарные ячейки. Молекулы A и B разориентированы на 77° относительно друг друга

ваны на 17° относительно рядов атомов на поверхности серебра. Расстояние между поверхностным слоем серебра и монослоем молекул мы взяли равным 2.86 Å (экспериментальное значение равно примерно 2.9 Å [6]). Из работы [12] следует, что выбранное нами значение получается при использовании обменно-корреляционного потенциала в приближении локальной плотности в рамках теории функционала электронной плотности, в то время как потенциал в приближении обобщенного градиента плотности дает слишком большое расстояние (около 3.5 Å) и недооценивает энергию адсорбции.

В данной работе вычисления электронной структуры проводились в рамках приближения локальной плотности с использованием пакета OPENMX [17, 18], реализующего схему, где в качестве базисных функций берется линейная комбинация псевдоатомных орбиталей, а глубокий остовный потенциал заменяется на сохраняющий норму псевдопотенциал в схеме [19]. Для всех атомов серебра верхние остовные уровни включались в псевдопотенциал и рассматривались как валентные. Для атомов водорода, углерода и кислорода, составляющих молекулу PTCDA, использовались оптимизированные для биомолекул базисные функции [20]. В случае серебра в базис, который был сгенерирован с радиусом обрезания 7.5 ат. ед., включали две s-орбитали, две *p*-орбитали и одну орбиталь *d*-типа. Толщины пленок серебра с ориентацией Ag(111) составляли 3, 6 и

Таблица 1. Энергии E_{SS1} и E_{SS2} поверхностных состояний в точке $\overline{\Gamma}$ для чистых пленок Ag(111) с различным числом слоев (N_l) и атомов (N_a) в них. Представлены также разница $\Delta E = E_{SS1} - E_{SS2}$ и среднее арифметическое $E_{av} = E_{SS1} - \Delta E/2$. Энергии отсчитываются от уровня Ферми

$N_l \times N_a$	3×1	3×33	6×1	6×33	9×1	9×33
E_{SS1} , эВ	0.486	0.475	0.140	0.141	0.032	0.022
$E_{SS2},$ эВ	-1.251	-1.263	-0.461	-0.460	-0.220	-0.227
ΔE , эВ	1.737	1.739	0.601	0.601	0.252	0.250
$E_{av},$ эВ	-0.382	-0.394	-0.161	-0.159	-0.094	-0.102

9 слоев. Элементарная ячейка содержала $N_a \times N_l$ атомов серебра ($N_a = 33$ — число атомов в одном слое, N_l — число слоев серебра) и 76 атомов, принадлежащих двум молекулам РТСDА (молекулярный монослой наносился только с одной стороны пленки). Поверхностная зона Бриллюэна разбивалась сеткой (3×3) **k**-точек, которая включала и $\overline{\Gamma}$ -точку ($\mathbf{k} = 0$). Самосогласование потенциала продолжалось до тех пор, пока полная энергия на предыдущем шаге не отличалась от текущей на 10^{-6} ат.ед. Координатная ось z направлялась по нормали к поверхности пленок.

3. РЕЗУЛЬТАТЫ РАСЧЕТА И ОБСУЖДЕНИЯ

Для анализа изменения электронных состояний вблизи уровня Ферми при взаимодействии подложки с монослоем PTCDA необходимо начать с идентификации поверхностного состояния чистого серебра. В случае чистых пленок Ag(111) появляются два поверхностных состояния с разницей в энергии, связывающим-антисвязывающим обусловленной расщеплением за счет взаимодействия через пленку. При нечетном (четном) количестве слоев в пленке большей энергией E_{SS1} обладает антисимметричное (симметричное) поверхностное состояние, а меньшей E_{SS2} — симметричное (антисимметричное). Идентификация этих состояний в случае с N_a = 1 не вызывает трудности. Однако в случае большой расчетной ячейки ($N_a = 33$) мы имеем маленькую зону Бриллюэна, а следовательно, много состояний пленки, «отраженных» от границы зоны Бриллюэна, которые затрудняют поиск поверхностных состояний. В этом случае в чистых пленках Ag(111) с разной толщиной последние можно идентифицировать по параболической дисперсии (их эффективная масса равна $m^* = 0.40 m_e$ в расчетах с $N_a = 1$) и локализации зарядовой

плотности в приповерхностном слое. Результаты, приведенные в табл. 1, явно указывают на то, что связывающее-антисвязывающее расщепление достаточно быстро уменьшается с увеличением толщины пленки, а энергии поверхностных состояний в точке $\overline{\Gamma}$, полученные с $N_a = 33$, согласуются с соответствующими энергиями, найденными в расчетах с $N_a = 1$, в пределах около 0.01 эВ. Небольшое различие энергий поверхностных состояний в расчетах с разными элементарными ячейками связано с существенным увеличением числа энергетических зон, вовлеченных в схему самосогласования по полной энергии системы, при $N_a = 33$. Отметим, что при девяти слоях отличие среднего значения энергий двух поверхностных состояний от экспериментального значения [21], наблюдаемого для поверхности Ag(111), составляет 0.04 эВ. Обратим также внимание на то, что в случае большой ячейки для рассматриваемых толщин пленок серебра поверхностное состояние с большей энергией является незанятым, а с меньшей энергией — занятым.

Рассмотрим, как трансформируются указанные поверхностные состояния при адсорбировании монослоя молекул РТСDА. В случае трехслойной пленки с монослоем РТСDА занятое поверхностное состояние, волновая функция которого локализуется в области «чистой» поверхности пленки, в точке $\overline{\Gamma}$ обладает энергией бо́льшей, чем в случае чистой пленки на 0.31 эВ, т. е. становится ближе к уровню Ферми. В силу сильной гибридизации состояний серебра с состояниями молекул монослоя, которые в данном случае составляют значительную часть системы, нельзя однозначно указать на какое-либо незанятое состояние, которое бы происходило из незанятого поверхностного состояния чистой пленки.

На рис. 2 представлены результаты расчета зонной структуры как чистой шестислойной пленки серебра, так и пленки с адсорбированным монослоем молекул РТСDA в одном из симметричных направ-

Рис.2. Зонная структура чистой шестислойной пленки Ag(111) (*a*) и этой же пленки с адсорбированным монослоем молекул PTCDA (*б*) в направлении $\overline{\Gamma} - \overline{X}_1$ зоны Бриллюэна. Жирными линиями представлена параболическая аппроксимация дисперсии рассматриваемых состояний. Ромбами показаны k-точки, в которых анализировалось пространственное распределение волновой функции интерфейсного состояния (рис. 4*a*)

лений зоны Бриллюэна. На рис. 2 хорошо видно, что в результате взаимодействия шестислойной пленки с монослоем молекул энергия занятого поверхностного состояния, так же как и в случае с трехслойной пленкой, увеличивается, но уже примерно на 0.19 эВ относительно своего значения в чистой пленке. Наблюдается незначительное изменение эффективной массы. Незаполненное поверхностное состояние чистой шестислойной пленки модифицируется в интерфейсное состояние с энергией $E_{IS} = 0.52$ эВ в точке $\overline{\Gamma}$. Дисперсия этого состояния хорошо описывается квадратичной зависимостью от волнового вектора **k** с эффективной массой $m^* = 0.43m_e$ очень близкой к таковой для поверхностного состояния чистой поверхности Ag(111). Рисунок 3 отражает результаты, полученные для девятислойной пленки. В отношении занятого поверхностного состояния прослеживается ситуация аналогичная случаю трех- и шестислойной пленки. Действительно, как хорошо видно на рисунке, энергия этого состояния увеличилась (здесь примерно на 0.11 эВ). Однако заметим тенденцию, которая заключается в уменьшении изменения энергии, обусловленного взаимодействием с монослоем молекул РТ CDA, с увеличением толщины пленки при стремлении E_{SS2} к энергии состояния чистой поверхности Ag(111). Что касается незанятого поверхностного состояния, то оно, как и в случае шестислойной пленки, модифицируется в интерфейсное состояние с $E_{IS} = 0.47$ эВ в точке $\overline{\Gamma}$ и $m^* = 0.42m_e$. Здесь

Рис.3. Зонная структура чистой девятислойной пленки Ag(111) (a) и этой же пленки с адсорбированным монослоем молекул РТСDA (б) в направлении $\overline{\Gamma} - \overline{X}_1$ зоны Бриллюэна. Жирными линиями представлена параболическая аппроксимация дисперсии рассматриваемых состояний. Ромбами показаны k-точки, в которых анализировалось пространственное распределение волновой функции интерфейсного состояния (рис. 4б)

стоит отметить, что если для шестислойной пленки $E_{IS} - E_{SS1} = 0.38$ эВ, то для девятислойной $E_{IS} - E_{SS1} = 0.45$ эВ. Экстраполируя полученные результаты на случай пленок большой толщины, расчет которых трудно реализуем в силу огромного числа атомов, приходящихся на одну ячейку, можно предположить, что занятое поверхностное состояние с локализацией волновой функции в области чистой поверхности пленки не будет «чувствовать» наличие монослоя молекул, адсорбированного на другой стороне пленки. Интерфейсное состояние «зафиксирует» свою энергию в точке $\overline{\Gamma}$ в диапазоне от 0.45 эВ до 0.5 эВ, а его дисперсия будет характеризоваться эффективной массой около $0.4m_e$.

Для того чтобы окончательно убедиться в харак-

тере и происхождении найденного интерфейсного состояния, рассмотрим квадраты модуля его волновой функции в **k**-точках, лежащих на дисперсионной кривой этого состояния (см. рис. 2, 3). Проинтегрировав их по пространственным координатам xy, получим зарядовую плотность ρ_{IS} как функцию z. Зависимость ρ_{IS} от z представлена на рис. 4. Из рисунка следует, что волновая функция интерфейсного состояния преимущественно локализована в металле и в значительной степени концентрируется в области интерфейса (выделена на рисунке), причем эта концентрация при увеличении толщины пленки становится более ярко выраженной. Отметим, что при изменении вектора **k** вдоль дисперсионной кривой интерфейсного состояния поведение ρ_{IS} практически

Рис. 4. Зарядовая плотность ρ_{IS} , соответствующая интерфейсному состоянию, как функция z в произвольных единицах для различных векторов \mathbf{k} (значения указаны на вертикальной оси) в направлении $\overline{\Gamma} - \overline{X}_1$ для шестислойной (a) и девятислойной (b) пленок серебра с монослоем РTCDA. Рассматриваемые векторы \mathbf{k} отмечены соответственно на рис. 2b и 3b. Штриховкой выделена интерфейсная область, слева от нее находится область пленки, а справа — область монослоя молекул

Таблица 2. Заряды пограничного состояния для случая шестислойной пленки серебра в области пленки Q_b , интерфейса Q_i и монослоя $\operatorname{PTCDA} Q_m$ для различных \mathbf{k} вдоль вектора обратной решетки \overline{X}_1 (см. рис. 4*a*)

$k, \mathrm{\AA}^{-1}$	Q_b, e	Q_i, e	Q_m, e
0.000	0.54	0.30	0.16
0.033	0.52	0.28	0.19
0.066	0.55	0.29	0.16
0.126	0.58	0.25	0.17
0.146	0.63	0.23	0.15

не меняет своего характера, заметна лишь небольшая тенденция перетекания заряда из области интерфейса в объемную часть пленки (см. табл. 2).

Резюмируя сказанное, отметим, что полученные

результаты анализа влияния адсорбированного монослоя молекул PTCDA на электронную структуру тонких (до 9 слоев) пленок Ag(111) могут служить подтверждением интерпретации [10] незанятого состояния, обнаруженного экспериментально в работе [9]. В нашем расчете незанятое интерфейсное состояние появляется при меньшей энергии, но обладает всеми характеристиками, которые были выявлены в работе [10] с помощью двухфотонной фотоэмиссионной спектроскопии. Действительно, его дисперсия очень схожа с дисперсией, обнаруженной в эксперименте: эффективная масса интерфейсного состояния равна 0.43 m_e в случае шестислойной пленки и 0.42m_e в случае девятислойной пленки, тогда как экспериментальное значение $(0.39 \pm 0.03)m_e$ [10] и 0.47m_e [9]. Как показал анализ, в направлении второго вектора обратной решетки \overline{X}_2 дисперсия интерфейсного состояния, по крайней мере до половины длины этого вектора, хорошо описывается параболической зависимостью от волнового вектора с той же эффективной массой, что и в направлении \overline{X}_1 . Отметим, что в полученной электронной структуре не наблюдается какое-либо другое незанятое состояние с подобной параболической дисперсией, которое можно было бы соотнести с состоянием, обсуждаемым в работах [9, 10]. Относительно разницы в энергии интерфейсного состояния заметим, что в рамках приближения локальной плотности кон-шемовские собственные энергии недостаточно точно описывают электронные состояния. Мы полагаем, что как и в случае свободной РТСDA [22], использование GW-метода позволит улучшить описание электронного спектра рассматриваемой системы.

4. ЗАКЛЮЧЕНИЕ

В рамках теории функционала электронной плотности проведен расчет электронной структуры тонких пленок Ag(111) с адсорбированным на них монослоем молекул PTCDA. Толщина пленок варьировалась от 3 до 9 слоев. В результате взаимодействия пленки с молекулярным монослоем занятое поверхностное состояние, волновая функция которого локализуется на чистой стороне пленки, увеличивает свою энергию, приближаясь к уровню Ферми. Это увеличение тем меньше, чем больше толщина пленки. Незанятое поверхностное состояние также увеличивает свою энергию, но на бо́льшую величину, и трансформируется в интерфейсное с энергией 0.5 эВ в точке $\overline{\Gamma}$. Результирующее интерфейсное состояние во многом сохраняет черты исходного: локализацию в области внешнего слоя пленки серебра, контактирующего с РТСDА, заметное проникновение в глубь пленки, изотропную параболическую дисперсию с эффективной массой 0.4m_e. Указанные значения энергии и эффективной массы слегка варьируются с увеличением толщины пленки. С изменением волнового вектора распределение зарядовой плотности интерфейсного состояния меняется слабо с небольшим перетеканием заряда из области интерфейса в объем пленки. Сопоставление полученных результатов с экспериментальными данными по исследованию электронной структуры РТСДА/Ад(111) позволило сделать вывод о том, что наблюдаемое в эксперименте незанятое состояние происходит из поверхностного состояния чистой поверхности Ag(111). Это может служить подтверждением интерпретации, данной в работе [10] на основе экспериментального исследования системы РТСДА/Ад(111) с помощью двухфотонной фотоэмиссионной спектроскопии.

ЛИТЕРАТУРА

- 1. X. Zhu, Surf. Sci. Rep. 56, 1 (2004).
- K. Glöckler, C. Seidel, A. Soukopp, M. Sokolowski,
 E. Umbach, M. Böhringer, R. Berndt, and
 W. D. Schneider, Surf. Sci. 405, 1 (1998).
- 3. F. Tautz, Progr. Surf. Sci. 82, 479 (2007).
- С. А. Комолов, Н. Б. Герасимова, А. Г. Сидоренко, Ю. Г. Аляев, Письма в ЖТФ 26, 80 (2000).
- V. Wagner, T. Muck, J. Geurts, M. Schneider, and E. Umbach, Appl. Surf. Sci. 212–213, 520 (2003).
- Y. Zou, L. Kilian, A. Schöll, T. Schmidt, R. Fink, and E. Umbach, Surf. Sci. 600, 1240 (2006).
- 7. С. А. Комолов, Ю. Г. Аляев, ЖТФ 77, 61 (2007).

- S. Duhm, A. Gerlach, I. Salzmann, B. Bröker, R. Johnson, F. Schreiber, and N. Koch, Org. Electr. 9, 111 (2008).
- R. Temirov, S. Soubatch, A. Luican, and F. S. Tautz, Nature 444, 350 (2006).
- C. H. Schwalb, S. Sachs, M. Marks, A. Scholl, F. Reinert, E. Umbach, and U. Höfer, Phys. Rev. Lett. 101, 146801 (2008).
- A. Kraft, R. Temirov, S. K. M. Henze, S. Soubatch, M. Rohlfing, and F. S. Tautz, Phys. Rev. B 74, 041402 (2006).
- M. Rohlfing, R. Temirov, and F. S. Tautz, Phys. Rev. B 76, 115421 (2007).
- L. Kilian, A. Hauschild, R. Temirov, S. Soubatch, A. Scholl, A. Bendounan, F. Reinert, T. Lee, F. S. Tautz, M. Sokolowski, and E. Umbach, Phys. Rev. Lett. 100, 136103 (2008).
- 14. W. Ji, Z. Lu, and H. Gao, Phys. Rev. B 77, 113406 (2008).
- E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sanchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, Chem. Rev. 106, 4160 (2006).
- 16. J. Wüsten, S. Berger, M. Salomo, A. Mönnich, M. Bauer, S. Lach, M. Aeschlimann, and C. Ziegler, Phys. Rev. B 78, 195326 (2008).
- 17. T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).
- 18. T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).
- 19. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
- 20. T. Ozaki and H. Kino, J. Chem. Phys. 121, 10879 (2004).
- F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hüfner, Phys. Rev. B 63, 115415 (2001).
- 22. N. Dori, M. Menon, L. Kilian, M. Sokolowski, L. Kronik, and E. Umbach, Phys. Rev. B 73, 195208 (2006).