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OPTICAL EDGE MODES IN PHOTONIC LIQUID CRYSTALSV. A. Belyakov a*, S. V. Semenov baLandau Institute for Theoretial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow Region, RussiabRussian Researh Center �Kurhatov Institute�123182, Mosow, RussiaReeived Marh 30, 2009An analyti theory of loalized edge modes in hiral liquid rystals (CLCs) is developed. Equations determiningthe edge-mode frequenies are found and analytially solved in the ase of low deaying modes and are solvednumerially for the problem parameter values typial for the experiment. The disrete edge-mode frequeniesspei�ed by the integer numbers n are loated lose to the stop-band edge frequenies outside the band. Theexpressions for the spatial distribution of the n's mode �eld in a CLC layer and for its temporal deay arepresented. The possibilities of a redution of the lasing threshold due to the anomalously strong absorptione�et are theoretially investigated for a distributed feedbak lasing in CLCs. It is shown that a minimum ofthe threshold pumping wave intensity may be reahed, generally, for the pumping wave propagating at an angleto the helial axis. However, for luky values of the related parameters, it may be reahed for the pumpingwave propagating along the helial axis. The lowest threshold pumping wave intensity ours for the lasingat the �rst low-frequeny band-edge lasing mode and the pumping wave propagating at an angle to the spiralaxis orresponding to the �rst angular absorption maximum of the anomalously strong absorption e�et at thehigh-frequeny edge of the stop band. The study is performed in the ase of the average dieletri onstantof the liquid rystal oiniding with the dieletri onstant of the ambient material. Numerial alulations ofthe distributed feedbak lasing threshold at the edge-mode frequenies are performed for typial values of therelevant parameters.PACS: 42.70.Qs, 42.70.Df1. INTRODUCTIONReently, there was an explosion of interest in themirrorless distributed feedbak (DFB) lasing in hiralliquid rystals (CLCs) [1℄. The reason for this interestis related to the observed low-threshold lasing [2; 3℄, un-usual polarization properties of lasing, and frequenytunability of the lasing by means of applying an ex-ternal �eld [4; 5℄, temperature pith variations [6; 7℄, ormehanial stress [8℄, et.The DFB low-threshold lasing in CLCs ours atfrequenies lose to the frequenies of the stop-bandedges [2�8℄. The orresponding frequenies were as-soiated with so-alled edge lasing modes [1℄. It alsohappens that at the same edge lasing mode frequen-ies, an anomalously strong absorption of the pumpingwave ours [9�13℄.*E-mail: bel�landau.a.ru

In general, the theory of edge lasing modes in CLCs(and the more general DFB lasing in spiral media) isvery similar to the orresponding theory for onven-tional periodi solid media that was initially developedby Kogelnik and Shank [14℄ in the oupled-wave ap-proximation and was later treated similarly in manypapers (see [15℄ and the referenes therein). But thetheory of edge lasing modes in CLCs deserves a sep-arate study beause of unusual optial properties ofCLCs and beause, in ontrast to all other periodimedia, an exat analyti solution of the Maxwell equa-tions is known for CLCs (and more generally, for spiralmedia). Many related results, usually obtained in anumerial approah, may therefore be obtained analyt-ially for CLCs. For example, the anomalously strongabsorption e�et existing in CLCs [9; 10℄ for the lightfrequeny lose to the stop band may be treated an-alytially. (The anomalously strong absorption e�et797



V. A. Belyakov, S. V. Semenov ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009for onventional periodi media was also studied inRef. [16℄.)General analyti expressions for the solution of theboundary problem for the nonabsorbing, absorbing,and amplifying CLC layers, i. e., for the edge modes(EMs), are presented below for the light propagationdiretion oiniding with the spiral axis. We �nd thedispersion equation for EMs determining their frequen-ies; the lasing threshold gain is found and an expres-sion for the threshold in a spei� limit ase is also pre-sented together with numerial solutions of the disper-sion equation for typial values of the CLC parameters.The EM properties (oordinate intensity distribution,frequeny width of the EM, et.) are analyzed. It isalso disussed how the revealed properties of EMs al-low dereasing the DFB lasing threshold ensured by alow gain for the lasing and a strong absorption for thepumping wave.2. EIGENWAVES IN CLCTo solve the boundary value problem related toEMs, we need to know eigenwaves in a CLC. As isknown [10; 17�19℄, the eigenwaves orresponding topropagation of light in a CLC along a spiral axis z,i. e., the solutions of the Maxwell equation�2E�z2 = "(z)2 �2E�t2 ; (1)are given by a superposition of two plane waves of theformE(z; t) = e�i!t �� �E+n+ exp(iK+z) +E�n� exp(iK�z)� : (2)Here, ! is the light frequeny,  is the speed of light,n� = (ex � ey)=p2 are irular polarization vetorswith ex and ey being the unit vetors along the x andy axes, and"(z) == 0B� "0 [1+Æ os(�z)℄ �"0Æ sin(�z) 0�"0Æ sin(�z) "0 [1�Æ os(�z)℄ 00 0 "?1CA (3)is the dieletri tensor of the CLC [10; 17�19℄ (two signsin the expression for "(z) orrespond to the right andleft hirality of the CLC), where "0 = ("k + "?)=2,Æ = ("k�"?)=("k+"?) is the dieletri anisotropy, and

LCLC EirEilFig. 1. Shemati of the boundary value problem foredge modes"k and "? are the loal prinipal values of the CLC di-eletri tensor [9; 16; 17℄. The wave vetors K� satisfythe ondition K+ �K� = �; (4)where � is the reiproal lattie vetor of the LC spiral(� = 4�=p, where p is the holesteri pith).The wave vetors K� in four eigensolutions ofEq. (1) are determined by Eq. (3) and the formulasK+j = �2 � �s1 + � �2��2 �r� ���2 + Æ2 ; (5)where j labels the eigensolutions with the ratio of theamplitudes E�=E+ given by�E�E+�j = Æ �(K+j � �)2=�2 � 1��1 ; (6)where � = !p"0=. We do not speify the kindof the CLC under investigation here (hiral sme-ti or holesteri) beause the optis of light propa-gating along the spiral axis is idential for both LCtypes [10; 17�20℄. For de�niteness, we give the expres-sions for holesteris below. The orresponding expres-sions for hiral smetis an be obtained by a simplerede�nition of the relevant parameters (see Ref. [10,Ch. 2℄).Two of the eigenwaves orresponding to the irularpolarization with the sense of hirality oiniding withthe one of the CLC spiral experiene strong di�ra-tion sattering at the frequenies in the region of thestop band. The other two eigenwaves orrespondingto the opposite irular polarizations are almost unaf-feted the di�ration sattering even at the frequeniesof the stop band for the former irular polarization.Beause, as we see in what follows, the spei� fea-tures of EMs in the CLC are related to eigenwaves ofthe di�rating polarization, we limit ourselves by on-sidering the propagation of light of the di�rating po-larization only in the CLC.798



ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Optial edge modes in photoni liquid rystals3. BOUNDARY VALUE PROBLEMTo investigate EMs in a CLC, we have to onsider aboundary value problem. We assume that the CLC isrepresented by a planar layer with the spiral axis per-pendiular to the layer surfaes (Fig. 1). To justify ourintention to limit ourselves by propagation of light ofthe di�rating polarization only, we also assume thatthe average CLC dieletri onstant "0 oinides withthe dieletri onstant of the ambient medium. Thisassumption pratially prevents onversion of one ir-ular polarization into another at layer surfaes [10; 21℄and allows taking only two eigenwaves with di�ratingirular polarization into aount.We begin with the linear boundary value problem inthe formulation where two plane waves of the di�rat-ing polarization and of the same frequeny are inidentalong the spiral axis at the layer from the opposite sides(see Fig. 1) and the dieletri tensor an have a nonzeroimaginary part of any sign (whih means that the CLClayer may be either absorbing or amplifying). The am-plitudes E+j of the two di�rating eigenwaves exitedin the layer by the inident waves (they are denoted byE++ and E+�) are determined by the equationsE++ +E+� = Eir ;exp(iK++L)Æ �(K++ � �)2=�2 � 1��1E++ ++exp(iK+�L)Æ �(K+� � �)2=�2 � 1��1E+� = Eil; (7)where Eir and Eil are the amplitudes of the waves in-ident at the layer from the right and from the left, Lis the layer thikness, andK+� = �2 � �s1 + � �2��2 �r� ���2 + Æ2 : (8)The amplitudes of waves exiting from the layer onthe right and the left sides, Eer and Eel, are determinedby the expressionsEer = Æ �(K++ � �)2=�2 � 1��1E++ ++ Æ �(K+� � �)2=�2 � 1��1E+� ;Eel = exp �i(K++ � �)L�E++ ++exp �i(K+� � �)L�E+� : (9)
If we assume that the amplitude of only one inidentwave is nonzero, Eqs. (9) determines the re�eted andtransmitted waves (the re�etion R and transmission

T oe�ients of the layer) and, in partiular, their fre-queny dependene [10; 19; 21℄. The orresponding ex-pressions for R and T take the formR == Æ2j sin(qL)j2����q��2 os(qL)+i �� �2��2+� q��2�1� sin(qL)����2 ;(10)T == j exp(i�L)(q�=�2)j2����q��2 os(qL)+i �� �2��2+� q��2�1� sin(qL)����2 ;where q = �s1 + � �2��2 �r� ���2 + Æ2 : (11)If both amplitudes of the inident waves are equal tozero, no waves emerging from the layer exist if the di-eletri tensor has a positive (or a very small negative)imaginary part.The solution of system (7) for the amplitudes E++and E+� of the eigenwaves in the CLC layer is given bythe following expressions (in the ase of a wave inidentonly on one surfae of the layer):E++ = �Eil exp(�iqL)�� (�=2�)2+(q=�)2�1�q�=�22�q��2 os(qL)+i �� �2��2+� q��2�1� sin(qL)� ;(12)E+� = Eil exp(iqL)�� (�=2�)2+(q=�)2�1+q�=�22�q��2 os(qL)+i �� �2��2+� q��2�1� sin(qL)� :The values of the eigenwave amplitudes lose to thestop-band edges are strongly osillating funtions offrequeny (see Figs. 2 and 3 presenting the alula-tion results). At the points of maxima lose to thestop-band edges, their values are muh larger than theinident wave amplitude Eil. It turns out that the am-plitude maxima frequenies oinide with the frequen-ies of zero re�etion following from Eqs. (10) for anonabsorbing CLC (Figs. 2 and 3).799
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Fig. 2. Re�etion oe�ient R (a) and the squared E++(b) and E+� () eigenmode amplitudes alulated ver-sus frequeny for a nonabsorbing CLC layer (Æ = 0:05,N = L=p = 250). Here and in all �gures below (ex-ept Fig. 11), Æ(� � 1) is plotted at the frequenyaxis, i. e., the frequeny deviation from the stop-bandedge is plotted (normalized by the Bragg frequeny, seeEq. (23))4. EDGE MODES (NONABSORBING CLC)We examine the formulas of the preeding setionfor a nonabsorbing CLC in more detail. In a nonab-sorbing CLC,  = 0 in the general expression for the

00:20:40:60:81:0T

0255075100125150175
a

b


050100150200250300350(E+�)2 0:003Frequeny0 0:001 0:002�0:001�0:002�0:003

0:003Frequeny0 0:001 0:002�0:001�0:002�0:003

�0:001 0:0010 Frequeny(E++)2 0:002

Fig. 3. Transmission oe�ient T (a) and the squaredE++ (b) and E+� () eigenmode amplitudes alu-lated versus frequeny for a nonabsorbing CLC layer(Æ = 0:05, N = 350)dieletri onstant " = "0(1+i). (We note that in realsituations, jj � 1.) The alulations of the re�etionR and transmission T oe�ients as funtions of thefrequeny in aordane with Eqs. (10) (Figs. 2a and3a) give the well-known results [17�21℄: a strong re�e-tion inside the stop band, frequeny osillations of Tand R outside the stop-band edges with 0 � R � 1,and the preservation of the relation T + R = 1 for allfrequenies. This means that T = 1 at the frequeniesorresponding to R = 0 (see Fig. 3).800



ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Optial edge modes in photoni liquid rystalsThe orresponding alulations of the amplitudesE++ and E+� of the eigenwaves exited in the layer(Figs. 2b, and 3b,) reveal a nontrivial frequeny de-pendene of E++ and E+� . Namely, lose to the stop-band edges (outside the stop-band edges), frequenyosillations of the amplitudes are aompanied by anessential enhanement of their magnitude relative tothe inident wave amplitude (in the alulations, theinident wave amplitude is assumed to be equal to 1).The thiker the layer, the higher is the enhanement (f.Figs. 2 and 3). As Figs. 2 and 3 show, the positionsof the amplitude osillation maxima just oinide with(or are very lose to, for an absorbing or amplifyingCLC) the positions of the re�etion oe�ient minimaorresponding to R = 0 for a nonabsorbing CLC.The above relation between the amplitudes of eigen-waves and inident waves at the spei� frequeniesshows that for these frequenies, the energy of radi-ation in the CLC at a given layer thikness is muhhigher than the orresponding energy of the inidentwave at the same thikness. Hene, in omplete a-ordane with Ref. [1℄, we onlude that at the or-responding frequenies, the inident wave exites someloalized mode in the CLC. To �nd this loalized mode,we have to solve homogeneous system (7), i. e., Eqs. (7)with zero values of Eir and Eil. The solvability ondi-tion for the obtained homogeneous system determinesthe disrete frequenies of these loalized modes:tg(qL) = i(q�=�2)(�=2�)2 + (q=�)2 � 1 : (13)In the general ase, solutions of Eq. (13) for the EMfrequenies an be found only numerially. The EM fre-quenies !EM turn out to be omplex quantities, whihan be represented as !EM = !0EM (1 + i�), where �is a small parameter in real situations. Therefore, theloalized modes weakly deay in time, i. e., are qua-sistationary modes. Fortunately, an analyti solutionan be found in a ertain limit ase, namely, for a suf-�iently small � ensuring the ondition L Im q � 1. Inthis ase, the !0EM values oinide with the frequen-ies of zero values of the re�etion oe�ient R for anonabsorbing CLC, determined by the onditionsqL = n�; � = � Æ(n�)22(LÆ�=4)3 ; (14)where n is the EM number, whih inreases as the fre-queny departs from the stop-band edge (n = 1 orre-sponds to the frequeny losest to the stop-band edge).In the found solution of homogeneous system(7), the ratio of the eigensolution amplitudes isE+�=E++ = �1 and the �eld distribution inside the
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Fig. 5. The alulated EM energy distributions lose tothe CLC layer surfae versus oordinate (in the dimen-sionless units z� ) for a plane wave direted inside (1 )and outside (2 ) the layer for the �rst EM (Æ = 0:05,N = 16:5, n = 1)in the layer makes a �xed angle to the loal diretordiretion, i. e., the �eld in the layer rotates togetherwith the diretor as a funtion of z and performs thesame number of rotations as the diretor does at thelayer thikness. The �eld distributions following fromEqs. (15) and (16) for the EM numbers n = 1; 2; 3 arepresented in Fig. 4. The �gure shows that the EM �eldis loalized inside the CLC layer and its energy den-sity experienes osillations inside the layer with thenumber of osillations equal to the EM number n. Wenote that the �gure presents the total energy distribu-tion in the layer. However, as is lear from Eqs. (2),(15), and (16), the total �eld at eah point of the CLClayer is represented by two plane waves propagating inthe opposite diretions, and hene the intensities of thewaves propagating in opposite diretions an be alu-lated separately at any point in the layer. In general,the oordinate distribution of the intensities of wavespropagating in opposite diretions is similar to the dis-tribution presented in Fig. 4. But these distributionsare of a speial interest lose to the layer surfaes. Fig-ure 5 shows the intensity oordinate distributions of thewaves propagating inside and outside the layer lose tothe layer surfaes. We an see that at the layer sur-fae, the intensity of the wave propagating inside thelayer is stritly zero, but the intensity of the wave prop-agating outside the layer is nonzero (although small).This means that the EM energy is leaking from thelayer through its surfaes. Equation (16) implies theexpression Eout = �n��2LÆ � npLÆ (17)

for the leaking wave amplitude at the CLC layer sur-fae, where p is the CLC pith. Equation (17) showsthat the EM energy leakage is inversely proportional tothe squared layer thikness L and proportional to thesquared EM number n. Hene, the most long-lived isthe �rst EM in a CLC layer. If LÆ=p� 1, the leakingwave amplitude Eout is small (Eout < 1), as Eq. (17)shows.For a nonabsorbing CLC layer (whih is under on-sideration in this setion), the only soure of deay isthe energy leakage through its surfaes; the derease inthe EM energy in unit time is equal to the energy �ow(2=p"0 )jEoutj2 of the leaking waves, and therefore,using Eqs. (15)�(17), we easily obtain the EM lifetime�m as�m = Z jE(!EM ; z; t)j2dz ��� ddt Z jE(!EM ; z; t)j2dz��1 �� 516 Lp"0 "1 + 45 �LÆpn�2# : (18)Under the ondition LÆ=pn� 1, Eq. (18) redues to�m � 14 Lp"0 �LÆpn�2 : (19)Hene, for su�iently thik CLC layers, as their thik-ness L inreases, the EM lifetime �m inreases as thethird power of the thikness and is inversely propor-tional to the square of the EM number n. We notethat the same dependene of the lifetime �m on n andL follows from Eq. (14):�m � 1Im!EM = L �LÆpn�2 : (20)5. EXCITATION OF EDGE MODESThe analysis of the loalized EM (solution of thehomogeneous system following from Eqs. (7)) in theprevious setions together with the solution of inhomo-geneous equations (7) found in the previous setionsallows disussing the ways and e�ieny of the EM ex-itation. Exitation of the EM in a nonamplifying CLClayer requires an external wave (waves) of the frequenyoiniding with the EM frequeny inident at the CLClayer. The general solution of the boundary value prob-lem found from system (7) in this ase may be repre-sented as a superposition of the partiular solution or-responding to the inhomogeneous system (7) and the802



ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Optial edge modes in photoni liquid rystals

0 0.0004 0.0008 0.0012
Frequency

0

50

100

150

200

250

300

|EEM

± |2, rel. un.

Fig. 6. The alulated squared amplitude of theEM lose to the four EM frequenies (Æ = 0:05,N = 350)solution orresponding to the homogeneous system (7),i. e., orresponding to the EM, with the oe�ient tobe determined from the boundary onditions. One aneasily onstrut suh a repesentation of the boundaryvalue problem solution determined by Eqs. (12).For this, it is su�ient to represent E+� in the formE+� = EEM� + Ep�, where EEM� and Ep� are the re-spetive amplitudes of eigenwaves in the EM and inthe partiular solution. Taking into aount that theamplitudes EEM� satisfy Eqs. (7) with zero right-handsides, we obtainEEM� = �E++ [1 + i tg(qL)℄ (21)for the frequenies lose to !EM . The EEM� values al-ulated aording (21) are presented in Fig. 6. Com-paring Fig. 6 and Figs. 2 and 3 shows that for a suf-�iently thik LC layer, the amplitudes E+� are a verygood approximation to EEM� .The above results relate to a stationary proess ofEM exitation, i. e., to the situation of a plane wave ofa �xed amplitude inident on a CLC layer. The formu-las obtained an be used for �nding the probability ofEM exitation by a single photon. This probability isgiven byWEM == (1�R) Z ��EEM (!; z; t)��2 dzZ ��EEM (!; z; t)��2 dz + Z jEp(!; z; t)j2 dz ; (22)where the integration is taken over the CLC layer thik-ness and Ep(!; z; t) is a partiular solution of Eq. (6).

It turns out that if a plane wave (with unit am-plitude) is inident on the CLC layer, the eigenmodeamplitudes in the exited EM are given by the expres-sions for EEM� above. But in this ase, it is impossibleto exite the EM only. It is aompanied by the par-tiular solution of Eq. (6) with a nonzero amplitudedetermined by the relation E+� = EEM� + Ep�. Hene,the e�ieny of the EM exitation by one plane wave(the ratio of the squared EM amplitude to the squaredinident wave amplitude) for the spei� values of therelevant parameters may be estimated by the squaredE++ value in Figs. 2b and 3b. The values of EEM� loseto the EM frequenies are more aurately determinedby Eq. (21) (see also Fig. 6).6. ABSORBING CLCWe now examine EMs in an absorbing CLC. Themotivation for this study, in partiular, is the DFBlasing in a CLC. It must be kept in mind that underlasing, a CLC is an essentially absorbing medium forthe pumping wave. We examine the formulas in theprevious setions in more detail with regard to theirappliation to the pumping wave. We assume for sim-pliity that the absorption in the CLC is isotropi. Wede�ne the ratio of the imaginary part of the dieletrionstant to its real part as , i. e., " = "0(1 + i).In atual situations,  � 1. In Figs. 7�9, the R, T ,and 1 � R � T frequeny dependenes are presentedfor several values of positive and negative  inludingits values lose to the threshold values for EMs (seeEq. (25) below). Due to the assumed isotropy of the ab-sorption, the frequeny dependenes of the alulatedharateristis are symmetri relative to the Bragg fre-queny (the middle point of the stop band), and there-fore only the frequenies above the Bragg frequeny arepresented in the �gures.It is reasonable to omment here on the numeri-al values of the parameters used in alulations. Thedieletri anisotropy is taken as Æ = 0:05, whih or-responds to a typial value of this parameter. Thesame may be said about the layer thikness L. Beause� = 4�=p, where p is the holesteri pith, the numberof pithes N at the layer thikness L is equal to l=4�(l = L�) and hene the value l = 300 aepted in alu-lations orresponds to N lose to 30, i. e., to a numbervery ommon for experiments. All the mentioned quan-tities reveal frequeny beats lose to the frequeny edgeof the seletive re�etion band. The positions of theorresponding maxima and minima are determined bythe layer thikness L, by Æ, and are slightly dependent803 12*
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Fig. 7. Calulated frequeny dependenes (l = L� == 4�N = 300, Æ = 0:05) for absorption (a,b, and), re�etion (d), and transmission (e) in ases of lowabsorption (a and b) and low ampli�ation below thethreshold gain for the �rst lasing EM (�e)on the value of . In an absorbing CLC, the sum ofthe intensities of the re�eted and transmitted beamsis less than the intensity of the inident beam, i. e.,R+T < 1. The equality holds only for a nonabsorbingCLC. As an example, the positions of minima of the

re�etion oe�ient R beats (following from Eq. (10))are given above in Fig. 2a for a nonabsorbing CLC, i. e.,for  = 0, whih orrespond toqL = �n; �� = 1 + (�n=a)2=2;n = 1; 2; 3; : : : ; � = 2(! � !B)=!BÆ;!B = �=2p"0 ; a = �LÆ=4: (23)In a typial situation, a� 1.The edges !e of the seletive re�etion band arerelated to the Bragg frequeny !B as!e = !Bp1� Æ = �2p"0(1� Æ) : (24)Hene, � at the edges is given by �e == Æ=2 �p1� Æ � 1� � �1.For small  and L Im q � 1, the re�etion andtransmission oe�ients (10) at frequenies (23) of there�etion minima beomeR = (a3)2[(n�)2 + a3℄2 ;T = (n�)4[(n�)2 + a3℄2 ;R+ T = 1� 2(n�)2a3[(n�)2 + a3℄2 : (25)It follows from Eqs. (23) and (25) that for eah n,the maximum absorption, i. e., maximum 1�R�T , o-urs for (n�)2 = a3. This means that the maximumabsorption ours for a speial relation between Æ, ,and L and if this relation, i. e., (n�)2 = a3, is ful�lled,then R = 1=4, T = 1=4, and 1�R�T = 1=2. Beauseof the assumed smallness of , this result orrespondsto a strong enhanement of the absorption for weaklyabsorbing layers.As was shown in Refs. [9; 10℄, just at the frequenyvalues determined by Eq. (23), the e�et of anoma-lously strong absorption reveals itself for an absorbingCLC (Figs. 7a,b) and the edge modes for an amplifyingCLC reveal themselves at lasing [1℄ (Fig. 8) (see similarresults for layered media in [14; 15℄). Hene, to mini-mize the intensity of the pumping wave that ensureslasing in a CLC, it is desirable to perform the pump-ing in onditions of the anomalously strong absorptione�et and realization of lasing in the EM. These op-tions were investigated in detail in Refs. [11; 12℄ and arebrie�y disussed in the following setions. In the on-lusion of this setion, the following observation shouldbe made (f. Figs. 7�9): the absorption maxima in thefrequeny dependenes are not so sharp as the intensitymaxima for the lasing modes.804
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Fig. 8. Calulated frequeny dependenes (l = 300, Æ = 0:05) for oe�ients of re�etion (a and b) and transmission( and d) lose to the threshold gain for the �rst (a and ) and the seond (b and d) lasing EMs7. AMPLIFYING CLCWe now assume that  < 0, whih means that theCLC is amplifying. If jj is su�iently small, the wavesemerging from the layer aording to Eqs. (7)�(10) ex-ist only in the presene of at least one external waveinident on the layer, and their amplitudes are deter-mined by the solution of Eqs. (7) and (9). In this ase(see Fig. 9), R + T > 1 or 1� R � T < 0, whih justorresponds to the de�nition of an amplifying medium.However, if the imaginary part of the dieletri ten-sor, i. e., , reahes some ritial negative value, thequantity R + T diverges and the amplitudes of wavesemerging from the layer are nonzero even for zero am-plitudes of the inident waves. This happens whenthe determinant of Eq. (7) vanishes. At this point,of ourse, the amplitudes of emerging waves are notdetermined by solution (9) of linear equations (1) (anonlinear problem should then be solved). But as wesaw above, the vanishing points of the determinantof Eq. (7) determine the EMs [1; 14; 15℄ and the or-responding values of the gain (or the negative imag-inary part of the dieletri tensor), i. e., the mini-mum threshold gain at whih the lasing ours (see

the orresponding disussion for salar periodi mediain Refs. [14; 15℄).Therefore, the equation determining the thresholdgain () at whih the lasing ours (zero value of the de-terminant of Eq. (7) or of the denominator in Eq. (10))turns out to oinide with Eq. (13). It must be solvednow not for the frequeny but for the imaginary partof the dieletri onstant (). In the general ase, thisequation has to be solved numerially. However, for avery small negative imaginary part of the dieletri ten-sor, the EM frequenies are pinned to the frequenies ofzeros of the re�etion oe�ient in its frequeny beatsoutside the stop-band edge for the same layer with azero imaginary part of the dieletri tensor [1; 9; 10℄.This is why the threshold values of the gain for theEMs an be represented by analyti expressions in thislimit ase.For small jj and Lj Im qj � 1, the re�etion andtransmission oe�ients in Eq. (10) at the frequen-ies (23) of re�etion minima are redued again to ex-pressions (25), although with negative .Hene, R and T may be divergent, and the pointsof their divergene orrespond to the lasing at the EMfrequenies and determine the orresponding values of805
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to the seletive re�etion band edge (f. analogous re-sults for salar layered media in [14; 15℄). The valuesof  given by Eq. (26) is onvenient to use for estimat-ing the threshold values of  in the general ase andas a zero approximation in the numerial solution ofEq. (13) for the threshold values. The frequeny dis-tanes between the onsequent EMs are equal to�n+1 � �n = 12 ��a�2 (2n+ 1);i. e., are inversely proportional to the seond power ofthe layer thikness (f. the orresponding distane be-tween the lasing frequenies in a homogeneous layer,whih is inversely proportional to the layer thikness).It also follows from Fig. 8 that the di�erent thresh-old values of  orrespond to the di�erent EMs (diver-gent R and T ) in Fig. 8. This means that separatelasing modes an be exited by hanging the gain ().If the value of  is between the onseutive thresholdvalues of  for neighboring lasing modes, the lasing maynot be ahieved and the layer may reveal only amplify-ing properties (see Fig. 9). This means that hangingthe pumping wave intensity allows ahieving lasing atthe individual EM and that the lasing intensity is nota monotoni funtion of the pumping intensity. Be-ause the lasing frequeny is determined by the EMfrequenies, there is an option for some variation ofthe lasing frequeny inside the width of the dye lineby hanging the CLC pith by means of temperaturevariations [6; 7℄ or by appliation of an external ele-tri or magneti �eld to the layer [4℄. We note thatsmooth variations of the external agent may result injump-like variations of the lasing frequeny [22℄ relatedto the jumps of the CLC pith, whih are sensitive tothe surfae anhoring [23℄.8. OPTIMIZATION OF PUMPINGThe formulas in the previous setions allow optimiz-ing the lasing threshold separately by reahing a oin-idene of the lasing frequeny with the frequeny ofthe �rst EM and optimizing the pumping e�ieny byreahing a oinidene of the pumping frequeny withthe frequeny of the �rst maximum in the anomalouslystrong absorption e�et [9℄. We note that the sameCLCs must simultaneously be an absorbing material atthe pumping frequeny and amplifying one at the lasingfrequeny. In the present setion, we disuss the possi-bilities to simultaneously reah the highest e�ieny ofthe pumping and the lowest value of the lasing thresh-old gain. The requirements of the highest e�ieny of806



ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Optial edge modes in photoni liquid rystalsthe pumping and the lowest value of the lasing thresh-old gain are ontraditory for a ollinear geometry be-ause they assume that the lasing frequeny !l and thepumping frequeny !p pratially oinide with the fre-queny edges of the seletive re�etion band. However,the lasing frequeny !l is less than the pumping fre-queny !p. We note that this ontradition for theollinear geometry may be overame by a luky haneor by a very �ne tuning of the lasing parameters if thedi�erene !p � !l is small and !p oinides with thehigh-frequeny edge of the re�etion band and !l o-inides with the low-frequeny edge of the re�etionband, whih results in the following frequenies of thelasing and pumping waves:!p = �=2p"0p(1� Æp) ; !l = �=2p"0l(1 + Æl) ;!p!l =s "0l(1 + Æl)"0p(1� Æp) ; (27)where the dieletri onstant "0 and the anisotropy Æare marked by subsripts �p� and �l� relating to thefrequeny dispersion of the dieletri properties andmeaning that the respetive parameters are to be takenat the pumping and lasing frequenies. We note thata derease in the lasing threshold due to the anoma-lously strong absorption of the pumping wave in theollinear geometry was reently observed experimen-tally in Ref. [13℄.Another possibility to reah the lowest threshold inthe ollinear geometry may be realized by applying anexternal eletri (or magneti) �eld to the LC material.It is known [10℄ that in this ase, due to the distortionof the LC helix, many di�ration orders exist for lightpropagating along the helix axis and the pumping andlasing frequenies may be �tted to the frequenies ofdi�erent di�ration orders. Nevertheless, the �ttingagain requires a very �ne tuning of the lasing parame-ters.However, there is a regular way to optimize thepumping intensity (under the assumption that the las-ing ours along the helial axis). There is an option touse a nonollinear pumping without any tuning of thelasing parameters, i. e., with the pumping wave propa-gating at an angle to the helial axis, whih allows thepumping wave to satisfy the onditions of the anoma-lously strong absorption e�et. A rough estimate de-rived from the fat that the lasing and pumping wavesexperiene Bragg sattering gives the following value

of the angle � between the pumping wave propagationdiretion and the helial axis:� = aros(!l=!p): (28)To obtain a more aurate expression for the pump-ing wave propagation diretion, one has to solve theMaxwell equations for light propagating at an angleto the helial axis and �nd the angle � orrespondingto the onditions of the anomalously strong absorptione�et [9; 10℄. Unfortunately, no exat analyti solu-tion of the Maxwell equations is known in this aseand therefore a numerial approah has to be used.The full power of the numerial approah manifests it-self if the frequeny dispersion of the dieletri on-stant and of the LC dieletri anisotropy are takeninto aount. However, these quantities are usually notvery well known, and hene in the experiment, even ifthe alulated angle � is known, the atual angle ofthe anomalously strong absorption e�et is sought byhanging the pumping wave propagation diretion dueto the mentioned unertainties.Under these irumstanes, an approximate expres-sion for � more aurate than (28) may be quite useful.The orresponding expression was found [11; 12℄ in theframework of the dynamial theory of di�ration ap-plied to the ase of light propagating at an angle tothe helial axis [10; 21; 24℄. The dieletri anisotropy Æplays the role of a small parameter in this theory. Be-ause the dieletri anisotropy Æ is quite small in manypratial ases (Æ < 0:1), the auray of the resultsfound in the framework of the dynamial theory maybe su�ient to desribe the experimental results.9. CALCULATION RESULTSTo obtain the gain  that orresponds to the onsetof lasing in an CLC layer, we investigated the behav-ior of the R (re�etion) and T (transmission) oe�-ients. The divergene of R and T orresponds to thelasing threshold value of . These divergenes ourat the vanishing point of the determinant of Eq. (7).This ondition gives a diret way to �nd the EM fre-queny orresponding to the solution of Eq. (13). InFig. 10, the analytially found and numerially alu-lated threshold gains for the �rst three EMs are pre-sented for several values of the parameter LÆ=p. Theomparison demonstrates that the larger the parameterLÆ=p is, the loser the analytially found and numeri-ally alulated threshold gains are. For an amplifying807
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ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Optial edge modes in photoni liquid rystals10. CONCLUSIONThe performed analyti and numerial theoretialexamination of the EMs in an LC allows representingthe physis of these loalized modes more learly. Wealso note that the results obtained here for spiral me-dia are relevant to any periodi media, and hene thequalitative desription of the EMs in these media is thesame as for the CLC and the analyti formula presentedabove may be used as a useful guide in studying otherperiodi media.As regards the CLC, in partiular, it turns out thatthere are some real possibilities related to these lo-alized modes for reahing a higher e�ieny of theDFB lasing in the CLC. Namely, possibilities of furtherredution of the lasing threshold relative to the onealready ahieved were predited [11; 12℄ and partiallyexperimentally observed [13℄ as well as possibilities ofvarying the lasing frequeny in this kind of lasing. Itshould be mentioned that an advantage of the CLCsompared to solid media onsists in the fat that theirparameters are easily variable. Hene, the CLC may beonsidered a onvenient model objet for studying thelasing in any periodi media, even in three-dimensionalperiodi strutures (see Ref. [25℄ on lasing in the LCblue phase). Another fortunate irumstane from thetheoretial standpoint is the availability of an exat an-alyti solution of the Maxwell equations for light propa-gating along the helial axis. For other periodi media,no exat analyti solution is known and the oupledwave approximation is usually applied to the problem[14; 15℄.We note that the equations in the previous setionsformally assuming a frequeny-independent dieletrisuseptibility and its isotropy may be easily generalizedto the experimentally realizable ase of the frequeny-dependent dieletri suseptibility and its anisotropy.For this, the orresponding parameters in the equationsare to be onsidered some funtions of frequeny. How-ever, the question of the expliit expressions for thesefuntions arises. It seems that the most pragmati wayto determine the orresponding frequeny dependenesis to obtain them from experimental measurements.An essential point for the experimental observationof the examined anomalously strong absorption e�etof the pumping wave is that the periodi struture beperfet enough for observing beats of the re�etion o-e�ient at the edges of the re�etion band. Insu�ientperfetion of the periodi struture leads to a dereasein the anomalously strong absorption. A similar de-rease in the anomalously strong absorption is relatedto a �nite frequeny width of the pumping wave. The

orresponding redution of the absorption is the resultof averaging the expressions presented above over thefrequeny width of the pumping wave line [9; 10℄. Asimilar in�uene of the sample perfetion on the de-rease in the threshold lasing gain also takes plae. Wealso note that the assumption aepted above regardingthe absene of dieletri re�etion on the boundaries ofthe CLC layer (the equality of the external dieletriand average dieletri onstant of the CLC) requires aspeial experimental are. If this assumption is not metin an experiment, the re�etion at the boundaries on-verts the di�rating polarization into the nondi�ratingone, whih also dereases the anomalously strong ab-sorption and hanges the polarization properties of thephenomenon.Another aepted simpli�ation of the problem isrelated to the assumption that the absorption in theCLC is isotropi. In some ases, this assumption mayorrespond to the real situation. But in the generalase, the loal absorption anisotropy in a CLC may benotieable. Hene, the study of the problem in the aseof anisotropi absorption is quite urgent.And �nally, as was already mentioned, beause ofthe insu�iently preise knowledge of the CLC param-eters, a pratial way to observe the theoretially pre-dited e�ets in the experiment is a searh for the e�etby small variations of experimental parameters (propa-gation diretion, temperature, et.) around the valuesalulated aording to formulas in the previous se-tions.It should also be kept in mind that the EMs studiedhere reveal themselves not only in lasing but also inother optial phenomena. For example, the nonlinearoptial harmoni generation [26℄ and Cherenkov ra-diation [27℄ in a periodi medium is enhaned at theEM frequenies (see also Figs. 29 and 32 in [10℄ andFigs. 5.10 and 6.2 in [21℄ related to the nonlinear op-tial harmoni generation and Cherenkov radiation inCLCs).This work was supported by the RFBR (grant� 09-02-90417-Ukr�f�a).REFERENCES1. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genak, Progr.Quant. Eletron. 27, 369 (2003).2. I. P. Il'hishin, E. A. Tikhonov, V. G. Tishhenko, andM. T. Shpak, Pis'ma v Zh. Eksp. Teor. Fiz. 32, 27(1980).809
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