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�ERENKOV RADIATION OF A SPINNING PARTICLEI. B. Khriplovih *Budker Institute of Nulear PhysisSiberian Branh of Russian Aademy of Sienes630090, Novosibirsk, RussiaNovosibirsk University630090, Novosibirsk, RussiaReeived August 11, 2008We onsider the �erenkov radiation of a neutral partile with magneti moment, and the spin-dependent on-tribution to the �erenkov radiation of a harged spinning partile. The orresponding radiation intensity isobtained for an arbitrary value of spin and for an arbitrary spin orientation with respet to veloity.PACS: 01.55.+b, 41.60.Bq1. The problem of �erenkov radiation of a neutralpartile with magneti moment, moving in a mediumwith the refrative index n with a veloity v > =n,was onsidered previously in Refs. [1�6℄. The mag-neti dipole was modeled therein lassially, either bya loop with a urrent or by a magneti monopole�antimonopole pair. The results thus obtained arerather model dependent, and the onlusion made inRef. [6℄ is that the situation with the problem of�erenkov radiation by a magneti moment is not en-tirely lear.In the present work, the problem is addressed asfollows. A spinning partile, harged or neutral, withmagneti moment is treated as a point-like partile,i. e., is desribed by a well-loalized wave paket. Asregards the spin s, it has an arbitrary half-integer orinteger value, starting with s = 1=2. In partiular, inthe limit s � 1, we arrive at the lassial internal an-gular momentum and lassial magneti moment. Theresult obtained below for a neutral partile with mag-neti moment di�ers onsiderably from all the previousones. As regards the spin-dependent ontribution tothe �erenkov radiation of a harged partile, the au-thor is not aware of any previous results for it.Certainly, the e�ets analyzed here are tiny, toosmall perhaps to be observed experimentally. Hope-fully, however, their investigation is of some theoretialinterest.*E-mail: khriplovih�inp.nsk.su

2. We start with the eletri and magneti �eldsreated by a point-like neutral partile with the mag-neti moment esg2m = esg2m�;here and below, g is the g-fator, and � = s=s. Ofourse, for s = 1=2, vetor � onsists of the ommonspin �-matries, and in the lassial limit s � 1, � isjust a unit vetor direted along s. In the partile restframe, the four-dimensional urrent density isj(rf)� = (0; j(rf)) = esg2m �0;r� �(rf)� Æ(r(rf)): (1)In the laboratory frame, in whih we are working, thisLorentz-transformed urrent is formally given byj� = �v(n � j(rf)); j(rf)�n(n � j(rf))+n(n � j(rf))� ; = 1=p1� v2; n = v=v(we set  = 1 throughout). Now, we have to pass inj(rf) from the rest-frame oordinates r(rf) to the labo-ratory ones: r(rf) = ((x� vt); y; z) :Under this Lorentz transformation,Æ(r(rf)) = Æ((x� vt))Æ(y)Æ(z) == 1 Æ(x� vt)Æ(y)Æ(z) = 1 Æ(r� vt):51 4*



I. B. Khriplovih ÆÝÒÔ, òîì 135, âûï. 1, 2009Besides the overall fator 1=, the omponents of gra-dient transform obviously as follows:r(rf)x Æ(r� vt) = 1rxÆ(r� vt);r(rf)y;z Æ(r� vt) = ry;zÆ(r� vt):The spin operators �(rf), also entering j(rf), transformthe same as j(rf) itself:� = (�x; �y ; �z) = �(rf)�n(n��(rf))+n(n��(rf)) == (�(rf)x ; �(rf)y ; �(rf)z );or �(rf)x = 1 �x; �(rf)y;z = �y;z:Therefore, in the laboratory frame, the four-dimen-sional urrent density reated by the magneti moment(esg=2m)� is1)jg�(r; t) = esg2m �(�vr); (1�v2)r� �+v(�vr)� �� Æ(r � vt): (2)We note that this 4-urrent density, as well as the ini-tial rest-frame one (1), is orthogonal to the 4-veloityu�: u�j� = 0: This is an extra hek of the above trans-formations. We note also that the urrent density (2)an be onveniently rewritten as the sum of two four-urrents, eah of them being onserved separately:j1g� (r; t) = esg2m (�vr) (1;v) Æ(r � vt); (3)j2g� (r; t) = esg2m (1� v2) (0;r� �) Æ(r� vt): (4)We are interested in the bak-reation of the �eldreated by urrent (2) on the spin of the partile. Thisinteration isHg = Z drjg�(r� vt)A�(r) == esg2m� �H�  + 1 v(v �H)� v �E� ; (5)where both �eld strengths, H and E, are taken at thepoint of spin loation r = vt. This is the usual inter-ation of the magneti moment of a relativisti neutralpartile with an external eletromagneti �eld. In the1) Here and below, (�vr) = � � [v �r℄ = [� � v℄ � r, et.

�nal expression, we atually omitted a term propor-tional to the total derivative of the vetor potential,dAdt = �A�t + (v � r)A;beause a total time derivative in interation does notresult in any observable e�ets. Moreover, in thepresent ase, the vetor potential A, together with theurrent reating it, depends on the ombination r� vtonly, and therefore this total derivative vanishes iden-tially.This line of reasoning is generalized easily to thease of a harged partile. For this, we supplement spinurrent (2) with the following, also onserved, ontri-bution:jth� (r; t) = �esm  + 1(�vr) (1;v) Æ(r� vt): (6)In its turn, this urrent generates one more ontribu-tion to the spin interation with the eletromagneti�eld:Hth = Z drjth� (r� vt)A�(r) = esm� ����1�1�H�  + 1 v(v �H)� +1v �E� ; (7)whih desribes the well-known Thomas preession. Inthis expression, by the same reasons as above, we alsoomitted a term proportional to the total derivativedA=dt. Finally, from now on, we work with the totalinterationH = Hg +Hth = � es2m� ��g � 2 + 2�H �� (g � 2)  + 1 v(v �H)��g � 2 + 1�v �E� (8)and the total spin urrentj�(r; t) = jg�(r; t) + jth� (r; t) = es2m ����g � 2 + 1� (�vr) (1;v) ++ g(1� v2) (0;r� �)� Æ(r� vt): (9)Hamiltonian (8) not only generates the spin pre-ession, inluding of ourse the Thomas e�et. It alsoprodues the relativisti Stern�Gerlah foreF = �rH: (10)52



ÆÝÒÔ, òîì 135, âûï. 1, 2009 �erenkov radiation of a spinning partileObviously, this fore results in the energy loss andtherefore is antiparallel to the veloity v of the spin-ning partile. Thus, the energy loss per unit time, orthe (positive) radiation intensity, isI = �F � v = (v � r)H: (11)We note here that the �eld strengths H and E, be-ing reated by the urrent density j�(r; t), depend onthe nonommuting operators �. Therefore, to guar-antee that expression (11) is Hermitian, we should,stritly speaking, properly symmetrize the produts of�-operators therein. In fat, however, the �nal result(see (21) below) proves to be Hermitian automatially,without extra e�ort.3. The derivation in this setion, resulting in gen-eral expression (21) (see below) for the spetral inten-sity, essentially follows that used in Ref. [7℄ in the prob-lem of the usual �erenkov radiation.We alulate the radiation intensity by passingto the Fourier transforms Hk and Ek of the �eldstrengths, de�ned as follows:H(r� vt) = Z d3k exp(ik � (r� vt))Hk;E(r� vt) = Z d3k exp(ik � (r� vt))Ek:For our purpose, the wave vetors k are onvenientlydeomposed into the omponents parallel to the velo-ity v and orthogonal to it:k = q+ n!=v; ! = kv; (q � v) = 0:At the position of the point-like soure, we then have(vr)H(r = vt) = Z d3k i!Hk == �1v Z d2q 1Z�1 d! !k�Ak; (12)

(vr)E(r = vt) = Z d3ki!Ek == �1v Z d2q 1Z�1 d!!(!Ak � k�k); (13)where �k and Ak are the Fourier transforms of theeletromagneti salar and vetor potentials.In the generalized Lorenz gaugedivA+ �"̂��t = 0;the wave equations for potentials are"̂���� "̂ �2��t2 � = �4�j0(r� vt) == �4� es2m �g � 2 + 1� (�vr)Æ(r � vt); (14)�A� "̂ �2A�t2 = �4�j(r� vt) = �4� es2m ����g � 2 + 1� (�vr)v + g(1� v2)r� ���� Æ(r� vt); (15)where the �dieletri onstant� "̂ should be understoodas an operator; below, we use its Fourier transform"(!). As regards the permeability �(!), it an be putequal to unity for the frequenies of interest to us.For the Fourier transforms of the potentials, we nowobtain�k = i2�2 1"(!) es2m �g � 2 + 1� (vk�)k2 � "(!)!2 == i2�2 1"(!) es2m �g � 2 + 1��� (vq�)q2 � ["(!)� 1=v2℄!2 ; (16)Ak = i2�2 es2m g(1� v2)[k� �℄ + (g � 2=( + 1))v(vk�)k2 � "(!)!2 == i2�2 es2m g(1� v2)[(q+ n!=v)� �℄ + (g � 2=( + 1))v(vq�)q2 � ["(!)� 1=v2℄!2 : (17)After substituting (16) and (17) in (12) and (13),we note thatZ d2q ! � Z dq2; Z d2q qm ! 0; Z d2q qmqn = 12Æmn� Z dq2q2:We also note that53



I. B. Khriplovih ÆÝÒÔ, òîì 135, âûï. 1, 20091Z�1 d! !q2q2 � ["(!)� 1=v2℄!2 == 1Z�1 d! !�1 + ["(!)� 1=v2℄!2q2 � ["(!)� 1=v2℄!2� == 1Z�1 d!!3["(!)� 1=v2℄q2 � ["(!)� 1=v2℄!2 :Then the integral over q2 is onveniently ombined withthe expliit dependene on ! into the following overallfator for the spetral intensity:I(!) � f(!) == �iX!3 Z dq2q2 � ["(!)� 1=v2℄!2 : (18)The symbolP in this expression means that we shouldsum over the signs of the frequeny: both ! = +j!j and! = �j!j ontribute to the intensity I(!). All other de-pendene of the total result on ! is via "(!) only; in ourproblem of the �erenkov radiation, we restrit ourselfto the frequenies orresponding to the transparenyregion, i. e., to real "(!), whih is an even funtion of!. We now analyze the expressionf(!) = �iX!3 Z dq2q2 � ["(!)� 1=v2℄!2entering result (18). The poles of its integrand ob-viously orrespond to the vanishing four-momentumsquared of a photon in the medium. Here, how-ever, we should retain a small imaginary part in "(!):Im "(!) > 0 for ! > 0, and Im "(!) < 0 for ! < 0. Inother words, the poles of the integrand in f(!) tend tothe real axis from above for ! > 0, and from below for! < 0. Therefore, their ontributions to the integralare i� and �i�, respetively. The real part of the in-tegral is an even funtion of ! (together with Re "(!)),and therefore its ontributions to the sum f(!) anel.Returning to the poles, their ontributions to f(!) arei�!3 and �i�(�!)3 = i�!3, where ! is positive fromnow on. Thus, f(!) = 2�!3;Quite straightforward (although rather tedious)transformations now result in the following expressionsfor (vr)H and (vr)E:

(vr)H(r = vt) = es2m !3d!2v �����? ��g � 2 + 2��"� 1v2�+ 2g2v2 � ���k g2 �"� 1v2�� ; (19)(vr)E(r = vt) = es2m !3d!2v �� ��g � 2 + 1� 1" �"� 1v2�+ 2g(1� v2) 1v2 ��� [v � �?℄; (20)here and below, �? and �k are the omponents of thevetor �, orthogonal and parallel to the veloity v.Substituting these expressions in (8) and (10), weobtain at the �nal general result for the spetral inten-sity of �erenkov radiation by a spinning partile:I(!)d! = � es2m�2 !3d!2v ("�g � 2 + 2�2 ���n2(!)� 1v2���g�2+ 2+1�2�v2� 1n2(!)�++ 2g24v2 #�2? + g23 �n2(!)� 1v2��2k) : (21)Few remarks on this result are in order.First, the formal singularity of (21) in v shouldnot worry us: anyway, �erenkov radiation ours forv � 1=n only. Seond, as distint from the om-mon �erenkov radiation, the ontribution to the energyloss due to �? does not vanish here at the thresholdv = 1=n. Finally, it is not exatly lear at �rst glanewhether the struture�g � 2 + 2�2�n2 � 1v2����g � 2 + 2 + 1�2�v2 � 1n2�+ 2g24v2 (22)at �2? is positive de�nite (as it should be for arbitrary gand !). To prove that it is, we note that the disussedquadrati funtion of g is ertainly positive de�nite asg ! 1 for v � 1=n. On the other hand, the disrimi-nant d of this quadrati form is negative de�nite:d = �4" v22 �1� 1n2v2�2 :Therefore, quadrati form (22) is indeed positive de�-nite.54



ÆÝÒÔ, òîì 135, âûï. 1, 2009 �erenkov radiation of a spinning partileOf ourse, in the ase of a harged spinning par-tile, the ommon �erenkov radiation ours as well(and is strongly dominating quantitatively). But don'twe have then some ombined e�et, a �erenkov-typeradiation of the �rst order in spin? By symmetry rea-sons, it is pratially obvious that suh an e�et shouldnot exist, but we present somewhat more quantitativearguments. The e�et ould arise due to the Lorentzfore F = e(E+ v �H);with E and H generated by spin urrent density (9).However, the magneti ontribution ev �H to the en-ergy loss �vF vanishes trivially. As regards the or-responding eletri ontribution �ev � E(r = vt) tothe energy loss, it an be demonstrated expliitly withformulas (16) and (17) that it also vanishes. Equallyexpliitly, it an be demonstrated that the ontribu-tion to the energy loss due to Stern�Gerlah fore (11),but now with H and E generated by the ommon on-vetion urrent j�(r; t) = e(1;v)Æ(r � vt), vanishes aswell.4. In onlusion, we onsider some partiular asesof general result (21).We start with a neutral partile with a �nite mag-neti moment �. As e! 0, g !1, and � = esg=2m!! onst, we obtainI(!)d! = �2!32v d! ��n2 � 1v2 � v2 ++ 1n2 + 24v2��2? + 13 �n2 � 1v2��2k� : (23)For s = 1=2 (i. e., for the Dira neutrino with a massand magneti moment), �2? = �2 � �2z = 2 and(� � n)2 = �2z = 1. Therefore, it follows from (23)thatI(!)d! = �2!3v d! ��n2 � 1v2 � v2 + 1n2� ++ 123 �n2 � 1v2�+ 24v2 � : (24)In the lassial limit s � 1, radiation intensity (23)beomesI(!)d! = �2!32v d! ��n2 � 1v2 � v2 ++ 1n2 + 24v2� sin2 � + 13 �n2 � 1v2� os2 �� ; (25)

where � is the angle between the spin and veloity.The opposite limit is that of a harged partile withthe vanishing g-fator. The e�et here is �nite and isgiven byI(!)d! = � es2m�2 2!3d!v "��1 �2�n2� 1v2� �� �  + 1�2�v2 � 1n2�#�2?: (26)We �nally mention the ase g = 2 (appliable forinstane, to an eletron if its small anomalous magnetimoment is negleted). Here,I(!)d! = � es2m�2 2!3d!v �� 12 �n2 � 1v2� �� 1( + 1)2 �v2 � 1n2�+ 24v2 ��2? ++ 13 �n2 � 1v2��2k� : (27)The author is grateful to A. A. Pomeransky for theinterest in the work and extremely useful disussions.The work was supported in part by the RFBR (grant� 08-02-00960-a). REFERENCES1. I. M. Frank, Izv. Akad. Nauk USSR, Ser. �z. 6, 3(1942).2. I. M. Frank, in To the Memory of S. I. Vavilov, Nauka,Mosow (1952), p. 172.3. V. L. Ginzburg, in To the Memory of S. I. Vavilov,Nauka, Mosow (1952), p. 193.4. V. L. Ginzburg, Izv. VUZov, radio�z. 27, 852 (1984).5. V. L. Ginzburg and V. N. Tsytovih, Transitional Ra-diation and Transitional Sattering, Nauka, Mosow(1984).6. I. M. Frank, Vavilov��erenkov Radiation. TheoretialAspets, Nauka, Mosow (1988).7. L. D. Landau and E. M. Lifshitz, Eletrodynamis ofContinuous Media, Pergamon Press, Oxford, (1989).
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