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CONTROLLING CHAOS IN A BOSE�EINSTEIN CONDENSATELOADED INTO A MOVING OPTICAL LATTICE POTENTIALZhixia Wang a;b*, Xihe Zhang b, Ke Shen baAviation University of Air Fore130022, Changhun, ChinabDepartment of Physis, Changhun University of Siene and Tehnology130022, Changhun, ChinaReeived April 8, 2008The spatial struture of a Bose�Einstein ondensate loaded into an optial lattie potential is investigated andspatially haoti distributions of the ondensates are revealed. Through hanging the s-wave sattering lengthby using a Feshbah resonane, the haoti behavior an be well ontrolled to enter into periodiity. Numerialsimulation shows that there are di�erent periodi orbits aording to di�erent s-wave sattering lengths only ifthe maximal Lyapunov exponent of the system is negative.PACS: 42.65.Sf, 37.10.Jk, 42.50.Md1. INTRODUCTIONEighty years after its predition, the Bose�Einsteinondensate (BEC) has been observed in trapped gasesof rubidium, sodium, and lithium [1℄. The mean-�eld theory (Gross�Pitaevskii (GP) equation) has beenquite suessful in quantitatively reproduing many ex-perimental observations [2℄.The realization of BEC in dilute alkali vapors hasopened the �eld of a weakly interating degenerate Bosegas. Subsequent experimental and theoretial progresshas been made in studying the properties of this newstate of matter. Several remarkable phenomena, whihstrongly resemble well-known e�ets in nonlinear op-tis, have been observed in BEC, suh as four-wavemixing, vorties, dark and bright solitons, and haos[3�12℄. In realisti experimental setting, an externaleletromagneti �eld is used to produe, trap, and ma-nipulate the BEC. In early experiments, only the har-moni potential was used, but a wide variety of poten-tials an now be onstruted experimentally. Amongthe most frequently studied both experimentally andtheoretially are periodi optial lattie potentials. Theoptial lattie is reated as a standing-wave interferenepattern of mutually oherent laser beams. With eah*E-mail: wzx2007111�126.om

lattie site oupied by one mass of alkali atoms in itsground state, the BEC in optial latties shows a num-ber of potential appliations, suh as an atomi inter-ferometer, registers for quantum omputers, an atomlaser, quantum information proessing on the nanome-ter sale, and others. Optial latties are therefore ofpartiular interest from the perspetive of both fun-damental quantum physis and its relation to applia-tions [8℄.Numerous experimental studies have on�rmedthe general validity of the time-dependent nonlinearShrödinger equation, also alled the GP equation,used to alulate the ground state and exitations ofvarious BECs of trapped alkali atoms. The dynamisof the system are desribed by a Shrödinger equationwith a nonlinear term that represents many-body inter-ations in the mean-�eld approximation. This nonlin-earity allows introduing haos into a quantum system.The existene of BEC haos has been proved and thehaos properties have also been extensively investigatedin many previous works. Naturally, haos, whih playsa role in the regularity of the system, auses instabilityof the ondensate wave funtion. The study of haosin nonlinear deterministi systems has been underwayfor many years. Besides addressing the basi questionsabout the mehanisms and the preditions of haos,however, the ability to ontrol it to a regular state is862



ÆÝÒÔ, òîì 134, âûï. 5 (11), 2008 Controlling haos in a Bose�Einstein ondensate : : :also an important subjet for the relevant studies.For the purpose of appliations, the ontrol of haosis antiipated in pratial investigations. In [13℄, theOtt�Grebogi�Yorker sheme of ontrolling haos in aBEC system was proposed. Chaos ontrol has al-ways been a widely attrative �eld sine the pioneeringwork [13℄. Controlling haos an be separated into twoategories: feedbak ontrol (ative ontrol) and non-feedbak ontrol (passive ontrol). The general methodfor feedbak ontrol is to push a system state onto astable manifold of a target orbit, that is, to stabilizethe unstable target orbits embedded within a haotiattrator. The main purpose of the present paper isto ontrol the haos into the stable states in the BECthrough hanging the s-wave sattering length by us-ing the Feshbah resonane. We an fore the systemto the stable periodi orbit.2. CONTROLLING THE CHAOS IN THE BECSYSTEMThe BEC system onsidered here is reated in aharmonially trapped potential and is then loaded intoa moving optial lattie. The 3D ombined potentialis therefore given byV (x; y; z; t1) = V1 os2(k�)+m(!2xx2+!2yy2+!2zz2)=2;where the seond term is the harmoni magneti poten-tial, with m being the atomi mass and !x, !y, !z thetrap frequenies. The periodi potential is a moving op-tial lattie with the spae�time variable � = x+Æt1=2k,where Æ is the frequeny di�erene between the twoounterpropagating laser beams and k is the laser wavevetor that determines the veloity of the traveling lat-tie as VL = Æ=2k. When the BEC is formed in theregion near the enter of the magneti trap, the mag-neti potential is muh weaker than the lattie one andan be negleted. We �nd that in the regionkpx2 + y2=2 + z2=4 � 100�;the harmoni potential is muh smaller than the lat-tie potential. Therefore, the 1D optial potentialplays the main role in the system and the quasi-1Dapproximation is valid in this region. On the otherhand, for a time-dependent lattie, the damping e�etshould be onsidered. The damping e�et aused bythe inoherent exhange of normal atoms and the �nite-temperature e�et [14�16℄ has been analyzed in detailfor the two-juntion linking of two BECs [14℄. For the

system onsidered here, it is similar to the ase of thelinear juntion linking of many BECs. Thus, a damp-ing e�et aused by similar elements or other fatorsmay also exist. With these onsiderations, the systemis governed by the quasi-1D GP equation [17℄i~(1� i�) � �t1 = � ~22m �2 �x2 ++ g0j j2 + �1 os2(k�) ; (1)where g0 = 4�~2a=m denotes the interatomi intera-tion with a being the s-wave sattering length. The asea > 0 represents a repulsive interatomi interation,and a < 0 implies the ase of attration. The parame-ter  is the marosopi quantum wave funtion. Theterm proportional to  represents the damping e�et.We fous our attention on only the traveling-wavesolution of this equation and write Eq. (1) in the form = '(�) exp[i(�x+ �t1)℄ (2)suh that the matter wave is a Bloh-like wave. Here, �and � are two undetermined real onstants. Aordingto the de�nition of the spae�time variable � = x+VLt1,the traveling wave '(�) moves with the same veloityas the optial lattie. Inserting Eq. (2) in Eq. (1), wean easily turn partial di�erential equation (1) into theordinary di�erential equation~22m d2'd�2 + i�~2�m + ~�L � i~�L� d'd� ���~�+~2�22m �i~��'�g0j'j2' = �1 os2(k�)': (3)For simpliity, using the dimensionless variables andparameters � = k�; � = 2m�L~k ;�1 = ~�Er ; �1 = �k ; I0 = �1Er ;we set' = R(�)ei�(�); d�d� = ��1� = ���2 + �1� :Then Eq. (3) beomes8>>><>>>: dy1d� = dRd� = y2;dy2d� = d2Rd�2 = 14�2y1+gy31+I0y1 os2 ���y2; (4)863
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a bFig. 1. The haoti attrator projetion on the y1y2 plane and the time series with I0 = 1:85,  = 0:05, y = 2:03, andg = �0:75where I0 is the optial intensity and � = 2m�L=~k. Thesquare of the amplitude R is just the partile numberdensity beause jRj = j'j = j j, and � is the phase of' [5℄.Aording to the general theory of the Du�ng equa-tion, Eq. (4) has a monolini solution only when theoe�ients of the linear (R) and nonlinear (R3) termsin the left-hand side of Eq. (4) have opposite signs.Therefore, to study the haos for a negative R term,we must onsider the ase of attrative atom�atom in-terations, i.e., g < 0; Eq. (4) is just the parametriallydriven Du�ng equation with a damping term. Thesquare of the amplitude R is just the partile numberdensity.We solve Eq. (4) numerially using the fourthRunge�Kutta (RK) algorithm. To avoid transienthaos, y1 and y2 in the initial 10000 steps are elimi-nated. The initial onditions are y1 = 18:0, y2 = 0:1,and � = 0. The parameters in Eq. (4) are I0 = 1:85, = 0:05, � = 2:03, and g = �0:75.Figure 1a shows the strange attrator projetedonto the y1y2 plane; however, we annot tell whetherthis attrator is haoti. We alulate the maximalLyapunov exponent of the BEC system using the al-gorithms presented in [11; 18; 19℄. The maximal Lya-punov exponent of the BEC system is �max = 0:0792.The system lies in a haoti state beause there ex-ist one positive Lyapunov exponent. Figure 1b showsthe time series of y1, and we an �nd that the valueseems to be random, but it is di�erent from noise sig-nals without rules and seems to hange following someregularity.

3. NUMERICAL RESULTSTo ontrol the haos in a BEC loaded into a mo-ving optial lattie potential, we adjust the two-bodyinteration by hanging the s-wave sattering length,that is, hanging the value of g. In this paper, we onlyonsider the e�et of the s-wave.Figure 2 shows the maximal Lyapunov exponentas a funtion of the s-wave sattering length g. Themiddle point-drawing line stands for the value ofzero. We �nd that in many ranges, for example�0:651 < g < �0:6525, �0:575 < g < �0:578, themaximal Lyapunov exponent is negative. If g takes avalue in these ranges, the BEC is in a periodi state.The BEC is in a periodi state when g takes values as�0:661 and �0:561.We solve Eq. (4) numerially by using the fourth RKalgorithm. The values of y1 and y2 in the initial 30000steps are eliminated. The last 10000 steps of y1 andy2 are retained. The initial onditions are y1 = 18:0,y2 = 0:1, and � = 0.Figure 3 shows the attrator projeted onto they1y2 plane, and the time series of y1. The parame-ters are the same as in Fig. 2, the other parametersbeing g = �0:661 and �0:561. We �nd that in Fig. 3a,C is in periods 1 and 3 respetively when g = �0:661and �0:561. Figure 3b,d shows the respetive time se-ries. We an therefore transform the haoti state intothe periodi regular state by modulating the s-wavelength g. 4. CONCLUSIONSIn summary, we have investigated the haoti fea-tures in the spatial distributions of the BEC. Wepresent a method of ontrolling haos via hanging the864
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Fig. 3. The attrator projetion on the y1y2 plane and the time series of y1 at di�erent s-wave sattering lengths with = 0:05, � = 2:03, I0 = 1:85, g = �0:661 (a,b), g = �0:561 (,d)s-wave sattering length. Numerial simulation showsthat the period is di�erent for di�erent s-wave satter-ing lengths.It is well known that the periodi lattie systemsin BEC have many fantasti properties. For example,quantum omputation with BEC atoms in a Mott in-

sulating state is an interesting advanement in appli-ation of the BEC. On the other hand, haos is asso-iated with quantum entanglement and quantum er-ror orreting, whih are both fundamental subjets inquantum omputations. Thus, it is important to applyor ontrol the haos in a system.2 ÆÝÒÔ, âûï. 5 (11) 865
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