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�ELASTIC� FLUCTUATION-INDUCED EFFECTSIN SMECTIC WETTING FILMSE. S. Pikina *Oil and Gas Resear
h Institute, Russian A
ademy of S
ien
es119333, Mos
ow, RussiaRe
eived May 26, 2009The Li�Kardar �eld theory approa
h is generalized to wetting sme
ti
 �lms and the �elasti
� �u
tuation-indu
edintera
tion is obtained between the external �at bounding surfa
e and distorted IA (isotropi
 liquid�sme
ti
 A)interfa
e a
ting as an � internal� (bulk) boundary of the wetting sme
ti
 �lm under the assumption that the IAinterfa
e is essentially �softer� than the surfa
e sme
ti
 layer. This �eld theory approa
h allows 
al
ulating the�u
tuation-indu
ed 
orre
tions in Hamiltonians of the so-
alled �
orrelated� liquids 
on�ned by two surfa
es inthe 
ase where one of the bounding surfa
es is �rough� and with di�erent types of surfa
e sme
ti
 layer an
hor-ing. We obtain that in pra
ti
e, the a

ount of thermal displa
ements of the sme
ti
 layers in a wetting sme
ti
�lm redu
es to the addition of two 
ontributions to the IA interfa
e Hamiltonian. The �rst, so-
alled lo
al
ontribution des
ribes the long-range thermal �elasti
� repulsion of the �u
tuating IA interfa
e from the �atbounding surfa
e. The se
ond, so-
alled nonlo
al 
ontribution is 
onne
ted with the o

urren
e of an �elasti
��u
tuation-indu
ed 
orre
tion to the sti�ness of the IA interfa
e. An analyti
 expression for this 
orre
tion isobtained.PACS: 61.30.Hn, 61.30.Dk, 64.70.M-, 61.30.Eb1. INTRODUCTIONIt is known that just above the bulk isotropi
 liquid�sme
ti
 A (IA) phase transition temperature, 
lose tothe external surfa
e bounding an isotropi
 liquid phaseof a sme
ti
 liquid 
rystal (LC), sme
ti
 layering is ob-served [1�7℄. Sme
ti
 layering is a spe
ial 
ase of sme
-ti
 wetting when the growth of the wetting sme
ti
 �lm(WSF) thi
kness pro
eeds via a series of dis
rete lay-ering transitions. Sme
ti
 layering is observed 
loseto the external bounding surfa
e (free surfa
e or solidsubstrate) and o

urs above the bulk IA phase transi-tions lo
ated far from the triple isotropi
 liquid�sme
ti
A�nemati
 (INA) point. In 
onstru
ting the interfa
emodel of sme
ti
 layering [8℄, the question of the in�u-en
e of thermal displa
ements of sme
ti
 layers on theIA interfa
e Hamiltonian naturally o

urred to us. Thispaper is devoted to the solution of this problem. Wenote that what is traditionally meant [8�16℄ by the IAinterfa
e is the boundary between isotropi
 liquid andsme
ti
 A phases. The IA interfa
e a
ts as an �internal�(bulk) bounding surfa
e of the WSF (see the Figure).*E-mail: elena�ogri.ru

We emphasize that obtaining the �elasti
� �u
tuation-indu
ed intera
tion between the IA interfa
e and theexternal bounding surfa
e has an independent inter-est be
ause it solves the problem of thermal �elasti
��u
tuation-indu
ed e�e
ts (so-
alled thermal Casimire�e
ts) in wetting sme
ti
 �lms.The �elasti
� �u
tuation-indu
ed 
ontribution tothe free energy density of a sme
ti
 �lm as a fun
-tion of the equilibrium thi
kness of this �lm was �rst
al
ulated in [9℄ within the �hydrodynami
� approa
h.However, this approa
h allowed 
onsidering only the
ase of strong an
horing of both surfa
e sme
ti
 layerswith both �smooth� sme
ti
 interfa
es. We note thatthe result derived in [9℄ 
orresponds to the �elasti
��u
tuation-indu
ed intera
tion between unperturbed(�at) surfa
es bounding the sme
ti
 �lm (see Se
. 5).Subsequently, the limit 
ases of a long-range Mikheevintera
tion [9℄ were obtained in [17℄.Finally, in [18; 19℄, the general �eld theory approa
hhas been developed. This approa
h allows 
al
ulatingthe �u
tuation-indu
ed 
orre
tions to the Hamiltoniansof the so-
alled �
orrelated� liquids 
on�ned by two sur-fa
es, in the 
ase where one of the bounding surfa
es is1023



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009�rough� and with di�erent types of surfa
e sme
ti
 layeran
horing. The �
orrelated� liquid is a system with along-range order due to a broken 
ontinuous symmetry.Thermal �u
tuations in the �
orrelated� liquid are de-s
ribed by massless Goldstone modes. Possible exam-ples are a super�uid or a liquid 
rystal. The surfa
esbounding the �
orrelated� liquid naturally 
hange its�u
tuations in their vi
inity.The advantage of this �eld theory approa
h is thattwo types of boundary 
onditions are quite easily im-plemented. Boundaries of the �rst type 
orrespondto the suppression of the �uid �u
tuations. Su
hzero boundary 
onditions at the bounding surfa
es(so-
alled Diri
hlet boundary 
ondition) 
orrespond,for example, to strong an
horing for liquid 
rystals.Se
ond-type boundaries 
orrespond to the suppressionof the normal gradients of �u
tuations (so-
alled Neu-mann boundary 
onditions).However, di�erent types of boundary 
onditionswere 
onsidered in [18; 19℄ only in the 
ase of a super-�uid liquid, in whi
h phase �u
tuations are the mass-less Goldstone modes and are des
ribed by a simp-le quadrati
 Hamiltonian. In parti
ular, two 
ases ofboundary 
onditions have been 
onsidered for this sys-tem. In the �rst 
ase, the Diri
hlet boundary 
ondi-tions at both bounding surfa
es are satis�ed. In these
ond 
ase, the simpler Diri
hlet boundary 
onditionis satis�ed at a �rough� surfa
e and the more 
ompli-
ated Neumann boundary 
ondition is satis�ed at a �atbounding surfa
e.It is important to note that only the simplest 
aseof zero boundary 
onditions for thermal displa
ementsof sme
ti
 layers at both bounding surfa
es was 
onsid-ered for a sme
ti
 �lm in [18; 19℄. As we show in whatfollows, for the problem of sme
ti
 wetting, on the 
on-trary, the mixed boundary 
onditions are of interestand the more 
ompli
ated Neumann boundary 
ondi-tion is assumed to be satis�ed exa
tly at the �rough�bounding surfa
e.2. FORMULATION OF THE PROBLEM.BOUNDARY CONDITIONSWe develop the Li�Kardar formalism [18; 19℄ in the
ase of sme
ti
 wetting in the vi
inity of a �at boundingsurfa
e and solve the problem of the e�e
t of thermal�u
tuations of sme
ti
 layers on the e�e
tive Hamilto-nian of the IA interfa
e (see the Figure).The e�e
tive Hamiltonian of the IA interfa
e, in thespirit of the known interfa
e models [9; 10�16℄, without

Æh(x)
Substrate hSme
ti
 layersIA interfa
eIsotropi
 liquid phaseh(x)Sme
ti
 wetting filmS
hemati
 pi
ture of the wetting sme
ti
 �lm 
overinga �at bounding surfa
e (substrate) with thermal dis-pla
ements of sme
ti
 layers taken into a

ount. Thethi
k line represents the IA interfa
e a
ting as a bound-ary between the isotropi
 and wetting sme
ti
 A phases.Lo
al thi
kness of the WSF is determined as the lo
alremoval of the IA interfa
e from the wetted surfa
e.The thin straight line shows the equilibrium position ofthe IA interfa
etaking thermal �u
tuations of the sme
ti
 layers intoa

ount, 
an be written in the general form (see [8℄)Hint[h(x)℄ == ZS d2xnVint(h(x))+
IA2 (rh(x))2o ; (1)where h(x) is the lo
al thi
kness of the WSF (see theFigure), Vint(h(x)) is the initial potential of the inter-a
tion of the IA interfa
e with a �at bounding surfa
e(substrate) and with sme
ti
 layers, without taking thein�uen
e of thermal �u
tuations of the sme
ti
 layersinto a

ount, 
IA is the initial sti�ness of the IA inter-fa
e, and S is the area of an external �at wetted surfa
e(substrate).To apply the �eld theory approa
h in [18; 19℄ to theWSF, we use the following assumptions. First, we sup-pose for simpli
ity that at the external �at boundingsurfa
e with the 
oordinate z = 0, the 
ondition ofstrong an
horing of the surfa
e sme
ti
 layer, i.e., theDiri
hlet boundary 
ondition is satis�ed. Se
ond, wesuppose that the IA interfa
e is essentially �softer� thanthe surfa
e sme
ti
 layer and, a

ordingly, the 
ondi-tion 
IA � C33�0 (2)is satis�ed, where C33 is the 
ompression modulus ofsme
ti
 layers and �0 is the De Gennes elasti
 �
rosslength� [20℄. We 
onsider stati
 distortions of the sme
-ti
 layers in WSF, whi
h give rise the long-range �u
-tuation e�e
ts in the sme
ti
 �lm [9; 17℄, and negle
tthe density 
hange in the system 
aused by deforma-tion [21, �� 44�46℄. Condition (2) then allows negle
ting1024
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� �u
tuation-indu
ed e�e
ts : : :the in�uen
e of the IA interfa
e on the sme
ti
 layersrea
hing the IA interfa
e, i.e., allows supposing that
ondition of the equality of normal stresses [22, � 61℄,[21, �� 44�46℄ in the WSF and isotropi
 phase at theIA interfa
e is redu
ed to setting the normal gradientsof �u
tuations of the sme
ti
 layers rea
hing the IA in-terfa
e to zero. A

ordingly, the Neumann boundary
ondition (suppression of the normal gradients of �u
-tuations of sme
ti
 layers) is assumed to be satis�ed atthe IA interfa
e. We note that our boundary 
onditions
orrespond to the 
ase of limit values 
 =1 and 
 = 0at the surfa
es bounding the sme
ti
 �lm [9℄, or to the
ase of strong and weak 
oupling for sme
ti
 �lms inderiving the �pseudo-Casimir� 
ontribution to the freeenergy of su
h �lms [17℄.3. BASIC ASSUMPTIONS OF THELI�KARDAR FIELD THEORY APPROACHWe spe
ify two basi
 assumptions of the Li�Kardar�eld theory formalism [18; 19℄ applied to the problemof obtaining the �u
tuation 
ontribution to interfa
eHamiltonian (1), 
aused by thermal displa
ements ofthe sme
ti
 layers.First, the �u
tuation displa
ements of the sme
ti
layers are des
ribed by bulk Grinstein�Pel
ovits Hamil-tonian [23℄, taken in the quadrati
 approximation:H0[u(z;x)℄ = ZS d2x Z dz ���C332 �(�zu(z;x))2 + �20(r2u(z;x))2�� ; (3)where u(z;x) is a nonuniform elasti
 thermal displa
e-ment of the sme
ti
 layer, whi
h is at the point (z;x)be
ause of the elasti
 deformation, r is the gradient inthe wetted surfa
e plane, and �z � �=�z.Se
ond, the boundary 
onditions that must be sat-is�ed by the elasti
 displa
ements u(z;x) at the �at ex-ternal surfa
e (substrate) and at the IA interfa
e, i.e.,at two surfa
es bounding the sme
ti
 �lm, are regardedas perturbations a
ting on the unperturbed bulk sys-tem. The sme
ti
 �lm is thus modeled by the in�u-en
e of these perturbations on the bulk sme
ti
. Theboundary 
onditions are imposed by inserting auxiliary�u
tuation �elds and using an integral representationfor the Æ-fun
tion.

4. THE GENERAL EXPRESSION FOR THE�ELASTIC� FLUCTUATION-INDUCEDCONTRIBUTION TO THE EFFECTIVEINTERFACE HAMILTONIANThe general expression for the 
ontribution to ef-fe
tive interfa
e Hamiltonian (1) des
ribing the �elas-ti
� �u
tuation-indu
ed intera
tion between the sur-fa
es bounding the WSF is obtained as follows.We des
ribe ea
h point at the surfa
es bounding theWSF by the three-dimensional radius ve
torr1(x) = (0;x) and r2(y) = (h+ Æh(y);y); (4)where x, y is the �internal� two-dimensional radius ve
-tor for ea
h of the surfa
es, Æh(y) is the nonuniformthermal �u
tuation distortion of the IA interfa
e rela-tive to its equilibrium position z = h (R d2y Æh(y) = 0),and the lo
al thi
kness of the WSF is a

ordingly rep-resented in the form h(y) = h+Æh(y) (see the Figure).We introdu
e an auxiliary �u
tuation �eld 
1(x)at the �at bounding surfa
e and an auxiliary �u
-tuation �eld 
2(y) at the IA interfa
e. By anal-ogy with [18; 19℄, the boundary 
onditions at the sur-fa
es bounding the WSF (see Se
. 2) 
an be imposedthrough these auxiliary �elds using the integral rep-resentation of Æ-fun
tions. We therefore express theDiri
hlet boundary 
ondition at the �at bounding sur-fa
e asÆ�u(0;x)� = Z D
1(x)�� exp �i Z d2x
1(x)u(r1(x))� ; (5)and the Neumann boundary 
ondition at the IA inter-fa
e asÆ�rnu(h(y);y)� = Z D
2(y) �� exp�i Z d2y
2(y)�rn2(y)u(r2(y))�� ; (6)where rn2(y) is the normal gradient of thermal dis-pla
ements of the sme
ti
 layers at the IA interfa
e ata point r2(y).With (3)�(6), in terms of fun
tional integration overthe thermal displa
ements of the sme
ti
 layers andover the auxiliary �elds, the general expression for the�elasti
� �u
tuation-indu
ed 
ontribution Heff to inter-fa
e Hamiltonian (1) is given by13 ÆÝÒÔ, âûï. 5 (11) 1025



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009exp ��HeffkBT � = Z D
1(x)D
2(y) ��� 1Z0 Z Du(r) exp ��H0[u℄kBT ++ i Z d2x
1(x)u(r1(x)) ++ i Z d2y
2(y)�rn2(y)u(r2(y))��� ; (7)where Z0 = Z Du(r) exp ��H0[u℄kBT � : (8)Expanding the expression in bra
es in the right-hand side of (7), in the terms proportional to i, we�ndexp ��HeffkBT � � Z D
1(x)D
2(y) 1Z0 Z Du(r)�� exp ��H0[u℄kBT ��1 + i Z d2x
1(x)u(r1(x)) ++ i Z d2y
2(y)�rn2(y)u(r2(y))� �� 12 �Z d2x
1(x)u(r1(x)) ++ Z d2y
2(y)�rn2(y)u(r2(y))��2 + : : :) : (9)The 
on�guration integration in (9) over the elasti
variables 
an thus be performed with the resultexp ��HeffkBT � = Z D
1(x)D
2(y) �� exp��H1[
1(x);
2(y)℄�; (10)where the e�e
tive Hamiltonian of the two-
omponent�eld 
 � (
1(x);
2(y)) is given byH1[
℄ = 12 Z d2x Z d2y�
1(x)G(r1(y)��r1(x))
1(y)+
1(x)�rn2(y)G(r2(y)�r1(x))�
2(y)++ 
1(y)�rn2(x)G(r2(x) � r1(y))�
2(x) + 
2(x) �� �rn2(x)rn2(y)G(r2(y)� r2(x))�
2(y)	 �� 
M
T : (11)

Here, G(r) = 
u(0)u(r)�0 is the two-point 
orrelationfun
tion in bulk sme
ti
,
: : : �0 = 1Z0 Z Du(r) (: : : ) exp ��H0[u℄kBT � ; (12)and the matrix M is a fun
tional of the radius ve
-tors r1(x) and r2(y). In obtaining (10), we used that
u(r1) : : : u(r2m)u(r2m+1)�0 = 0.Within the approa
h 
orresponding to the negle
tof the bulk elasti
 anharmoni
 terms in (3), we supposethat rn2(y)u(h(y);y) � rzyu(z;y)jz=h(y): (13)In the 
onsidered 
ase, the two-point 
orrelationfun
tion in bulk sme
ti
 is de�ned asG(y � x; zy � zx) = kBTC33 �� Z d2q(2�)2 exp(iq � (y � x) exp(��0 q2 z)2�0 q2 ; (14)where, following the 
hoi
e in (4), we assume thatzy � zx and set z = zy � zx. A

ordingly, we �ndrzyG(y � x; zy � zx) � ��zG(y � x; z); (15)rzxrzyG(y � x; zy � zx) � � �2�z2G(y � x; z): (16)The quadrati
 form of the Hamiltonian H1[
℄in (11) allows integrating over the auxiliary �elds 
in (10) and then obtaining the general expression forthe e�e
tive Hamiltonian that des
ribes the additional�elasti
� �u
tuation-indu
ed intera
tion between theIA interfa
e and a �at surfa
e bounding the WSF(
f. [18; 19; 24℄):Heff [r1(x); r2(y)℄ == kBT2 lnDet�M [r1(x); r2(y)℄� � : (17)Here, with (13), in the 
ase of bounding surfa
es de-s
ribed by (4), the fun
tional matrixM is dedu
ed from(11) using (14)�(16):M(x;y) = 12 0BB� G(y � x; 0) ��zG(y � x; h+ Æh(y))��zG(x� y; h+ Æh(x)) � �2�z2G(y � x; Æh(y) � Æh(x)) 1CCA ; (18)�m�zmG(y � x; �(y;x)) � �m�zmG(y � x; z)jz��(y;x):1026



ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009 �Elasti
� �u
tuation-indu
ed e�e
ts : : :5. Heff IN THE CASE OF SMALLDISTORTIONS OF THE IA INTERFACEIn the 
ase of small distortions Æh(x) of the IA in-terfa
e, the matrix M(x;y) 
an be 
al
ulated approxi-mately by expanding the 
orrelation fun
tions and theirderivatives appearing in (18) in powers of Æh(x):M(x;y) =M0(x;y) + ÆM(x;y); (19)whereM0(x;y) = 12 ��0BB� G(y � x; 0) ��zG(y � x; h)��zG(x � y; h) � �2�z2G(y � x; 0) 1CCA (20)is the fun
tional matrix for the �at bounding surfa
esand ÆM(x;y) is the 
orre
tion 
aused by �u
tuationdispla
ements of the IA interfa
e. The Fourier trans-form of the matrix M0(x;y) required for the 
al
ula-tions in what follows is given in Appendix A.We note that the two-dimensional Fourier transformof the fun
tional matrix fM 
an be represented asfM = fM0 + fM0 fM�10 ÆfM; (21)where the tilde denotes the two-dimensional Fouriertransform (see Appendix A).In this 
ase, e�e
tive Hamiltonian (17) 
an be de-
omposed as Heff = Hflat +H
orr; (22)where Hflat = kBT2 lnDetfM0� (23)is the e�e
tive Hamiltonian des
ribing the �elasti
��u
tuation-indu
ed intera
tion between the unper-turbed (�at) IA interfa
e and the �at external surfa
ebounding the WSF, andH
orr = kBT2 lnDetn1 + fM�10 ÆfMo (24)is the additional �elasti
� �u
tuation-indu
ed 
ontribu-tion to Heff , 
aused by thermal distortions of the IAinterfa
e.We also note that using (14) and (A.1), (A.2), it ispossible to illustrate the physi
al meaning of inequality(2). By analogy with obtaining H
orr, the �eld theoryapproa
h allows 
al
ulating the 
orrelation fun
tion ofthermal displa
ements of the sme
ti
 layers in bounded

systems, whi
h is an independent problem. This use ofthe fun
tional integration method [18; 19℄ for obtainingthe 
orrelation fun
tions of �u
tuating �elds satisfy-ing the Diri
hlet boundary 
onditions has been 
on-sidered in [25; 26℄. Developing this method for bound-ary 
onditions (5) and (6) allows obtaining the leading
ontribution to the two-dimensional Fourier transformof the 
orrelation fun
tion of thermal displa
ements ofthe sme
ti
 layers in WSF rea
hing the IA interfa
e
u(x; h(x))u(y; h(y))�:eGIA(q) � kBTC33�0q2 1� exp(�2�0 q2 h)1 + exp(�2�0 q2 h) : (25)We introdu
e the Fourier transform of the nonuni-form �u
tuating values Æh(x) given above:Æh(x) =Xq 0hq exp(iq � x):In the zeroth order of the interfa
e potential up toa �xed point of the renormalization group pro
edure ofeliminating fast �u
tuations of the IA interfa
e, i.e., upto q = q
ap [8; 27℄, we have
hqh�q�0 � kBT
IAq2 : (26)In limit (2), it follows from (25) and (26) forq > qC = 1=p�0h thateGIA(q) � kBTC33�0q2 � 
hqh�q�0: (27)It is well known that the amplitudes of the interfa
ialpotential Vint(h) determine the value of q
ap [8; 27℄. It
an be shown that the inequality eGIA(q) � 
hqh�q�0is also satis�ed for q < qC under the assumption thatthe 
onditions analogous to (2) hold for the se
ondderivatives of the interfa
ial potential Vint(h) and thegap C33=h of 
orrelator (25).Hen
e, the 
ondition of �softness� of the IA inter-fa
e expressed by inequality (2) and leading to inequal-ity (27) means, in parti
ular, that �u
tuations of thethermal 
apillary mode Æh are dominant at the IA in-terfa
e. This in turn means that in the sme
ti
 wettingproblem, the roughening �u
tuations of the IA interfa
e (x) = Æh(x)�u(x; h(x)) [8; 9℄ are a
tually redu
ed tothe �u
tuations of the mode Æh. Capillary �u
tuationsof the IA interfa
e are �dangerous�. This indi
ates thatthe roughening �u
tuations of the IA interfa
e shouldbe understood as the thermal 
apillary displa
ementsof the IA interfa
e.After evaluating the determinant of fM0 (see Ap-pendix A for the details), we obtain the following h-de-pended 
ontribution to Hflat:1027 13*



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009Hflat(h) = SkBT2 Z d2k(2�)2 �� lnh1 + exp(�2�0 k2 h)i= SVMikh(h); (28)where VMikh(h) = kBT32� �(2)�0 h (29)and �R(2) = �2=6 is a value of the Riemann zeta fun
-tion. Expression (29) is a long-range �repulsive� 
on-tribution to the intera
tion potential Vint(h) betweenthe unperturbed (�at) IA interfa
e and the external�at surfa
e bounding the WSF (more a

urately, tothe density of the free energy of the WSF with theequilibrium thi
kness h).We note that the long-range �repulsive� potentialVMikh(h) 
oin
ides with the limit of the �hydrody-nami
� Mikheev intera
tion (in the limit 
IA � C33�0,
ext � C33�0, where 
ext is the sti�ness of the exter-nal boundary of the WSF; see Se
s. 2, 7) arising due todimensional s
reening of the elasti
 sme
ti
 modes [9℄,whi
h 
on�rms the 
orre
tness of the boundary 
ondi-tions imposed in Se
. 2. We also note that the potentialVMikh(h) 
oin
ides with the 
ontribution to the freeenergy density of the sme
ti
 �lm obtained in [17℄ forasymmetri
 boundary 
onditions at the surfa
es bound-ing this �lm. In turn, the asymmetri
 boundary 
ondi-tions agree with the boundary 
onditions imposed forthe WSF in Se
. 2.6. OBTAINING H
orr. LOCAL ANDNONLOCAL CORRECTIONSThe additional 
ontribution to the e�e
tive Hamil-tonian 
aused by thermal displa
ements of the IA in-terfa
e 
an be evaluated approximately by expandingin powers of the �u
tuation displa
ements Æh(x) of theIA interfa
e.The evaluation of H
orr from Eq. (24) is su�
ientlytedious. For this reason, the details of the 
al
ulationare given in Appendix B. The result is in (B.20).Integrating over the relative variables v1 � y andv2 � x in (B.20) and using the identityÆh(x)Æh(y) = (1=2) �Æh2(x)+Æh2(y)�(Æh(y)�Æh(x))2�;it is possible to de
ompose H
orr into lo
al and nonlo-
al 
ontributions.The lo
al 
ontribution is given by

H(lo
)
orr = Z d2y Æh2(y)hkBT2 Z d2k(2�)2 �� n� 14D0(k) � ��h eG(k; h)�� �3�h3 eG(k; h)��� �� ��h eG(k; h)�2� eG(k; 0)� �2�z2 eG(k; z)�z=0 ��� 116D20(k) � �2�h2 eG(k; h)�2oi: (30)We note that the expression in square bra
kets in (30) isa �u
tuation-indu
ed 
orre
tion to the gap of the modeÆh. Inserting (A.1), (A.2), and (B.11) in (30) and ex-tending the integration over k from 0 to 1 (using thefast 
onvergen
e of integrals due to the presen
e of ade
reasing exponential), we �ndH(lo
)
orr = kBT16� �(2)�0 h3 Z d2y Æh2(y)2 : (31)It is important that if we formally keep the termlinear in Æh(y) in A(k;k) given by (B.19), then thefollowing additional 
ontribution to the lo
al part ofH(lo
)
orr formally appears:� kBT2 Z d2k(2�)2 12D0(k) � ��h eG(k; h)���� �2�h2 eG(k; h)�Z d2y Æh(y) == �kBT32� �(2)�0 h2 Z d2y Æh(y): (32)Expressions (31) and (32) de�ne �rst-order and se
ond-order 
orre
tions of the Æh(y)-expansion of the 
ontri-bution to Vint(h(y)) following from taking the thermaldispla
ements of sme
ti
 layers into a

ount. There-fore, we 
an formally 
ombine the essential ther-mal �elasti
� 
orre
tions VMikh(h), V 0Mikh(h)Æh(y), and(1=2)V 00Mikh(h)Æh2(y) to Vint(h(y)) into the total �lo-
al� long-range thermal �elasti
� potential of the repul-sion of the distorted IA interfa
e from the �at boundingsurfa
e and regard these 
orre
tions as the �rst termsof its expansion:V (lo
)Mikh(h+ Æh(y)) = kBT32� �(2)�0 h(y) � VMikh(h) ++ V 0Mikh(h)Æh(y) + 12V 00Mikh(h)Æh2(y): (33)Combining (31) and (32) with (28), we obtain the fol-lowing expression for the 
orresponding lo
al 
ontribu-tion to interfa
e Hamiltonian (1):1028
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� �u
tuation-indu
ed e�e
ts : : :H(lo
)Mikh[h(y)℄ = Z d2y V (lo
)Mikh(h+ Æh(y)) == Z d2y kBT32� �(2)�0 h(y) : (34)The nonlo
al 
ontribution to H
orr is also unwieldyand is therefore given in Appendix B (see (B.21)). It isobvious that in the 
ase of weak nonlo
ality, when theexpansionÆh(x) � Æh(y) + (ryÆh(y)) (x � y)is valid, nonlo
al 
ontribution (B.21) des
ribes the o
-
urren
e of an �elasti
� �u
tuation-indu
ed 
orre
tionÆ
el to the sti�ness of the IA interfa
e:H(nonlo
)
orr [Æh(y)℄ � Z d2y Æ
el (rÆh(y))22 ; (35)whereÆ
el = kBT2 Z d2x(y � x)2 �� �Z k dk2� J0(kjy � xj) (�0k2)3 �� Z q dq2� J0(qjy � xj) 11 + exp(�2�0q2h) 2�0q2 ++�Z q dq2� J0(qjy � xj)�0q2 exp(�2�0q2h)1 + exp(�2�0q2h)�2 �� Z q dq2� J0(qjy � xj) (�0q2)2 exp(��0q2h)1 + exp(�2�0q2h) �� Z k dk2� J0(kjy � xj) exp(��0k2h)1 + exp(�2�0k2h)� : (36)Expression (36) is a �u
tuation 
orre
tion to the sti�-ness of the 
apillary mode Æh, that is, to the sti�nessof the IA interfa
e 
aused by thermal displa
ementsof sme
ti
 layers in WSF. It is obvious that integralsover the wave ve
tor in the �rst term in the squarebra
kets in (36) are de�ned by the 
uto� parametersof these integrals and the 
orresponding 
ontributionto Æ
el is traditionally (see [27℄) in
luded into a rede-�ned sti�ness of the IA interfa
e. But the other twoterms in (36) give an h-depended (dimensional) 
orre
-tion to the sti�ness of the 
apillary mode Æh, 
aused bythermal displa
ements of sme
ti
 layers in WSF. Theintegrals over the wave ve
tor in these terms 
an be
al
ulated approximately in view of their fast 
onver-gen
e be
ause of the presen
e of the rapidly de
reasingexponential exp(��0 q2 h). Indeed, 
onsidering thatthe q . qC give the leading 
ontribution to these inte-grals, it is possible to omit the de
reasing exponentialsin the denominators. Then these integrals redu
e to

tabulated ones. Changing the variables as Q = q=qC ,� = qC jy � xj, we �nd the following expression for theh-depended 
orre
tion Æ
el(h) to the sti�ness of the IAinterfa
e:Æ
el(h) � kBT4� 1h2 �� Z �3 d�h�Z Q3 dQ exp(�2Q2)J0(Q�)�2 �� Z Q51dQ1 exp(�Q21) J0(Q1�)�� Z Q2 dQ2 exp(�Q22) J0(Q22�)i: (37)After some 
al
ulations, we haveÆ
el(h) � 564� kBTh2 : (38)We note that even in the 
ase of the simple bound-ary 
onditions for sme
ti
 �lms 
onsidered in [18; 19℄,Æ
el(h) was not 
al
ulated and the 
orresponding ana-lyti
 result was not obtained.7. CONCLUSIONIn the absen
e of experimental data 
on
erning thevalue of 
IA, it is natural to assume [8℄ that
IA � 10�1
0 � 100 erg � 
m�2; (39)where 
0 is the sti�ness of the free surfa
e of WSF(
0 � 30 erg�
m�2 [18℄). In parti
ular, the 
ase of rota-tor phases of the normal alkanes (para�ns) [28℄ 
on�rmsthis estimation of 
IA. For these phases, the tensionof the isotropi
 liquid�layered rotator phase interfa
e ismu
h smaller (by almost an order of magnitude) thanthe tension of the free surfa
e of molten alkanes, whi
his of the same 
hara
teristi
 value as 
0 [28℄.For a typi
al bilayer sme
ti
 LC (see [7; 20; 29℄), wehave �HIA � 108 erg � 
m�3; (40)C33 � 108 erg � 
m�3: (41)The fa
t that �HIA and C33 are of the same order indi-
ates the non
riti
al 
hara
ter of the bulk IA transition.For the subsequent estimations, we use that (see [20℄)�0 � d0 � 10�7 
m: (42)In this 
ase, simple analysis shows that inequality(2) is satis�ed in pra
ti
e. For TIA � 300 K, 
orre
-tion (38) to the initial sti�ness of the IA interfa
e 
IAturns out to be negligibly small (Æ
el(h) � 
IA) evenfor h � d0:1029
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el(h) � 10�2�10�1 erg � 
m�2: (43)Thus, having generalized the �eld theory ap-proa
h [18; 19℄ to the 
ase of a WSF, we have obtainedthat under 
ondition (2), whi
h is satis�ed in pra
ti
e,and the 
ondition of strong an
horing of the surfa
esme
ti
 layer and the external bounding surfa
e, ta-king the elasti
 thermal displa
ements of the sme
ti
layers in the WSF into a

ount redu
es to adding two
ontributions, H(lo
)Mikh[h(y)℄ and H(nonlo
)
orr [h(y)℄, to thee�e
tive Hamiltonian of the IA interfa
e (1). This, a
-
ordingly, leads to adding the potential of long-ran-ge repulsion of the IA interfa
e from the �at boun-ding surfa
e V (lo
)Mikh(h(y)) to the WSF interfa
e poten-tial Vint(h(y)) and to the o

urren
e of the 
orre
tionÆ
el(h) to the sti�ness of the IA interfa
e.These 
on
lusions are also valid in the 
ase of wet-ting by the sme
ti
 A phase of a free surfa
e of a sme
-ti
 LC under the 
ondition of strong an
horing of thisbounding surfa
e and the adjoining sme
ti
 layer andwith the 
ondition 
0 > C33�0, whi
h is ne
essary forpreserving the repulsive 
hara
ter of the Mikheev in-tera
tion [9℄, imposed in addition to (2). The �rst 
on-dition is apparently always satis�ed, by parti
ular, byvirtue of 
learly distinguishable steps at the surfa
e ofa drop of sme
ti
 A [30; 31℄. Ful�llment of the se
ond
ondition is also 
on�rmed experimentally (see [32℄).It is interesting to note that �elasti
� �u
tuation-indu
ed long-range repulsion (33) is most dangerousin the limit of large h (h & 10d0 [8℄) and providesthe 
omplete sme
ti
 wetting in the absen
e of layer-ing transitions independently of the sign of the long-range van der Waals intera
tion 
onstant. We re
allthat the so-
alled �os
illatory� regular regime of sme
-ti
 wetting is typi
al of the bulk IA transition in 
losevi
inity of a triple INA point [3; 5; 6; 34; 35℄ and o

ursjust above the temperature of su
h bulk IA-transitions,when the potential of the pinning of the IA interfa
eat the positions of the sme
ti
 layers in Vint(h) is notsu�
ient and layering transitions are absent [8℄. Inthis regime, the WSF equilibrium thi
kness growths
ontinuously, weakly os
illating relative to its averagetemperature dependen
e [8℄. The growth of the WSFthi
kness is dire
tly registered by ellipsometri
 studyof the free surfa
e of the sme
ti
 LC above the bulkIA transition [4; 5; 33℄ or veri�ed by �tting the X-rayre�e
tivity from the WSF using the model mass den-sity pro�le [3; 6; 34; 35℄. Thus, for the IA transitionsmentioned above, the sme
ti
 wetting is found to be
omplete within the experimental a

ura
y [5; 34℄. Inthis 
ase, in the limit of large WSF thi
kness, the devi-ation of the temperature positions of the layering tran-

sitions from equidistant on a logarithmi
 temperatures
ale in the layering regime or the deviation of the tem-perature positions of the in�e
tion points of the WSFthi
kness temperature dependen
e in the �os
illatory�regime is experimentally observed [4; 5; 33℄. These de-viations 
orrespond to a de
rease in the temperatureintervals between these positions [4; 5; 33℄ and 
on�rmthe o

urren
e in the system of the long-range repul-sion of the IA interfa
e from the external wetted sur-fa
e in addition to the short-range repulsion. More-over, the temperature dependen
e of the average WSFthi
kness in the limit of large h does not 
oin
ide witheither the logarithmi
 or the power law 
aused by thelong-range van der Waals intera
tion temperature de-penden
es [4; 5; 33℄.Unfortunately, the temperature dependen
e of theaverage WSF thi
kness still was not �tted using boththe logarithmi
 and power-law temperature depen-den
es 
aused by long-range intera
tion (33). Su
h astudy of the WSF for the bulk IA transitions in the
lose vi
inity of a triple INA point or in the 
ase ofa large �nite WSF thi
kness in the sme
ti
 layeringregime (whi
h is typi
al, e.g., of the homologues of then.O.6-series with n � 18 [4; 5℄), using the results in [8℄,would be an additional 
on�rmation of the o

urren
eof long-range intera
tion (33) in the system and a dire
texperimental observation of the �elasti
� �u
tuation-indu
ed long-range repulsion of the IA interfa
e fromthe external wetted surfa
e.Presently, be
ause of the absen
e in [4; 5; 33℄ of thetemperature dependen
e of the WSF thi
kness tabu-lated data for di�erent sme
ti
 homologues and theWSF thi
kness tabulated data for h & 10d0 in parti
-ular, only some qualitative estimations 
on�rming thisstatement 
an be made. Using the results in [8℄ and iso-lating the smooth part V0(h) of the interfa
ial potentialVint(h), it is not di�
ult to derive an equation for thetemperature dependen
e of the average WSF thi
knessh0(t) taking intera
tion (33) into a

ount (V 00h = 0):t = A exp��h0�C�+ 1�HIA kBT�R(2)32��0 h20 ; (44)where t = (T � TIA)=TIA is the redu
ed deviation ofthe temperature T from the temperature of the bulk IAphase transition (t � 0), �C is the 
orrelation length inthe bulk sme
ti
 A phase, and A is the redu
ed ampli-tude of the short-range repulsive intera
tion (A > 0).Equation (44) determines the inverse dependen
e ofh0(t), and hen
e plotting h0(t) with the given valuesof the 
onstants is trivial [8℄. Choosing three pointsfrom seven points of the WSF thi
kness temperaturedependen
e presented in Fig. 4 in [4℄ (h & 10 d0) for1030
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� �u
tuation-indu
ed e�e
ts : : :
ompound 18.O.6 (TIA = 359:88 K [4℄) within thea

ura
y a

eptable in [4℄, f(t1 = 0:000152778, h1 == 26�10�7 
m), (t2 = 0:0000694444, h2 = 30�10�7 
m),(t3 = 0:0000263889, h3 = 34�10�7 
m)g, we obtain thatthese points are des
ribed by Eq. (44) withA � 0:0455 and �C � 4:5 � 10�7 
m; (45)whi
h is in agreement with the estimations A � 10�2�10�1 and q0�C � 10 obtained in [8℄ in the analysis ofthe data in [1�7; 33�35℄, where q0 = 2�=d0 is the wavenumber of the bulk sme
ti
 latti
e. We note that fromthe analysis of Eq. (44), it is easy to obtain the esti-mation h & 10d0 for the WSF thi
kness, for whi
h it isne
essary to take the long-range �elasti
� �u
tuation-indu
ed intera
tion (33) into a

ount in addition to theshort-range intera
tion in the WSF interfa
ial poten-tial.We also note that the 
on
lusion in Se
. 5 thatthe roughening �u
tuations of the IA interfa
e shouldbe understood as �u
tuations of the thermal 
apillarymode Æh, allows us to de�ne the Fourier transform ofthe two-point 
orrelator of the relative thermal dis-pla
ements of the IA interfa
e 
 k �k� within the in-terfa
e model dis
ussed:
 k �k� � 
hkh�k� �� kBTV 00int(h) + V 00Mikh(h) + (
IA + Æ
el(h))k2 : (46)This Fourier transform (46) of the two-point 
orre-lator, in parti
ular, de�nes the intensity of light s
at-tered by a free LC surfa
e in the presen
e of WSFin the experiments similar to those in [36℄ and stru
-ture fa
tors related to the redu
ed X-ray re�e
tivityboth from the free LC surfa
e in the presen
e of WSF(see, e.g., [1�3; 8; 28; 35℄) and from the WSF wetting aspe
ially treated solid substrate (see [6; 7℄). We takeinto a

ount that in the 
ase of large WSF thi
knessin the regime without layering transitions just abovethe bulk IA-transitions in a 
lose vi
inity of the tripleINA point, the terms V 00Mikh(h) and (
IA + Æ
el(h))k2be
ome the leading terms in the denominator of the
orrelator 
hkh�k�. In this 
ase, from the simulta-neous �tting of the intensity of light s
attered by therelative 
apillary displa
ements of the IA interfa
e sim-ilar to [36℄ and of the X-ray re�e
tivity from the WSFsimilar to [1�3; 6; 8; 28; 35℄ for the same LC 
ompound,it would be possible to experimentally determine thevalue of 
IA and to derive the dependen
es V 00Mikh(h)and Æ
el(h) for 
omparison with the results obtained inthis paper. Su
h experiments would also be the dire
tstudy of the �elasti
� �u
tuation-indu
ed e�e
ts in the

WSF, but it is important for this study that expres-sions for the stru
tural fa
tors used in [1; 2℄ have to be
al
ulated more a

urately [8℄. In addition, with simi-lar resear
h goals, similar experiments may be 
arriedout for the �lms of di�erent 
orrelated liquids.To summarize, we note that the 
onsideredfun
tional-integral method allows simplifying the 
al-
ulation of the �u
tuation-indu
ed intera
tions in thebounded systems and 
arrying out these 
al
ulations inthe same way for various 
orrelated liquids with quiteeasily implemented boundary 
onditions on �rough�bounding surfa
es.I thank V. E. Podnek for the useful and inter-esting dis
ussions that stimulated my thinking duringthe work. I also thank E. E. Gorodetsky, E. I. Kats,V. V. Lebedev, and S. A. Pikin for the interesting anduseful dis
ussions, and interest in our joint work [8℄ andin this work in parti
ular.APPENDIX AIn this appendix, we give details of the derivationof the e�e
tive Hamiltonian Hflat des
ribing the �elas-ti
� �u
tuation-indu
ed intera
tion between the unper-turbed (�at) IA interfa
e and a �at external surfa
ebounding the WSF, de�ned by (23). It is obvious thatthese 
al
ulations require �nding the determinant offM0. For obtaining the Fourier transform of the matrixM0(x;y), we use (14) to de�ne the two-dimensionalFourier transformation of the 
orrelation fun
tions o
-
urring in (20) and �nd their Fourier transforms aseG(q; 0) = Z d2� exp(�iq ��) eG(�; 0) == kBTC33 12�0 q2 ; (A.1)eG(q; h) = Z d2� exp(�iq ��) eG(�; h) == kBTC33 exp(��0 q2 h)2�0 q2 ; (A.2)where � = y�x and the tilde spe
i�es the two-dimen-sional Fourier transformation.Using (A.1) and (A.2), we then obtain the Fourier-transformed matrix M0:fM0(k) == 12 0BB� eG(k; 0) ��h eG(k; h)��h eG(k; h) � �2�z2 eG(k; z)jz=0 1CCA : (A.3)1031
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ity, we pass to the dis
rete wave ve
-tor notation ki. Ea
h blo
k in expression (A.3) should then be understood as an in�nite-dimensional matrix,namely:
fM0(k) = 12

0BBBBBBBBBBBBBBBBB�
eG(k1; 0) 0 : : : ��h eG(k1; h) 0 : : :0 eG(k2; 0) : : : 0 ��h eG(k2; h) : : :... ... ... ... ... ...��h eG(k1; h) 0 : : : � �2�z2 eG(k1; z)jz=0 0 : : :0 ��h eG(k2; h) : : : 0 � �2�z2 eG(k2; z)jz=0 : : :... ... ... ... ... ...

1CCCCCCCCCCCCCCCCCA (A.4)
To simplify the de�nition of Hflat, after an even number of rearrangements and substitution of the Fouriertransforms of 
orrelation fun
tions (A.1) and (A.2), the matrix fM0(k) takes the simple formfM0(k) = 12 kBTC33 �

�
0BBBBBBBBBBBBBBBBBBB�

: : : 0 0 0 0 00 12�0 k2i �12 exp(��0k2i h) 0 0 00 �12 exp(��0k2i h) ��0 k2i2 0 0 00 0 0 12�0 k2i+1 �12 exp(��0k2i+1h) 00 0 0 �12 exp(��0k2i+1h) ��0 k2i+12 00 0 0 0 0 : : :
1CCCCCCCCCCCCCCCCCCCA : (A.5)

Then the determinant of fM0 is easily 
al
ulated asDet fM0 =Yi �12 kBTC33 �2�� 14 h1 + exp(�2�0 k2i h) i: (A.6)Substituting (A.6) in (23) and passing from summa-tion over ki to integration, it is easy to �nd the di-mensional h-depended 
ontribution to Hflat, given byexpression (28). APPENDIX BIn this appendix, we give details of the derivation ofthe e�e
tive Hamiltonian H
orr de�ned by (24). ThisHamiltonian is an additional 
ontribution to the e�e
-

tive Hamiltonian, 
aused by thermal displa
ements ofthe IA interfa
e.To obtain an expli
it expression for the matrixÆM(x;y), we expand the 
orrelation fun
tions andtheir derivatives appearing in (18) in powers of smallÆh(x) through the se
ond order:G(y�x; h+Æh(y)) = G(y�x; h)+�G�z (y�x; h)Æh(y)++ 12 �2G�z2 (y � x; h) Æh2(y); (B.1)��zG(y � x; h+ Æh(y)) = ��zG(y � x; h) ++ �2�z2G(y � x; h)Æh(y) ++ 12 �3�z3G(y � x; h)Æh2(y); (B.2)1032
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� �u
tuation-indu
ed e�e
ts : : :�2�z2G(y � x; Æh(y) � Æh(x)) = �2�z2G(y � x; 0) ++ 12 �4�z4G(y � x; 0) (Æh(y)� Æh(x))2: (B.3)In (B.3), the term linear in (Æh(y)�Æh(x)) is identi
allyequal to zero, as 
an be easily veri�ed using represen-tation (14).By analogy with [18; 19℄, after taking the two-dimensional Fourier transformation for the expansionsof 
orrelation fun
tions (B.1)�(B.3), we obtainÆfM(k;q) = 12  0 A(k;q)A(q;k) B(k;q) ! ; (B.4)whereA(k;q) = Z d2x Z d2y exp(�ik � y) �� exp(iq � x) �2�h2 G(y � x; h)Æh(y) ++ 12 Z d2x Z d2y exp(�ik � y) exp(iq � x)�� �3�h3 G(y � x; h)Æh2(y); (B.5)B(k;q) = �12 Z d2x Z d2y exp(�ik �y) exp(iq �x)��� �4�z4 G(y � x; z)�z=0 (Æh(y) � Æh(x))2: (B.6)

For simpli
ity of the 
al
ulation, we setW = 1 + fM�10 ÆfM: (B.7)Then H
orr is written asH
orr = kBT2 lnDetW: (B.8)Inverting the matrix fM0 using (A.4) results infM�10 (k) = 12D0(k) ��0BB�� �2�z2 eG(k; z)jz=0 � ��h eG(k; h)� ��h eG(k; h) eG(k; 0) 1CCA ; (B.9)whereD0(k) = 14  � �2�z2 eG(k; z)jz=0 eG(k; 0) �� � ��h eG(k; h)�2! ; (B.10)and substitution of (A.1) and (A.2) in (B.10) yieldsD0(k) = ��12 kBTC33 �2 14 �1+exp(�2�0 k2 h) �: (B.11)Substituting (B.4) and (B.11) in (B.7), we obtain
W (k;q) = 0BB� 1� a ��h eG(k; h)A(k;q) �a �2�z2 eG(k; z)z=0A(k;q) � a ��h eG(k; h)B(k;q)a eG(k; 0)A(k;q) 1� a ��h eG(k; h)A(k;q) + a eG(k; 0)B(k;q) 1CCA ; (B.12)a = 14D0(k) ;where dis
rete representation of this matrix and its elements in wave ve
tors ki are given below.In the dis
rete wave ve
tor notation ki(ki = qi), ea
h blo
k in the matrix ÆfM(k;q) in (B.4) should also beunderstood as an in�nite-dimensional matrix, namely:

ÆfM(k;q) = 12 0BBBBBBBBBB�
0 0 : : : A(k1;k1) A(k1;q2) : : :0 0 : : : A(k2;q1) A(k2;k2) : : :... ... ... ... ... ...A(q1;q1) A(q1;k2) : : : B(k1;k1) B(k1;q2) : : :A(q2;k1) A(q2;q2) : : : B(k2;q1) B(k2;k2) : : :... ... ... ... ... ...

1CCCCCCCCCCA : (B.13)
1033
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rete wave ve
tor notation ki, from (A.9) we obtainfM�10 (k) = 12Qi D0(ki) �
�
0BBBBBBBBBBBBBBBBBBB�
� �2�z2 eG(k1; z)z=0 0 : : : � ��h eG(k1; h) 0 : : :0 � �2�z2 eG(k2; z)z=0 : : : 0 � ��h eG(k2; h) : : :... ... ... ... ... ...� ��h eG(k1; h) 0 : : : eG(k1; 0) 0 : : :0 � ��h eG(k2; h) : : : 0 eG(k2; 0) : : :... ... ... ... ... ...

1CCCCCCCCCCCCCCCCCCCA : (B.14)
After substitution of (B.13) and (B.14) in (B.7), we �nd in the dis
rete wave ve
tor notation ki that ea
hblo
k of the matrix W (k;q) is given byW11(k;q) = 2666666641� 14D0(k1) ��h eG(k1; h)A(k1;k1) � 14D0(k1) ��h eG(k1; h)A(k1;q2) : : :� 14D0(k2) ��h eG(k2; h)A(k2;q1) 1� 14D0(k2) ��h eG(k2; h)A(k2;k2) : : :... ... ...

377777775 ; (B.15)
W12(k;q) = 2666664� 
114D0(k1) � 
124D0(k1) : : :� 
214D0(k2) � 
224D0(k2) : : :... ... ...

3777775 ; (B.16)
11 = �2�z2 eG(k1; z)z=0A(k1;k1) + ��h eG(k1; h)B(k1;k1);
12 = �2�z2 eG(k1; z)z=0A(k1;q2) + ��h eG(k1; h)B(k1;q2);
21 = �2�z2 eG(k2; z)z=0A(k2;q1) + ��h eG(k2; h)B(k2;q1);
22 = �2�z2 eG(k2; z)z=0A(k2;k2) + ��h eG(k2; h)B(k2;k2);W21(k;q) = 266666664 14D0(k1) eG(k1; 0)A(k1;k1) 14D0(k1) eG(k1; 0)A(k1;q2) : : :14D0(k2) eG(k2; 0)A(k2;q1) 14D0(k2) eG(k2; 0)A(k2;k2) : : :... ... ...
377777775 ; (B.17)
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� �u
tuation-indu
ed e�e
ts : : :W22(k;q) == 266666641 + s114D0(k1) s124D0(k1) : : :s214D0(k2) 1 + s224D0(k2) : : :... ... ...
37777775 ; (B.18)

s11 = � ��h eG(k1; h)A(k1;k1) + eG(k1; 0)B(k1;k1);s12 = � ��h eG(k1; h)A(k1;q2) + eG(k1; 0)B(k1;q2);s21 = � ��h eG(k2; h)A(k2;q1) + eG(k2; 0)B(k2;q1);s22 = � ��h eG(k2; h)A(k2;k2) + eG(k2; 0)B(k2;k2):For the 
al
ulations in what follows, we note thatdue to the 
ondition R d2x Æh(x) = 0, the term lin-ear in Æh(x) disappears in A(k;k). That is essentialfor the 
hosen quadrati
 approximation. Using (B.12)and (B.15)�(B.18), we 
an also obtain the expansionof DetW through the se
ond order in small �u
tuationdispla
ements of the IA interfa
e Æh(x):DetW == 1+Xk 8><>: eG(k; 0)B(k;k)4D0(k) �2 ��h eG(k; h)A(k;k)4D0(k) 9>=>;�� Xk;q (q6=k)8><>: ��h eG(k; h)A(k;q)4D0(k) ��h eG(q; h)A(q;k)4D0(q) 9>=>;++ Xk;q(q6=k)( eG(k; 0)A(k;q)4D0(k) �� �2�z2 eG(q; z)z=0A(q;k)4D0(q) 9>=>; : (B.19)Substituting (B.19) in (B.8), expanding the loga-rithm in Æh(x) through the se
ond order, passing fromsummation over ki to integration, and using expres-sions (B.5) and (B.6), we obtain

H
orr = kBT2 hZ d2k(2�)2 ZZ d2x d2y ��n� eG(k; 0)4D0(k) exp(�ik�(y�x))� �4�z4 G(y�x; z)�z=0�� (Æh(y) � Æh(x))22 � 2 ��h eG(k; h)4D0(k) �� exp(�ik � (y�x)) �3�h3G(y�x; h)Æh2(y)2 o�� Z d2k(2�)2 Z d2q(2�)2n ��h eG(k; h) ��h eG(q; h)�� eG(k; 0)� �2�z2 eG(q; z)�z=0o 116D0(k)D0(q) �� ZZ d2y d2v1 exp(iq�y�ik�v1) �2�h2G(v1�y; h)Æh(y)�� ZZ d2x d2v2 exp(ik � x� iq � v2)�� �2�h2 G(v2 � x; h)Æh(x)i: (B.20)After performing the integration over the relativevariables v1 � y and v2 � x in the general expressionfor H
orr in (B.9) and using the identityÆh(x)Æh(y) = 12�Æh2(x)+Æh2(y)�(Æh(y)�Æh(x))2�;it is possible to de
ompose H
orr into the lo
al andnonlo
al 
ontributions dis
ussed in the main text.In parti
ular, the nonlo
al 
ontribution to H
orr isgiven byH(nonlo
)
orr = kBT2 ZZ d2x d2y (Æh(y)� Æh(x))22 �� h�� �4�z4 G(y � x; z)�z=0�1(y � x) + �22(y � x)�� �3(y � x) �4(y � x)i; (B.21)where1035



E. S. Pikina ÆÝÒÔ, òîì 136, âûï. 5 (11), 2009�1(y � x) = Z d2q(2�)2 eG(q; 0)4D0(q) �� exp(�iq � (y � x));�2(y � x) = Z d2q(2�)2 ��h eG(q; h)�� �2�h2 eG(q; h)exp �iq � (y � x)�4D0(q) ;�3(y � x) = Z d2q(2�)2 �2�h2 eG(q; h)��� �2�z2 eG(q; z)�z=0 exp �iq � (y � x)�4D0(q) ;�4(y � x) = Z d2k(2�)2 eG(k; 0) �2�h2 eG(k; h)�� exp �� ik � (y � x)�4D0(q) :
(B.22)
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