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The Li-Kardar field theory approach is generalized to wetting smectic films and the “elastic” fluctuation-induced
interaction is obtained between the external flat bounding surface and distorted 1A (isotropic liquid—smectic A)
interface acting as an “internal” (bulk) boundary of the wetting smectic film under the assumption that the IA
interface is essentially “softer” than the surface smectic layer. This field theory approach allows calculating the
fluctuation-induced corrections in Hamiltonians of the so-called “correlated” liquids confined by two surfaces in
the case where one of the bounding surfaces is “rough” and with different types of surface smectic layer anchor-
ing. We obtain that in practice, the account of thermal displacements of the smectic layers in a wetting smectic
film reduces to the addition of two contributions to the |A interface Hamiltonian. The first, so-called local
contribution describes the long-range thermal “elastic” repulsion of the fluctuating IA interface from the flat
bounding surface. The second, so-called nonlocal contribution is connected with the occurrence of an “elastic”
fluctuation-induced correction to the stiffness of the IA interface. An analytic expression for this correction is
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obtained.

PACS: 61.30.Hn, 61.30.Dk, 64.70.M-, 61.30.Eb

1. INTRODUCTION

It is known that just above the bulk isotropic liquid—
smectic A (TA) phase transition temperature, close to
the external surface bounding an isotropic liquid phase
of a smectic liquid crystal (LC), smectic layering is ob-
served [1-7]. Smectic layering is a special case of smec-
tic wetting when the growth of the wetting smectic film
(WSF) thickness proceeds via a series of discrete lay-
ering transitions. Smectic layering is observed close
to the external bounding surface (free surface or solid
substrate) and occurs above the bulk TA phase transi-
tions located far from the triple isotropic liquid—smectic
A-nematic (INA) point. In constructing the interface
model of smectic layering [8], the question of the influ-
ence of thermal displacements of smectic layers on the
TA interface Hamiltonian naturally occurred to us. This
paper is devoted to the solution of this problem. We
note that what is traditionally meant [8-16] by the IA
interface is the boundary between isotropic liquid and
smectic A phases. The IA interface acts as an “internal”
(bulk) bounding surface of the WSF (see the Figure).

“E-mail: elena@ogri.ru

We emphasize that obtaining the “elastic” fluctuation-
induced interaction between the TA interface and the
external bounding surface has an independent inter-
est because it solves the problem of thermal “elastic”
fluctuation-induced effects (so-called thermal Casimir
effects) in wetting smectic films.

The “elastic” fluctuation-induced contribution to
the free energy density of a smectic film as a func-
tion of the equilibrium thickness of this film was first
calculated in [9] within the “hydrodynamic” approach.
However, this approach allowed considering only the
case of strong anchoring of both surface smectic layers
with both “smooth” smectic interfaces. We note that
the result derived in [9] corresponds to the “elastic”
fluctuation-induced interaction between unperturbed
(flat) surfaces bounding the smectic film (see Sec. 5).
Subsequently, the limit cases of a long-range Mikheev
interaction [9] were obtained in [17].

Finally, in [18, 19], the general field theory approach
has been developed. This approach allows calculating
the fluctuation-induced corrections to the Hamiltonians
of the so-called “correlated” liquids confined by two sur-
faces, in the case where one of the bounding surfaces is
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“rough” and with different types of surface smectic layer
anchoring. The “correlated” liquid is a system with a
long-range order due to a broken continuous symmetry.
Thermal fluctuations in the “correlated” liquid are de-
scribed by massless Goldstone modes. Possible exam-
ples are a superfluid or a liquid crystal. The surfaces
bounding the “correlated” liquid naturally change its
fluctuations in their vicinity.

The advantage of this field theory approach is that
two types of boundary conditions are quite easily im-
plemented. Boundaries of the first type correspond
to the suppression of the fluid fluctuations. Such
zero boundary conditions at the bounding surfaces
(so-called Dirichlet boundary condition) correspond,
for example, to strong anchoring for liquid crystals.
Second-type boundaries correspond to the suppression
of the normal gradients of fluctuations (so-called Neu-
mann boundary conditions).

However, different types of boundary conditions
were considered in [18,19] only in the case of a super-
fluid liquid, in which phase fluctuations are the mass-
less Goldstone modes and are described by a simp-
le quadratic Hamiltonian. In particular, two cases of
boundary conditions have been considered for this sys-
tem. In the first case, the Dirichlet boundary condi-
tions at both bounding surfaces are satisfied. In the
second case, the simpler Dirichlet boundary condition
is satisfied at a ‘“rough” surface and the more compli-
cated Neumann boundary condition is satisfied at a flat
bounding surface.

It is important to note that only the simplest case
of zero boundary conditions for thermal displacements
of smectic layers at both bounding surfaces was consid-
ered for a smectic film in [18,19]. As we show in what
follows, for the problem of smectic wetting, on the con-
trary, the mixed boundary conditions are of interest
and the more complicated Neumann boundary condi-
tion is assumed to be satisfied exactly at the “rough”
bounding surface.

2. FORMULATION OF THE PROBLEM.
BOUNDARY CONDITIONS

We develop the Li-Kardar formalism [18,19] in the
case of smectic wetting in the vicinity of a flat bounding
surface and solve the problem of the effect of thermal
fluctuations of smectic layers on the effective Hamilto-
nian of the TA interface (see the Figure).

The effective Hamiltonian of the IA interface, in the
spirit of the known interface models [9, 10-16], without

Isotropic liquid phase
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Schematic picture of the wetting smectic film covering
a flat bounding surface (substrate) with thermal dis-
placements of smectic layers taken into account. The
thick line represents the IA interface acting as a bound-
ary between the isotropic and wetting smectic A phases.
Local thickness of the WSF is determined as the local
removal of the IA interface from the wetted surface.
The thin straight line shows the equilibrium position of
the IA interface

taking thermal fluctuations of the smectic layers into
account, can be written in the general form (see [8])

Hip[h(x)] =
= [ e {Vulhe+ B w02}, )
S

where h(x) is the local thickness of the WSF (see the
Figure), Vi, (h(x)) is the initial potential of the inter-
action of the TA interface with a flat bounding surface
(substrate) and with smectic layers, without taking the
influence of thermal fluctuations of the smectic layers
into account, y74 is the initial stiffness of the TA inter-
face, and S is the area of an external flat wetted surface
(substrate).

To apply the field theory approach in [18,19] to the
WSF, we use the following assumptions. First, we sup-
pose for simplicity that at the external flat bounding
surface with the coordinate z = 0, the condition of
strong anchoring of the surface smectic layer, i.e., the
Dirichlet boundary condition is satisfied. Second, we
suppose that the TA interface is essentially “softer” than
the surface smectic layer and, accordingly, the condi-
tion

vra < Cs3)0 (2)

is satisfied, where C33 is the compression modulus of
smectic layers and g is the De Gennes elastic “cross
length” [20]. We consider static distortions of the smec-
tic layers in WSF, which give rise the long-range fluc-
tuation effects in the smectic film [9,17], and neglect
the density change in the system caused by deforma-
tion [21, §§ 44-46]. Condition (2) then allows neglecting
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the influence of the IA interface on the smectic layers
reaching the TA interface, i.e., allows supposing that
condition of the equality of normal stresses [22, §61],
[21, §§44-46] in the WSF and isotropic phase at the
TA interface is reduced to setting the normal gradients
of fluctuations of the smectic layers reaching the TA in-
terface to zero. Accordingly, the Neumann boundary
condition (suppression of the normal gradients of fluc-
tuations of smectic layers) is assumed to be satisfied at
the TA interface. We note that our boundary conditions
correspond to the case of limit values vy = oo and v =0
at the surfaces bounding the smectic film [9], or to the
case of strong and weak coupling for smectic films in
deriving the “pseudo-Casimir” contribution to the free
energy of such films [17].

3. BASIC ASSUMPTIONS OF THE
LI-KARDAR FIELD THEORY APPROACH

We specify two basic assumptions of the Li—Kardar
field theory formalism [18,19] applied to the problem
of obtaining the fluctuation contribution to interface
Hamiltonian (1), caused by thermal displacements of
the smectic layers.

First, the fluctuation displacements of the smectic
layers are described by bulk Grinstein—Pelcovits Hamil-
tonian [23], taken in the quadratic approximation:

Holu(z,x)] = /d%/dz N

S

« {% [(9u(z, x))? +/\(2)(V2u(z,x))2]}, (3)

where u(z,x) is a nonuniform elastic thermal displace-
ment of the smectic layer, which is at the point (z,x)
because of the elastic deformation, V is the gradient in
the wetted surface plane, and 9, = 9/09z.

Second, the boundary conditions that must be sat-
isfied by the elastic displacements u(z,x) at the flat ex-
ternal surface (substrate) and at the IA interface, i.e.,
at two surfaces bounding the smectic film, are regarded
as perturbations acting on the unperturbed bulk sys-
tem. The smectic film is thus modeled by the influ-
ence of these perturbations on the bulk smectic. The
boundary conditions are imposed by inserting auxiliary
fluctuation fields and using an integral representation
for the §-function.

13 ZK3T®, Bem. 5 (11)

4. THE GENERAL EXPRESSION FOR THE
“ELASTIC” FLUCTUATION-INDUCED
CONTRIBUTION TO THE EFFECTIVE

INTERFACE HAMILTONIAN

The general expression for the contribution to ef-
fective interface Hamiltonian (1) describing the “elas-
tic” fluctuation-induced interaction between the sur-
faces bounding the WSF is obtained as follows.

We describe each point at the surfaces bounding the
WSF by the three-dimensional radius vector

ri(x) = (0,x) and ra(y) = (h+0h(y),y), (4)

where x, y is the “internal” two-dimensional radius vec-
tor for each of the surfaces, dh(y) is the nonuniform
thermal fluctuation distortion of the IA interface rela-
tive to its equilibrium position z = h ([ d*y 6h(y) = 0),
and the local thickness of the WSF is accordingly rep-
resented in the form h(y) = h+Jdh(y) (see the Figure).

We introduce an auxiliary fluctuation field € (x)
at the flat bounding surface and an auxiliary fluc-
tuation field Qo(y) at the IA interface. By anal-
ogy with [18,19], the boundary conditions at the sur-
faces bounding the WSF (see Sec. 2) can be imposed
through these auxiliary fields using the integral rep-
resentation of d-functions. We therefore express the
Dirichlet boundary condition at the flat bounding sur-
face as

§(u(0,x)) = /DQl(x) X

X exp [z / 2o 0 (ue )|, (5)

and the Neumann boundary condition at the A inter-
face as

5(Vau(h(y).y)) = / DOy (y) x

% oxp [ / 2y 0 (¥) (Vi ur2(9))) | . (6)

where V,,,(y) is the normal gradient of thermal dis-
placements of the smectic layers at the IA interface at
a point ra(y).

With (3)—(6), in terms of functional integration over
the thermal displacements of the smectic layers and
over the auxiliary fields, the general expression for the
“elastic” fluctuation-induced contribution Hess to inter-
face Hamiltonian (1) is given by
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exp{ kHeff} /Dﬂl )DQs(y) x
X {Z—O/Du(r)exp [—ﬁ[Tu] +
+i/d2x91(x)u(r1(x)) 4
b i [ @100 (Tuuim))| | @
HO[U]} .

Zo = / Du(r) exp {— el (8)

Expanding the expression in braces in the right-
hand side of (7), in the terms proportional to i, we

where

find
exp { kgﬂ /DQ1 )DQs(y Zo /Du
X exp [_%[;f]] {1 +i/d2x O (x)u(r (x)) +

+Z/d2y92

-5 ([ Erouuti) +

+ /d2yQ2(Y)(Vn2(y)u(r2()’)))> +} (9)

Vis(y)t(r2(y))) —

The configuration integration in (9) over the elastic
variables can thus be performed with the result

kH;ﬂ - / DO, (x) DOy (y) x
x exp[—H; [ (x), Q(y)]].  (10)

where the effective Hamiltonian of the two-component
field 2 = (Q4(x),N22(y)) is given by

o =5 [ & [ @y{00 Gy -

—11 (%)) (¥)+ 21 (x) (Viny (3 G(r2(y) —11(x))) Qa2 (y) +
+ 0 (¥) (Vi () G(ra(x) — 11 (y )))92( )+92( ) X

exp {—

Here, G(r) = <u(0)u(r)>0 is the two-point correlation
function in bulk smectic,

/Du

and the matrix M is a functional of the radius vec-
tors r1(x) and r2(y). In obtaining (10), we used that
<u(r1) e u(r2m)u(r2m+1)>0 =0.

Within the approach corresponding to the neglect
of the bulk elastic anharmonic terms in (3), we suppose
that

Ho[u]] a2

) exp [ T

vng (y)u(h(Y)a Y) ~

In the considered case, the two-point correlation
function in bulk smectic is defined as

vzyu(za}’”z:h(y)' (13)

kT
Gly —x,2y —2x) = ng X
2 . ) _ _ 2
X/ d*q exp(iq-(y —x)exp(=Aog Z)’ (14)
(27)2 20 2

where, following the choice in (4), we assume that
zy > zx and set z = zy, — zx. Accordingly, we find

0
vaG(y — X%y — Zx) = &G(y - sz)v (15)
82
ViV, Gly — X, 2y —2x) = —@G(y —-x,z). (16)

The quadratic form of the Hamiltonian H;[Q]
n (11) allows integrating over the auxiliary fields
in (10) and then obtaining the general expression for
the effective Hamiltonian that describes the additional
“elastic” fluctuation-induced interaction between the
TA interface and a flat surface bounding the WSF
(cf. [18,19, 24]):

Hepplri(x),r2(y)] =

— @1 Det {M[rl(xﬂ)-arZ(Y)] } . (17)

% (Vs (0 Ving () G (22 () — £2(%))) Qa(y) } = He?e7 with (13), in the.case of bf)undiTlg surfaces de-
N . scribed by (4), the functional matrix M is deduced from
=QMaT. (1) (1) using (14)-(16):
0
G(y —x,0) 5,00y —x,h+0h(y))
Mey) =5 | " , (18)
- G(x—y,h+0h(x)) —55G(y—x,0h(y) — dh(x))
0z 022
om om
&—mG( -x,0(y,x)) = 8—mG( )|zf¢(y,X)'
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5. Hgs IN THE CASE OF SMALL
DISTORTIONS OF THE IA INTERFACE

In the case of small distortions h(x) of the TA in-
terface, the matrix M (x,y) can be calculated approxi-
mately by expanding the correlation functions and their
derivatives appearing in (18) in powers of dh(x):

M(X7 Y) = MO(X7 Y) + 5M(X7 Y)7 (19)
where
1
MO(Xa}’) = 5 X
0
G(y —X,O) &G(y —X,h)

x (20)
O ex—yn -Lay-—x0
82 Y7 822 y i

is the functional matrix for the flat bounding surfaces
and dM (x,y) is the correction caused by fluctuation
displacements of the IA interface. The Fourier trans-
form of the matrix My(x,y) required for the calcula-
tions in what follows is given in Appendix A.

We note that the two-dimensional Fourier transform
of the functional matrix M can be represented as

M = My + My M ' §M, (21)

where the tilde denotes the two-dimensional Fourier
transform (see Appendix A).

In this case, effective Hamiltonian (17) can be de-
composed as

Heff - Hflat + Hcorra (22)
where .
kT M,

Hjlr = BT In Det —> (23)
™

is the effective Hamiltonian describing the “elastic”
fluctuation-induced interaction between the unper-
turbed (flat) TA interface and the flat external surface
bounding the WSF, and

= "“BTT In Det {1 + M;! 5]T4’} (24)

HCOTT
is the additional “elastic” fluctuation-induced contribu-
tion to Hepr, caused by thermal distortions of the IA
interface.

We also note that using (14) and (A.1), (A.2), it is
possible to illustrate the physical meaning of inequality
(2). By analogy with obtaining H.oyr, the field theory
approach allows calculating the correlation function of
thermal displacements of the smectic layers in bounded

systems, which is an independent problem. This use of
the functional integration method [18,19] for obtaining
the correlation functions of fluctuating fields satisfy-
ing the Dirichlet boundary conditions has been con-
sidered in [25,26]. Developing this method for bound-
ary conditions (5) and (6) allows obtaining the leading
contribution to the two-dimensional Fourier transform
of the correlation function of thermal displacements of
the smectic layers in WSF reaching the TA interface

(u(x, h(x))uly, h(y))):

Grala) ~ kT 1 —exp(—2Xoq®h)
A\~ 033)\0(]2 ]. +exp(—2/\0 q2 h)

(25)

We introduce the Fourier transform of the nonuni-
form fluctuating values dh(x) given above:

dh(x) = Zlhq exp(iq - x).

In the zeroth order of the interface potential up to
a fixed point of the renormalization group procedure of
eliminating fast fluctuations of the TA interface, i.e., up
t0 ¢ = qeap [8,27], we have

kT
<hqh_q>0 ~ W

In limit (2), it follows from (25) and (26) for
q > qo = 1/v/Aoh that

(26)

~ kBT
" Cazhog?

It is well known that the amplitudes of the interfacial
potential V;,;(h) determine the value of geqp [8,27]. It
can be shown that the inequality Gra(q) < <hqh_q>0
is also satisfied for ¢ < g¢ under the assumption that
the conditions analogous to (2) hold for the second
derivatives of the interfacial potential Vj,:(h) and the
gap C33/h of correlator (25).

Hence, the condition of “softness” of the IA inter-
face expressed by inequality (2) and leading to inequal-
ity (27) means, in particular, that fluctuations of the
thermal capillary mode 6h are dominant at the TA in-
terface. This in turn means that in the smectic wetting
problem, the roughening fluctuations of the IA interface
P(x) = 0h(x) —u(x, h(x)) [8,9] are actually reduced to
the fluctuations of the mode §h. Capillary fluctuations
of the TA interface are “dangerous”. This indicates that
the roughening fluctuations of the IA interface should
be understood as the thermal capillary displacements
of the TA interface. .

After evaluating the determinant of My (see Ap-
pendix A for the details), we obtain the following h-de-
pended contribution to Hyqs:

Gra(q) < (hgh_q),. (27)
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kgT a2k
Hflat(h)zsi/(—

2 27)?
x In {1 + exp(—2Xg k2 h)] = SVmikn(h), (28)

where
kgT
327

A

( )

Varirn (h) = (29)

>/
D‘

and (gr(2) = 72/6 is a value of the Riemann zeta func-
tion. Expression (29) is a long-range “repulsive” con-
tribution to the interaction potential Vj,:(h) between
the unperturbed (flat) IA interface and the external
flat surface bounding the WSF (more accurately, to
the density of the free energy of the WSF with the
equilibrium thickness h).

We note that the long-range ‘“repulsive” potential
Vaikn(h) coincides with the limit of the “hydrody-
namic” Mikheev interaction (in the limit y74 < C33\o,
Yezt > C33Ag, where 7 is the stiffness of the exter-
nal boundary of the WSF; see Secs. 2, 7) arising due to
dimensional screening of the elastic smectic modes [9],
which confirms the correctness of the boundary condi-
tions imposed in Sec. 2. We also note that the potential
Varikn (h) coincides with the contribution to the free
energy density of the smectic film obtained in [17] for
asymmetric boundary conditions at the surfaces bound-
ing this film. In turn, the asymmetric boundary condi-
tions agree with the boundary conditions imposed for
the WSF in Sec. 2.

6. OBTAINING H.,;,. LOCAL AND
NONLOCAL CORRECTIONS

The additional contribution to the effective Hamil-
tonian caused by thermal displacements of the TA in-
terface can be evaluated approximately by expanding
in powers of the fluctuation displacements dh(x) of the
TA interface.

The evaluation of H,,,. from Eq. (24) is sufficiently
tedious. For this reason, the details of the calculation
are given in Appendix B. The result is in (B.20).

Integrating over the relative variables v; —y and
vy — x in (B.20) and using the identity

Sh(x)5h(y) =

it is possible to decompose H,,. into local and nonlo-
cal contributions.

The local contribution is given by

(1/2) (81*(x)+6h% (y)— (3h(y) —0h(x))?),

kT d*k
(loc) _ 2 2 B
Heorr /d o2 (y) [ 75 /(2@2

X { 4Di( k) (aahG(k h))( - G(k’h)> N

- (57006 m) =G0 (57 G02) ) »

y ﬁ (6‘9—; Gen) 3] o)

We note that the expression in square brackets in (30) is
a fluctuation-induced correction to the gap of the mode
0h. Inserting (A.1), (A.2), and (B.11) in (30) and ex-
tending the integration over k from 0 to oo (using the
fast convergence of integrals due to the presence of a
decreasing exponential), we find

oy _ k8T ((2) / d2y5h2(y)_ (31)

corr 16w Ao h3 2

It is important that if we formally keep the term
linear in d0h(y) in A(k,k) given by (B.19), then the
following additional contribution to the local part of
Hiloo) formally appears:

- sz/ élw]; 2Di< g (ance h))

_ _% fo(h)Q /d2y5h(y). (32)

Expressions (31) and (32) define first-order and second-
order corrections of the §h(y)-expansion of the contri-
bution to Vit (h(y)) following from taking the thermal
displacements of smectic layers into account. There-
fore, we can formally combine the essential ther-
mal “elastic” corrections Varikn (h), Vi (R)OR(y), and
(1/2) Vit ien(R)SR2(y) to Vint(h(y)) into the total “lo-
cal” long-range thermal “elastic” potential of the repul-
sion of the distorted TA interface from the flat bounding
surface and regard these corrections as the first terms
of its expansion:

kaT ((2)
32 )\0 h( )

+ Vagign (R)0N(y) + VMzkh( )6h*(y). (33)

vioe) (h+ oh(y)) =

~ Varien (h) +

Combining (31) and (32) with (28), we obtain the fol-
lowing expression for the corresponding local contribu-
tion to interface Hamiltonian (1):
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B = [y Vi) o+ dhiy) =

[ keT ()
‘/dyez—moh(w' (34

The nonlocal contribution to H.. is also unwieldy
and is therefore given in Appendix B (see (B.21)). Tt is
obvious that in the case of weak nonlocality, when the
expansion

6h(x) ~ 0h(y) + (Vydh(y)) (x —y)

is valid, nonlocal contribution (B.21) describes the oc-
currence of an “elastic” fluctuation-induced correction
07er to the stiffness of the TA interface:

Hgeo ) ~ [ eyog T g

where

T
5ver = k% /de(y - x)?

| [ 5 oty =) (ol

qdq 1 2
></ 2 Jolaly x|)1—|—exp(—2/\0q2h) Aoq?

2
gdg - 5 exp(—2Xoqh) _
+ </ Jolaly =xD) Aot 3-8

_ [ ada _ 2y2_ eXD(=Xoqh)
/ o JO(q|y X|) (Aoq ) 1 + exp(—2A0q2h)

< /@J()(My —x|)

Expression (36) is a fluctuation correction to the stiff-
ness of the capillary mode dh, that is, to the stiffness
of the TA interface caused by thermal displacements
of smectic layers in WSF. It is obvious that integrals
over the wave vector in the first term in the square
brackets in (36) are defined by the cutoff parameters
of these integrals and the corresponding contribution
to 07 is traditionally (see [27]) included into a rede-
fined stiffness of the TA interface. But the other two
terms in (36) give an h-depended (dimensional) correc-
tion to the stiffness of the capillary mode h, caused by
thermal displacements of smectic layers in WSF. The
integrals over the wave vector in these terms can be
calculated approximately in view of their fast conver-
gence because of the presence of the rapidly decreasing
exponential exp(—Xg¢?h). Indeed, considering that
the ¢ < g¢ give the leading contribution to these inte-
grals, it is possible to omit the decreasing exponentials
in the denominators. Then these integrals reduce to

exp(—Aok2h)
1+ exp(—2X\ok2h) | (36)

tabulated ones. Changing the variables as @ = ¢/qc,
p = qcly — x|, we find the following expression for the
h-depended correction -, (h) to the stiffness of the TA
interface:

kT 1
0vet(h) = PR

X /03 dp[(/QS dQe><1f>(—2Q2)Jo(Qp))2 -
- / Q3dQ: exp(—Q%) Jo(Qup) ¥
< [ Qud@uexn(-Q3) 1(@3p)]. (37

After some calculations, we have

5 kT
64r h2
We note that even in the case of the simple bound-
ary conditions for smectic films considered in [18,19],
07e1(h) was not calculated and the corresponding ana-
lytic result was not obtained.

57@! (h) ~ (38)

7. CONCLUSION

In the absence of experimental data concerning the
value of yr4, it is natural to assume [8] that

Y14 ~ 1071y ~ 10° erg - cm™2, (39)

where 7o is the stiffness of the free surface of WSF
(70 ~ 30 erg-cm 2 [18]). In particular, the case of rota-
tor phases of the normal alkanes (parafins) [28] confirms
this estimation of y74. For these phases, the tension
of the isotropic liquid—layered rotator phase interface is
much smaller (by almost an order of magnitude) than
the tension of the free surface of molten alkanes, which
is of the same characteristic value as 7o [28].
For a typical bilayer smectic LC (see [7,20,29]), we
have
AHra ~ 103 erg-em™3, (40)

O35 ~ 10% erg - cm™3. (41)

The fact that AHr4 and Cs33 are of the same order indi-
cates the noncritical character of the bulk ITA transition.
For the subsequent estimations, we use that (see [20])

/\0 ~ do ~ 1077 cim. (42)

In this case, simple analysis shows that inequality
(2) is satisfied in practice. For T74 &~ 300 K, correc-
tion (38) to the initial stiffness of the IA interface yr4
turns out to be negligibly small (6 (h) < v74) even
for h ~ dy:
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5%et(h) ~ 107210 terg - cm 2. (43)  sitions from equidistant on a logarithmic temperature

scale in the layering regime or the deviation of the tem-

Thus, having generalized the field theory ap-  perature positions of the inflection points of the WSF

proach [18,19] to the case of a WSF, we have obtained
that under condition (2), which is satisfied in practice,
and the condition of strong anchoring of the surface
smectic layer and the external bounding surface, ta-
king the elastic thermal displacements of the smectic
layers in the WSF into account reduces to adding two
contributions, H'<) [h(y)] and Hior[h(y)], to the
effective Hamiltonian of the IA interface (1). This, ac-
cordingly, leads to adding the potential of long-ran-
ge repulsion of the TA interface from the flat boun-
ding surface V]\(/;‘Z;L(h(y)) to the WSF interface poten-
tial Vint(R(y)) and to the occurrence of the correction
07e1(h) to the stiffness of the TA interface.

These conclusions are also valid in the case of wet-
ting by the smectic A phase of a free surface of a smec-
tic LC under the condition of strong anchoring of this
bounding surface and the adjoining smectic layer and
with the condition g > C33)g, which is necessary for
preserving the repulsive character of the Mikheev in-
teraction [9], imposed in addition to (2). The first con-
dition is apparently always satisfied, by particular, by
virtue of clearly distinguishable steps at the surface of
a drop of smectic A [30,31]. Fulfillment of the second
condition is also confirmed experimentally (see [32]).

It is interesting to note that “elastic” fluctuation-
induced long-range repulsion (33) is most dangerous
in the limit of large h (h 2 10dp [8]) and provides
the complete smectic wetting in the absence of layer-
ing transitions independently of the sign of the long-
range van der Waals interaction constant. We recall
that the so-called “oscillatory” regular regime of smec-
tic wetting is typical of the bulk TA transition in close
vicinity of a triple INA point [3, 5, 6, 34, 35] and occurs
just above the temperature of such bulk TA-transitions,
when the potential of the pinning of the TA interface
at the positions of the smectic layers in Vj,;(h) is not
sufficient and layering transitions are absent [8]. In
this regime, the WSF equilibrium thickness growths
continuously, weakly oscillating relative to its average
temperature dependence [8]. The growth of the WSF
thickness is directly registered by ellipsometric study
of the free surface of the smectic LC above the bulk
TA transition [4,5,33] or verified by fitting the X-ray
reflectivity from the WSF using the model mass den-
sity profile [3,6,34,35]. Thus, for the IA transitions
mentioned above, the smectic wetting is found to be
complete within the experimental accuracy [5,34]. In
this case, in the limit of large WSF thickness, the devi-
ation of the temperature positions of the layering tran-

thickness temperature dependence in the “oscillatory”
regime is experimentally observed [4,5,33]. These de-
viations correspond to a decrease in the temperature
intervals between these positions [4, 5, 33] and confirm
the occurrence in the system of the long-range repul-
sion of the TA interface from the external wetted sur-
face in addition to the short-range repulsion. More-
over, the temperature dependence of the average WSF
thickness in the limit of large h does not coincide with
either the logarithmic or the power law caused by the
long-range van der Waals interaction temperature de-
pendences [4, 5, 33].

Unfortunately, the temperature dependence of the
average WSF thickness still was not fitted using both
the logarithmic and power-law temperature depen-
dences caused by long-range interaction (33). Such a
study of the WSF for the bulk TA transitions in the
close vicinity of a triple INA point or in the case of
a large finite WSF thickness in the smectic layering
regime (which is typical, e.g., of the homologues of the
7.0.6-series with n > 18 [4, 5]), using the results in [§],
would be an additional confirmation of the occurrence
of long-range interaction (33) in the system and a direct
experimental observation of the “elastic” fluctuation-
induced long-range repulsion of the TA interface from
the external wetted surface.

Presently, because of the absence in [4,5,33] of the
temperature dependence of the WSF thickness tabu-
lated data for different smectic homologues and the
WSF thickness tabulated data for h 2 10dy in partic-
ular, only some qualitative estimations confirming this
statement can be made. Using the results in [8] and iso-
lating the smooth part V5 (h) of the interfacial potential
Vint(h), it is not difficult to derive an equation for the
temperature dependence of the average WSF thickness
ho(t) taking interaction (33) into account (Vy, = 0):

ho 1 kgT(r(2)
—A _ o 44
t eXp( go> A 32k (44)

where t = (T — T14)/Tr4 is the reduced deviation of
the temperature T from the temperature of the bulk TA
phase transition (¢ > 0), {¢ is the correlation length in
the bulk smectic A phase, and A is the reduced ampli-
tude of the short-range repulsive interaction (4 > 0).
Equation (44) determines the inverse dependence of
ho(t), and hence plotting hg(t) with the given values
of the constants is trivial [8]. Choosing three points
from seven points of the WSF thickness temperature
dependence presented in Fig. 4 in [4] (b 2 10dp) for
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compound 18.0.6 (T4 = 359.88 K [4]) within the
accuracy acceptable in [4], {(t; = 0.000152778, hy =
=26-10"7 cm), (t; = 0.0000694444, ho = 30-10~7 cm),
(t3 = 0.0000263889, h3 = 34-10~ 7 cm)}, we obtain that
these points are described by Eq. (44) with

A~ 0.0455 and &c ~4.5-1077 cm, (45)

which is in agreement with the estimations A ~ 1072~
1071 and go€c ~ 10 obtained in [8] in the analysis of
the data in [1-7,33-35], where o = 27/dy is the wave
number of the bulk smectic lattice. We note that from
the analysis of Eq. (44), it is easy to obtain the esti-
mation h 2 10dy for the WSF thickness, for which it is
necessary to take the long-range “elastic” fluctuation-
induced interaction (33) into account in addition to the
short-range interaction in the WSF interfacial poten-
tial.

We also note that the conclusion in Sec. 5 that
the roughening fluctuations of the TA interface should
be understood as fluctuations of the thermal capillary
mode 0h, allows us to define the Fourier transform of
the two-point correlator of the relative thermal dis-
placements of the [A interface <wk1/1,k> within the in-
terface model discussed:

(Yx—x) =~ (hih_x) =~
N kT
- V(b)) + Vien (B) 4+ (v1a + 0ver(h)) k2

(46)

This Fourier transform (46) of the two-point corre-
lator, in particular, defines the intensity of light scat-
tered by a free LC surface in the presence of WSF
in the experiments similar to those in [36] and struc-
ture factors related to the reduced X-ray reflectivity
both from the free LC surface in the presence of WSF
(see, e.g., [1-3,8,28,35]) and from the WSF wetting a
specially treated solid substrate (see [6,7]). We take
into account that in the case of large WSF thickness
in the regime without layering transitions just above
the bulk TA-transitions in a close vicinity of the triple
INA point, the terms Vy};., (h) and (yra + 07er(h))k?
become the leading terms in the denominator of the
correlator (hxh_k). In this case, from the simulta-
neous fitting of the intensity of light scattered by the
relative capillary displacements of the IA interface sim-
ilar to [36] and of the X-ray reflectivity from the WSF
similar to [1-3,6, 8, 28, 35] for the same LC compound,
it would be possible to experimentally determine the
value of 74 and to derive the dependences V7, (h)
and 07 (h) for comparison with the results obtained in
this paper. Such experiments would also be the direct
study of the “elastic” fluctuation-induced effects in the

WSF, but it is important for this study that expres-
sions for the structural factors used in [1, 2] have to be
calculated more accurately [8]. In addition, with simi-
lar research goals, similar experiments may be carried
out for the films of different correlated liquids.

To summarize, we note that the considered
functional-integral method allows simplifying the cal-
culation of the fluctuation-induced interactions in the
bounded systems and carrying out these calculations in
the same way for various correlated liquids with quite
easily implemented boundary conditions on ‘“rough”
bounding surfaces.

I thank V. E. Podnek for the useful and inter-
esting discussions that stimulated my thinking during
the work. I also thank E. E. Gorodetsky, E. I. Kats,
V. V. Lebedev, and S. A. Pikin for the interesting and
useful discussions, and interest in our joint work [8] and
in this work in particular.

APPENDIX A

In this appendix, we give details of the derivation
of the effective Hamiltonian H . describing the “elas-
tic” fluctuation-induced interaction between the unper-
turbed (flat) TA interface and a flat external surface
bounding the WSF, defined by (23). It is obvious that
these calculations require finding the determinant of
ﬁo. For obtaining the Fourier transform of the matrix
My(x,y), we use (14) to define the two-dimensional
Fourier transformation of the correlation functions oc-
curring in (20) and find their Fourier transforms as

G(q,0) :/dZTexp(—iq~T)C~}’(T,0) =

kT 1

- Al

Cs3 2Xo @2’ (A1)
G(q, h) =/d2T exp(—iq- ) G(Y,h) =
_ 2

_ kT exp(—Xoq* h) (A.2)

Cs3 220 ¢
where T = y —x and the tilde specifies the two-dimen-
sional Fourier transformation.

Using (A.1) and (A.2), we then obtain the Fourier-
transformed matrix My:

My (k) =
. G(k,0) %@(k,h)
? 3é(k,h) —8—26(k,z)|z:0 -
oh 922
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For simplicity, we pass to the discrete wave vec-
tor notation k;. Each block in expression (A.3) should

G(ky,0) 0
0 G(ks,0)
My (k) = % :
%~(k1,h) ; ~0
0 57, Gk, 1)

then be understood as an infinite-dimensional matrix,

namely:
\

9 ~
- Gilki, ) 0
o ~
0 - Gi(ka, h)
: (A4)
9% ~
—@G(kl,z)p:o 0
0 —%G(kg,zﬂzzg

To simplify the definition of Hy.¢, after an even number of rearrangements and substitution of the Fourier
transforms of correlation functions (A.1) and (A.2), the matrix My(k) takes the simple form

— 1 kpT
Mo(k) = =
o(k) = 3 Cn
0 0
1 1
—— —— exp(—Aok2h
: 2o k2 3 P(~Aokih)
1 Ao k2
0 —§exp(—)\0kfh) —%
X
0 0 0
0 0 0
0 0 0

Then the determinant of Mg is easily calculated as

Detﬁo = H(% ]2333)2><

i
1

x 3 [1 +exp(=20k2h)|. (A.6)

Substituting (A.6) in (23) and passing from summa-

tion over k; to integration, it is easy to find the di-

mensional h-depended contribution to Hyjqs, given by
expression (28).

APPENDIX B

In this appendix, we give details of the derivation of
the effective Hamiltonian H,,,, defined by (24). This
Hamiltonian is an additional contribution to the effec-

o
o
o

0 0 0
1 1 . (A5)
— —— exp(—AokZ, b
2A0 k2’2+1 2 exp( 0fvit1 ) 0
1 A Ao k2
—~ exp(—AokZ, 1 h) halii’s 2% 0
2 2
0 0

tive Hamiltonian, caused by thermal displacements of
the TA interface.

To obtain an explicit expression for the matrix
OM(x,y), we expand the correlation functions and
their derivatives appearing in (18) in powers of small
0h(x) through the second order:

Gy, 3h(y)) = Gy —x, h)+ 2 (y—x, h)3h(y)+

1 8%G N
t5 w(y -x,h)6h7(y), (B.1)
3G( —x,h+ oh( ))—EG( —x,h) +
D2 y — X, y)) = D2 y —X,
82
+ E 8—3G( —x,h)0R%(y), (B.2)
55800 —% y)s .
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82 82 . o . .
@G(y — x,8h(y) — 6h(x)) = @G(y —x,0) + For simplicity of the calculation, we set
19 W =1+ M, "'5M. B.7
+5 354G = x,0) (9h(y) = 0h(x))*.  (B.3) ’ e
Then H.,,, is written as
In (B.3), the term linear in (dh(y)—0dh(x)) is identically
equal to zero, as can be easily verified using represen- Heppr = kB_T In Det W. (B.8)

tation (14).

By analogy with [18,19], after taking the two-
dimensional Fourier transformation for the expansions
of correlation functions (B.1)—(B.3), we obtain — 1

Inverting the matrix M, using (A.4) results in

My (k) = 5 Do)
STk, q) = 1( 0 Aleq) ) (B.4)
2\ Alak) B(k,q) i &) O &k, h)
—=5G(k, 2).=0 —57G(k,
where X 628 oh , (B.9)
——G(k,h) G(k,0)
Ak, q) = /d2x/d2yexp(—ik~y) X Oh
where
62

x exp(iq - x) = G(y — x,h)0h(y) +

1 P2 e o ” . Dy (k) = i (— %é(k,z)|zzgé(k,0) —
+§/ x/ yexp(—ik - y) exp(iq - X) X |
3 8 _ 2

x %G(y —x,h)0h*(y), (B.5) - (%G(k,h)) > ., (B.10)

and substitution of (A.1) and (A.2) in (B.10) yields
1 . .
B(k,q) = —E/dzx/dzyexp(—ik-y) exp(iq-x) x

o Dy(k) = —(% %)2 i (1+exp(—2Xk*h)). (B.11)
— Gy —x, Sh(y) — 6h(x))?. (B.6
) <8z4 = Z)>z—0 (Oh) G (B0 Substituting (B.4) and (B.11) in (B.7), we obtain
|
L= a2 Gl ) Ak @) —ag—lmk,z)z:oA(k,q) ~ o Gi(k,h) B(k,q)
Wk, q) = : : (B.12)
Gl 0) Alk,q) 100Gl W) Ak @) + aGi(k,0) B(k,q)
_ 1
4 Dy(k)’

where discrete representation of this matrix and its elements in wave vectors k; are given below.
In the discrete wave vector notation k;(k; = q;), each block in the matrix M (k,q) in (B.4) should also be
understood as an infinite-dimensional matrix, namely:

0 0 A(kl,kl) A(kl,qg)
0 0 A(kg,ql) A(k2,k2)
SM(k,q) = 1 ' ' ‘ ' ‘ (B.13)
21 Alqr,q1) A(ai,ke) ... B(ki,ki) B(ki,q2)
A(ge, k1) A(g2,q2) ... B(ks,q1) B(ks,k»)
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In the discrete wave vector notation k;, from (A.9) we obtain

~_4 _ 1
P
—@G(kl,z)zzo 0
0? ~
0 —@G(kg,z)zzo
X
—ié(kl,h) 0
oh 9
0 55 Glka, 1)

9 ~
— 55 Gk, ) 0
0 ~
0 — 55 Gk, 1)
(B.14)
G(ky,0) 0
0 G(k»,0)

After substitution of (B.13) and (B.14) in (B.7), we find in the discrete wave vector notation k; that each

block of the matrix W(k, q) is given by

I 1 0 ~ 1 0 ~ 7
1-— 74D0(k1) %G(khh) Ak, k) —m %G(khh) A(ky,q2)
1 0 ~ 1 o ~
Wil = - oh - 7.0k 2) s B.15
n(k,q) Ty gRC e M Al an) 1= s .Gk, ) Alks o) (B.15)
_ C11 _ Cc12
4 Do(ky) 4 Do(ky)
Wip(k,q) = |2 2 : (B.16)
4 Do (ko) 4 Do (ko)
2 ot ~
e = 55 Gk, 2).m0 Alkr ko) + 52 Gk, h) Bk k),
2 o -
cr2 = 755G (ki 2)sm0 Alkr, @) + 5-Gki, h) Bk, @),
2 6 _
c21 = 755G (ke 2)sm0 Alkz, @i) + 55-Gke, h) Blko, q),
2 ot ~
c22 = 55 Gk, 2).m0 Ak ko) + 50 Gl(ke, h) Blks, ko),
1 G(k1,0) Ak, ki) #é(k 0) A(k1, q2) ]
4Do(ky) LU Do (k) L
1 ~ ~
Wai(k,q) = 1Do) G(ky,0) A(k2, q1) mG(k2,0)A(k27k2) . (B.17)
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Was(k, q) = Hogry = 22T [ / / &z dy x
S11 S12
1+
4 Do(ky) 4 Do(ky) Gk.0) 5
k,0
521 522 X { — “— exp(—ik- x)) G(y—x,2) X
4 Dy (kz) 1+4D0(k2) ol (BAS) { 4 Do(k) (Fiky= (824 ( )zzo
o ~
(9h(y) = oh(x))* _ ap "0 M)
2 4Dy (k)
0 ~ -
=—=F . o? Sh?
1= ahG(kl’ AWk k) + Gk, 0) Bl ka), x exp(—ik - (y—X))WG(y—X,h) 2(}’) }—

9 ~ _

S12 = _%G(klah)A(klacﬂ) + G (ky,0) B(ki,q2),
9 ~ _

S91 = —%G(kmh)A(km(h) + G (k2,0) B(ka,q1),

522 = = - Glken, 1) Ak o) + Gk, 0)

B(ks, ko).

For the calculations in what follows, we note that
due to the condition [d*zdh(x) = 0, the term lin-
ear in d0h(x) disappears in A(k,k). That is essential
for the chosen quadratic approximation. Using (B.12)
and (B.15)—(B.18), we can also obtain the expansion
of DetW through the second order in small fluctuation
displacements of the TA interface dh(x):

Det W =
o ~
_ Gk, 0)B(k k) 70 0 h) Al k)
- “ZkJ D)~ 4Dy B
9 G,y A <k @) 2-Gi(a. ) Ala. )
_ Z 8h 8 ) ) +
4 Do (k 4 Do(q)
k,q(q#k)
{ ,q)
4D0
,q(qsﬁk)
8 é(qa )z OA(qa )
x 92 (B.19)

4 Do(q)

Substituting (B.19) in (B.8), expanding the loga-
rithm in 0h(x) through the second order, passing from
summation over k; to integration, and using expres-
sions (B.5) and (B.6), we obtain

_/ (;l:;‘z / (3;32{%6(1"“%@(‘1’]”_

~G(k, 0)(; Gla,= ))z:o}m .

2

X // d*y d*v, exp(iq~y—ik~v1)a—

8]7,2 G(Vl_Y7 h)(sh(Y) X

></ d?x d?vy exp(ik - x — iq - Vo) X

2
X iG(vz -

= X, h)dh(x)]. (B.20)

After performing the integration over the relative
variables vi —y and vy — x in the general expression
for H.opr in (B.9) and using the identity

h(x)0h(y) = 5 (6h* (x)+8h*(y)~ (6h(y)—0h(x))?),

l\DI»—t

it is possible to decompose H., into the local and
nonlocal contributions discussed in the main text.

In particular, the nonlocal contribution to H.op, iS
given by

H(nonloc) — (Sh(X))Q

corr

kpT 2 2 (6h(y) —
5 / d*zdy 5

By (y —x) + ®3(y — x) —

z=0

X [— (5’—:4 Gly — x,z))

—P3(y —x)Pu(y —x)|, (B.21)

where
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[ &q G(q,0)
by —x) = [ @n)? 4Do(q)
x exp(—iq - (y — X)),

d’q 0 ~

Py(y —x) = / (27)2 %G(%
a )eXP( q-(y—x))
8h2 4Do(q) ’
d2q 82
(27)2 Oh2 (. h)
exp (iq - (y — x))
4 Dy(q) ’
82
Oh?

—X)).

h) x

(B.22)

\

= Gl(k, 0) =

G(k,h) x

exp (—ik- (y
4 Dy(q)
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