МЕХАНИЗМ ЯДЕРНОЙ СПИН-РЕШЕТОЧНОЙ РЕЛАКСАЦИИ И ЕЕ ПОЛЕВАЯ ЗАВИСИМОСТЬ ПРИ СВЕРХМЕДЛЕННЫХ АТОМНЫХ ДВИЖЕНИЯХ

A. E. $Me\phi\ddot{e}\partial^*$

Фрязинский филиал Института радиотехники и электроники им. В. А. Котельникова Российской академии наук 141190, Фрязино, Московская обл., Россия

Поступила в редакцию 13 мая 2008 г.

В дважды вращающейся системе координат (ДВСК) изучен вклад сверхмедленной самодиффузии молекул поликристаллического бензола в спин-решеточную релаксацию протонов в зависимости от величины эффективного магнитного поля H_2 . Время $T_{1\rho\rho}$ релаксации протонов измерялось методом прямой регистрации ЯМР во вращающейся системе координат (ВСК). При этом эффективные поля имели «магическую» ориентацию, соответствующую углам $\arccos(1/\sqrt{3})$ в ВСК и $\pi/2$ в ДВСК, так что секулярная часть диполь-дипольных взаимодействий протонов была подавлена в двух порядках теории возмущений, а несекулярная часть становилась главной. Установлено, что диффузионный вклад молекул бензола в $T_{1\rho\rho}$ протонов линейно зависит от квадрата поля H_2 и имеет все особенности, характерные для модели «сильных столкновений», обобщенной на одни лишь флуктуирующие несекулярные дипольные взаимодействия в полях, превышающих локальное поле. Это говорит о применимости этой модели также и в таких условиях. Показано, что полное согласие с такой зависимостью можно получить и в модели «слабых столкновений», если учесть представление о локально-эффективном поле квантования, величина и направление которого определяются векторной суммой поля H_2 и перпендикулярного ему несекулярного локального поля.

PACS: 76.60.-k, 76.60.Es

1. ВВЕДЕНИЕ

В твердых телах с флуктуациями магнитных диполь-дипольных взаимодействий ядер вследствие их теплового движения связаны два хорошо известных механизма их спин-решеточной релаксации. В одном из них обмен энергией между ядерной спиновой системой и решеткой осуществляется за счет резонансных переходов, одновременно индуцированных в них флуктуациями несекулярной части дипольных взаимодействий [1,2]. Этот резонансный механизм действует во всем диапазоне постоянных поляризующих магнитных полей H_0 . Второй механизм [3–5] действует лишь в полях $H_0 \lesssim H_L$ (H_L — локальное поле в образце), в которых дипольные взаимодействия ядер (секулярные и несекулярные) и их зеемановское взаимодействие с постоянным полем \mathbf{H}_0 образуют (за время порядка времени T₂ спин-спиновой

релаксации ядер) единую спиновую термодинамическую систему, характеризуемую одной температурой. В этом механизме спин-решеточная релаксация спиновой системы определяется потерей ее энергии в результате редких (в масштабе времени T_2) неадиабатических перескоков атомов и/или молекул в другое пространственное положение.

В результате такого перескока непосредственно теряется лишь энергия дипольных взаимодействий ядер, потеря же их зеемановской энергии является следствием последующего теплового смешивания спиновых подсистем. (Здесь предполагается, что выполняется высокотемпературное приближение, в условиях которого справедливо выделение спиновых подсистем.) Действие первого механизма описывается теорией так называемых слабых столкновений, справедливой при $H_0 \gg H_L$ и практически в любом интервале τ_j между последовательными перескоками атомов либо при $\tau_j \ll T_2$ и практически при любой величине поля H_0 . Действие второго ме

^{*}E-mail: aem228@ire216.msk.su

ханизма определяется теорией сильных столкновений, справедливой при $H_0 \leq H_L$ и $\tau_j \gg T_2$, т.е. при редких перескоках атомов (называемых сверхмедленными движениями)¹⁾.

В спиновой динамике давно известно, что при $H_0 > H_L$ только несекулярная часть дипольных взаимодействий ядер объединяется (за время порядка T_2) с их зеемановскими взаимодействиями, образуя обобщенную зеемановскую термодинамическую спиновую подсистему [6-8]. Формальным обоснованием этого является то, что гамильтонианы этих взаимодействий не коммутируют друг с другом. Механизм этого объединения, указанный в работе [9], можно представить, полагая, что ось квантования каждого ядра *i* индивидуальна и задается направлением локально-эффективного поля Н*, являющегося векторной суммой поля \mathbf{H}_0 и перпендикулярного ему несекулярного локального поля \mathbf{H}_{Li}^n , действующего на ядро і. Вследствие этого скачкообразное изменение \mathbf{H}_0 влечет за собой скачкообразную переориентацию локальных осей квантования спинов, причем значительную, если $H_0 \sim H_L$. Последующий переход спиновой системы в новое равновесное состояние, который можно представлять как затухающую прецессию ядер вокруг новых осей квантования, сопровождается затухающими колебаниями продольной составляющей их намагниченности с последующим установлением некоторого квазиравновесного ее значения, что неоднократно наблюдалось в лабораторной (ЛСК) [6,8], вращающейся [8,10] и дважды вращающейся (ДВСК) [11, 12] системах координат.

Ясно, что подобная картина должна иметь место также и при неадиабатическом перескоке атома или его соседей в другое пространственное положение, так как при этом действующее на них поле \mathbf{H}_L^n скачком изменяется по величине и направлению. Ясно также, что установившееся после перескока (спустя время порядка T_2) значение намагниченности ядер вдоль новых осей квантования будет меньше, чем оно было вначале. Эту потерю намагниченности естественно рассматривать как элементарный акт их спин-решеточной релаксации, который требует выполнения того же условия ($\tau_j \gg T_2$), что и в описанном выше механизме сильных столкновений. В сравнительно слабых полях $H_0 > H_L$ такой акт должен быть близок по релаксационной эффективности к акту сильных столкновений.

Такой необычный механизм ядерной спин-решеточной релаксации (без его детализации) первоначально был отмечен в работах [3,5] и нашел некоторое экспериментальное подтверждение [13]. Впоследствии была разработана общая теория ядерной спин-решеточной релаксации [14, 15], в которой в случае как ЛСК, так и ВСК используется (введенное формально) локально-эффективное поле Н*, величина которого указана выше. Эта теория в пределе $H_0 \lesssim H_L, \tau_j \gg T_m^s$ дает тот же результат, что модель сильных столкновений, а в пределе $H_0 > H_L, \ au_j \ll T_m^s$ — результат теории в случае слабых столкновений, где T_m^s — время теплового смешивания секулярной дипольной и зеемановской спиновых подсистем.

Экспериментально эта теория получила некоторое подтверждение в работе [16]. Из [15] следует, что в пределе $H_0 > H_L, \ \tau_j \ll T^s_m$ флуктуации несекулярных дипольных взаимодействий обеспечивают лишь резонансный механизм слабых столкновений в локально-эффективном поле Н*. На этом основании можно предположить, что описанный выше механизм с переориентацией локальной оси квантования отличается от резонансного механизма слабых столкновений лишь формально, будучи эквивалентным ему по результату. Целью настоящей работы является четкое экспериментальное выделение вклада сверхмедленных флуктуаций ($\tau_i \gg T_2$) несекулярной части дипольных взаимодействий в ядерную спин-решеточную релаксацию в полях, превышающих локальное поле, и сопоставление полученных данных с обобщенными для данной ситуации моделями сильных и слабых столкновений.

2. МЕТОД ИЗМЕРЕНИЙ И ЭКСПЕРИМЕНТАЛЬНЫЕ УСЛОВИЯ

Эксперименты проводились на протонах в поликристаллическом бензоле при температурах $T_0 = -24$ °C и $T_0 = -12$ °C (температура плавления 5.5 °C), при которых происходит медленная самодиффузия молекул бензола по вакансиям [17,18]. При таких температурах диффузия еще не приводит к заметному общему сужению линии ЯМР ¹H в ЛСК [18] и ВСК при магическом угле [19], а разброс скоростей молекул еще невелик и не сопровождается появлением узкого центрального пика на фоне широкой линии [18]. Измерялось время $T_{1\rho\rho}$ спин-решеточной релаксации протонов в эффективном поле \mathbf{H}_{e2} , действующем в ДВСК.

¹⁾ Мы пользуемся установившейся терминологией, хотя в данном случае речь идет не о столкновениях, а о сильных либо слабых возмущениях гамильтониана диполь-дипольных взаимодействий.

Используемая аппаратура и процедура измерений описаны в работах [12, 20–22]. Постоянное поляризующее поле \mathbf{H}_0 в ЛСК и «магически»-ориентированное эффективное поле \mathbf{H}_{e1} в ВСК (угол между ними составлял $\operatorname{arccos}(1/\sqrt{3}) \pm 0.5^\circ$) были соответственно равны (в частотных единицах) $\gamma_0 H_0 \approx 14.07$ МГц и $\gamma_0 H_{e1} = 100.00$ кГц, где $\gamma_0 \equiv \gamma/2\pi$, γ — гиромагнитное отношение протонов. Эффективное поле \mathbf{H}_{e2} в ДВСК было перпендикулярно \mathbf{H}_{e1} , т.е. также имело магическую ориентацию $90 \pm 2^\circ$ и было равно своей составляющей \mathbf{H}_2 [12, 20], величина которой варьировалась в диапазоне $\gamma_0 H_2 = 0.165$ –8.7 кГц.

Для измерения $T_{1\rho\rho}$ намагниченность образца, достигнутая в поле \mathbf{H}_0 , ориентировалась вдоль поля **H**₂ (спин-локинг в ДВСК), и ее последующий спад вдоль этого поля регистрировался непрерывно прямым методом продольного детектирования в ходе действия одного ВЧ-импульса длительностью не более 1 с [12,20]. В измерениях использовался тот же образец бензола, что и в опытах по измерению температурных зависимостей времен $T_{2\rho}$ в ВСК [19] и $T_{1\rho\rho}$ в ДВСК [21], которые чувствительны к сверхмедленному диффузионному движению молекул бензола. Уточненные в настоящих опытах активационные параметры вращательного и диффузионного движения молекул в этом образце соответственно равны: энергия активации $E_a^r = 4.36$ и $E_a^d = 19.5$ ккал/моль, предэкспоненциальный множитель в законе Аррениуса $\tau_0^r~=~7.82\cdot 10^{-15}$ с и $\tau_0^d=1.9{\cdot}10^{-19}$ с. Значение τ_0^d определено по времени корреляции τ_c^d диффузионного движения, оцененному по значениям $T_{2\rho}$ в жесткой решетке (0.96 мс) и при 3.1 °С (1.22 мс) [1,19]. Следовательно, при $T_0 = -24\,^{\circ}\mathrm{C}$ время $\tau_c^d \approx 24$ мс, а при $T_0 = -12\,^{\circ}\mathrm{C}$ — $\tau_c^d \approx 4 \text{ mc.}$

Отметим, что измеренное при 3.1 °С время τ_c^d , по которому найдены остальные времена, является некоторым усредненным значением по ряду величин τ_j , $\tau_j/2$, $\tau_j/3$, в котором первая соответствует внутримолекулярному времени τ_c^d , а две остальные межмолекулярному времени τ_c^d с участием соответственно двух и трех молекул бензола. Вследствие этого фактическое время τ_j между перескоками молекулы заключено между значениями τ_c^d и $3\tau_c^d$, т.е. между 24 и 72 мс в случае -24 °С и между 4 и 12 мс в случае -12 °С.

В условиях наших опытов секулярные дипольные взаимодействия в ВСК сильно подавлены, а их остаток второго порядка состоит из трехспиновых членов и односпинового члена [23]. Первые определяют в ВСК указанное выше время $T_{2\rho}$ и локальное поле $H^s_{L\rho}$, измеренная величина которого равна $\gamma_0 H^s_{L\rho} = 120$ Гц. Односпиновый член увеличивает частоту ЯМР в ВСК относительно значения $\gamma_0 H_{e1}$ на величину первого момента $\gamma_0 M_{1\rho} = 48.5$ Гц (который равен увеличению поля при переходе к локальной оси квантования [9]). Преобразованные в магически-ориентированную ДВСК эти взаимодействия становятся несекулярными и не приобретают явной временной зависимости. Им соответствует несекулярное локальное поле

$$\gamma_0 H_{L\rho\rho}^n = \gamma_0 \sqrt{(H_{L\rho}^s)^2 + M_{1\rho}^2} = 130 \ \Gamma \text{u.} \tag{1}$$

Именно флуктуации этих несекулярных дипольных взаимодействий на частотах порядка $\gamma_0 H_2$ вследствие диффузионного движения молекул бензола определяют диффузионный вклад $(T^d_{1\rho\rho})^{-1}$ в измеряемую величину $(T_{1\rho\rho})^{-1}$ [24, 25], который является искомым и был нами измерен и проанализирован.

В ДВСК по сравнению с ВСК секулярные взаимодействия претерпевают дальнейшее сильное ослабление [23], а их остаточная величина определяется поправками следующих порядков [26] и неоднородностью поля H_2 вследствие неоднородности поля H_1 (около 0.15 %). Например, при $\gamma_0 H_2 = 6.3$ кГц в жидком бензоле измеренное значение $T_{2\rho\rho} = 25$ мс, а в твердом при $-47 \,^{\circ}\text{C}$ — 16 мс. Если вычесть вклад неоднородности поля H_2 , то время $T_{2\rho\rho} \approx 44$ мс; ему соответствует вычисленное секулярное локальное поле $\gamma_0 H^s_{L\,\rho\rho} \approx 3$ Гц. Измеренное в поле $\gamma_0 H_2 = 270$ Гц при $-47\,^\circ {
m C}$ время $T^n_{m\rho\rho}$ объединения несекулярной дипольной и зеемановской спиновых подсистем примерно равно 7 мс. При этом значении H_2 по оценке получаем $\gamma_0 H^s_{L\,\rho\rho} \approx 20$ Гц [26], а $T_{2\rho\rho} \approx 6$ мс, что сравнимо с $T^n_{m\rho\rho}$. Следовательно, при температуре $-24\,^{\circ}\mathrm{C}$ практически при всех полях H_2 , а при температуре $-12\,^\circ\mathrm{C}$ лишь при $\gamma_0 H_2~\lesssim~300$ Гц выполняется соотношение $T_{m\rho\rho}^n \approx T_{2\rho\rho} < \tau_j$.

Время объединения секулярной дипольной подсистемы с зеемановской $(T^s_{m\rho\rho})$, оцененное по формуле из работы [27], адаптированной к условиям ДВСК, уже при $\gamma_0 H_2 \geq 300$ Гц намного превосходит время τ_j , так что в опытах эта подсистема роли не играла.

Таким образом, в наших опытах необходимое условие справедливости теории слабых столкновений ($\tau_j \ll T^s_{m\rho\rho}, H_2 \gg H^s_{L\rho}$ [15]) выполнялось при обеих температурах и практически при всех полях H_2 , а условие $T^n_{m\rho\rho} \approx T_{2\rho\rho} < \tau_j$, необходимое для объединения несекулярной и зеемановской подсистем за время τ_j , в случае –24 °C выполнялось прак-

Рис. 1. Зависимость времени $T_{1\rho\rho}$ спинрешеточной релаксации протонов в поликристаллическом бензоле от квадрата величины эффективного поля, действующего в ДВСК и выраженного в частотных единицах: \circ и \blacktriangle измеренные значения $T_{1\rho\rho}$ соответственно при -24 °C и -12 °C; сплошные кривые — результат компьютерной подгонки измеренных значений $T_{1\rho\rho}$ к аналитической зависимости (2) с учетом (4)

тически при всех H_2 , а в случае -12 °C — лишь при $\gamma_0 H_2 \lesssim 300$ Гц.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены полученные зависимости времени $T_{1\rho\rho}$ от квадрата величины поля, т.е. от $(\gamma_0 H_2)^2$. Видно, что при больших полях они выходят на плато, причем его высота при $T_0 = -24 \,^{\circ}\mathrm{C}$ ниже, чем при $T_0 = -12$ °C. Выход на плато определяется тем, что измеренное значение $T_{1\rho\rho}^{-1}$, наряду с зависящим от H_2 диффузионным вкладом $T^d_{1\rho\rho}$, содержит еще два вклада, которые не зависят от H_2 . Один из них, $(T^r_{1\rho\rho})^{-1}$, определяется спектральными плотностями флуктуирующих обычных двухспиновых несекулярных дипольных взаимодействий на частотах $k\gamma H_0 \pm n\gamma H_{e1} \pm m\gamma H_2$ вследствие вращательного движения молекул бензола, а второй, $(T^{d*}_{1\rho\rho})^{-1}$, — на частотах $n\gamma H_{e1} \pm m\gamma H_2$ вследствие их диффузионного движения, где k, n, m = 1, 2 [21]. Таким образом,

$$\frac{1}{T_{1\rho\rho}} = \frac{1}{T_{1\rho\rho}^d} + \frac{1}{C},$$
(2)

Рис.2. Зависимость от $(\gamma_0 H_2)^2$ диффузионного вклада $T^d_{1\rho\rho}$ в величину $T_{1\rho\rho}$ за вычетом вкладов, не зависящих от поля H_2 (см. разд. 3) при температурах -24 °C (\circ) и -12 °C(\blacktriangle). На вставке — фрагмент зависимости при малых полях $\gamma_0 H_2$ в диапазоне 165-370 Гц

где

$$\frac{1}{C} \equiv \frac{1}{T_{1\rho\rho}^{r}} + \frac{1}{T_{1\rho\rho}^{d*}}.$$
 (3)

Разная высота плато на рис. 1 объясняется тем, что с понижением температуры величина $T^r_{1\rho\rho}$ уменьшается, достигая минимума при -160 °C [21]. Так как в наших опытах при обеих температурах выполняется соотношение $\gamma H_2 \tau_c^d \gg 1$, то по теории спин-решеточной релаксации при слабых столкновениях время $T^d_{1\rho\rho}$ должно быть пропорционально H_2^2 [24, 25]. Линейную зависимость $T^d_{1\rho\rho}$ от H_2^2 дает также и теория сильных столкновений, в том числе при объединении с зеемановскими взаимодействиями лишь одних несекулярных дипольных взаимодействий [3–5, 13]. Поэтому в предположении, что

$$T_{1aa}^{d} = A + B(\gamma_0 H_2)^2, \tag{4}$$

была проведена компьютерная подгонка формулы (2) к экспериментальным данным на рис. 1, которая дала показанную там (сплошной линией) зависимость $T_{1\rho\rho}$ от $(\gamma_0 H_2)^2$, хорошо им соответствующую. Параметры этой зависимости таковы:

$$T_{0} = -12 \,^{\circ}\text{C}: \quad C = 1499 \pm 5 \,\text{ mc},$$

$$A = 12 \pm 3 \,\text{ mc}, \quad B = 860 \pm 10 \,\text{ mc/k}\Gamma\mu^{2},$$

$$T_{0} = -24 \,^{\circ}\text{C}: \quad C = 1172 \pm 5 \,\text{ mc},$$

$$A = 59 \pm 10 \,\text{ mc}, \quad B = 5250 \pm 140 \,\text{ mc/k}\Gamma\mu^{2}.$$
(5)

На рис. 2 показан диффузионный вклад $T^d_{1\rho\rho}$ в $T_{1\rho\rho}$, описываемый зависимостью (4) с приведенными выше значениями А и В в области полей $\gamma_0 H_2 = 0.165 - 4.15$ кГц. При более сильных полях H_2 эта зависимость также сохраняет хорошее соответствие эксперименту. На вставке показана наиболее информативная часть этой зависимости в области малых полей $\gamma_0 H_2 = 0.165 - 0.370$ кГц. Из нее хорошо видны характерные особенности этой зависимости, а именно то, что прямые (4) при -24 °C и -12 °C пересекают ось $(\gamma_0 H_2)^2$ практически в одной точке слева от нуля. При этом с понижением температуры и ростом времени корреляци
и τ_c^d возрастает значение $T^d_{1\rho\rho}$, при котором прямая пересекает ось $T^d_{1\rho\rho}.$ Эти особенности соответствуют формуле для времени $T^{d}_{1\rho\rho}$, полученной в теории сильных столкновений, когда из дипольных взаимодействий учитываются одни лишь несекулярные. Эта формула, адаптированная нами к условиям ДВСК при $H_2 \gg H_{Lo}^s$, имеет вид [5,13]

$$\frac{1}{(T^d_{1\rho\rho})^{s.c.}} = \frac{(H^n_{L\rho\rho})^2}{H^2_2 + (H^n_{L\rho\rho})^2} \, \frac{1 - p_{\rho\rho}}{\tau^d_c}.$$
 (6)

Здесь

$$p_{\rho\rho} \equiv \frac{(H_{L\rho\rho}^n)_{a.c.}^2}{(H_{L\rho\rho}^n)_{b.c.}^2},\tag{7}$$

где $(H_{L\rho\rho}^{n})_{a.c.}^{2}$ и $(H_{L\rho\rho}^{n})_{b.c.}^{2}$ — среднее значение квадрата несекулярного локального поля соответственно после (after collision) и до (before collision) перескока молекулы. Формула (6) соответствует (4) при

$$A = \frac{\tau_c^d}{1 - p_{\rho\rho}}, \quad B = \frac{A}{(\gamma_0 H_{L\rho\rho}^n)^2},$$
(8)

откуда следует, что $\gamma_0 H_{L\rho\rho}^n = \sqrt{A/B}$. В таблице приведены значения $\gamma_0 H_{L\rho\rho}^n$ и $1 - p_{\rho\rho}$, рассчитанные по формулам (8) при указанных в (5) значениях A и Bи приведенных в разд. 2 значениях τ_c^d и $\gamma_0 H_{L\rho\rho}^n$.

Видно, что полученные значения $\gamma_0 H_{L\rho\rho}^n$ согласуются с экспериментально измеренной величиной (130 Гц), указанной в разд. 2. Значение $1 - p_{\rho\rho}$ физически правильно и близко к тому, что наблюдается в релаксационных измерениях в полях, сравнимых или меньших локального поля [3–5]. Таким образом, экспериментальные результаты говорят о том, что теория сильных столкновений справедлива и в полях $H_2 \gg H_{L\rho}^s$.

Сравним теперь экспериментальные результаты с теоретическими значениями $T^d_{1\rho\rho}$ в случае слабых столкновений при $\gamma H_2 \tau^d_c \gg 1$, как это имеет место в наших опытах. Это условие соответствует более медленным молекулярным движениям, чем те, при которых достигается минимум величины $T^d_{1\rho\rho}$ в поле H_2 . Общее выражение для $T^d_{1\rho\rho}$, полученное в работах [24,25], в этом случае и в предположении, что

спектральные плотности диффузионного движения молекул бензола выражаются обычными функциями [1,2], можно свести к виду

$$\frac{1}{(T_{1\rho\rho}^{d})^{w.c.}} = \frac{(H_{L\rho}^{s})^{2}}{H_{2}^{2}} \frac{1-q_{1}}{\tau_{c}^{d}} + \frac{M_{1\rho}^{2}}{H_{2}^{2}} \frac{1-q_{2}}{\tau_{c}^{d}} = \\ = \frac{(H_{L\rho\rho}^{n})^{2}}{H_{2}^{2}} \frac{1-q_{\rho\rho}^{e}}{\tau_{c}^{d}}.$$
 (9)

Здесь $H^n_{L\rho\rho}$ определяется соотношением (1), q_1 имеет тот же смысл, что и параметр $p_{\rho\rho}$ в (7), но относится к полю $(H^s_{L\rho})^2$, q_2 — отношение средних величин $M^2_{1\rho}$ после и до перескока молекулы, а эффективное значение $q^e_{\rho\rho}$ равно

$$q_{\rho\rho}^{e} \equiv \frac{(\gamma H_{L\rho}^{s})^{2} q_{1} + M_{1\rho}^{2} q_{2}}{(\gamma H_{L\rho}^{s})^{2} + M_{1\rho}^{2}}.$$
 (10)

Ясно, что зависимость $T^d_{1
ho
ho}(H^2_2)$ в соответствии с (9) качественно отличается от экспериментальной, так как при $H_2 = 0$ она проходит через значение $T^{d}_{1 \rho \rho} = 0$. Учтем, однако, что при $T_{0} = -24 \,^{\circ} \mathrm{C}$ выполняется соотношение $T_{2
ho
ho} \ll \tau_j,$ т.е. в промежутках между перескоками молекул несекулярные дипольные взаимодействия в ДВСК успевают объединиться в единое целое с зеемановскими. Тогда в соответствии с работами [9, 14, 15] в выражении (9) вместо H_2^2 нужно поставить квадрат локально-эффективного поля $(H_2^*)^2 = H_2^2 + (H_{L\rho\rho}^n)^2$, соответствующего величине локального поля квантования. С такой модификацией формула (9) совпадает с (6), так как ясно, что $q^e_{\rho\rho}$ и $p_{\rho\rho}$ равны (числитель в выражении (10) лишь детализирует числитель в (7)).

Таким образом, модифицированная теория слабых столкновений также хорошо описывает экспериментальные данные. Интересно, что при $T_0 = -12$ °C, когда $T_{2\rho\rho} \gg \tau_j$, формулы (6) и модифицированная (9) продолжают соответствовать экспериментальным данным. Это, видимо, объясняется тем, что в условиях молекулярных движений в скорости объединения несекулярной дипольной и зеемановской подсистем появляется дополнительный вклад, равный вероятности спин-решеточных переходов, так что эти подсистемы релаксируют с одной скоростью, выступая в этом процессе как единое целое независимо от соотношения времен τ_j и $T_{2\rho\rho}$.

Таким образом, в теории сильных столкновений, перенесенной на поля $H_2 > H^s_{L\rho}$ и одни лишь несекулярные дипольные взаимодействия, и в модифицированной теории слабых столкновений при

$T_0, ^{\circ}\mathrm{C}$	$ au_c^d,$ MC	$\gamma_0 H^n_{L ho ho},$ Гц	$1-p_{ ho ho}$ (по A и $ au_c^d$)	$1 - p_{ ho ho}$ (по B и $ au_c^d$ при $\gamma_0 H^n_{L ho ho} = 130$ Гц)
-12	4	120 ± 17	0.30 ± 0.10	0.28
-24	24	106 ± 11	0.40 ± 0.07	0.27

Значения $\gamma_0 H_{L\rho\rho}^n$ и $1 - p_{\rho\rho}$, рассчитанные по формулам (8) при указанных в (5) значениях A и B и приведенных в разд. 2 значениях τ_c^d и $\gamma_0 H_{L\rho\rho}^n$

 $\gamma H_2 \tau_c^d \gg 1$, в которой поле H_2 заменено на локально-эффективное значение $\sqrt{H_2^2 + (H_{L\rho\rho}^n)^2}$, выражения для $1/T_{1\rho\rho}^d$ оказываются одинаковыми и хорошо описывающими экспериментальные данные. Следовательно, внешнее различие в обсуждаемых механизмах спин-решеточной релаксации, на которых базируются эти теории, не принципиально, так как обе теории в описанных выше условиях дают эквивалентное описание спин-решеточной релаксации ядер.

Рассмотрим теперь вклад $1/T_{1\rho\rho}^{d*}$ в $1/T_{1\rho\rho}^{d}$, обусловленный спектральными составляющими диффузионного движения молекул бензола на частотах $n\gamma H_{e1} \pm m\gamma H_2$ из-за случайной модуляции обычных двухспиновых несекулярных дипольных взаимодействий, преобразованных из ВСК в ДВСК. В ВСК им соответствует поле $H_{L\rho}^n$, которое в условиях наших опытов равно секулярному полю H_L^s в ЛСК. Вклад $1/T_{1\rho\rho}^{d*}$ легко найти, так как известны постоянная Cпри двух температурах (см. соотношения (2), (3), (5)) и энергии активации вращательного и диффузионного движения молекул бензола: $T_{1\rho\rho}^{d*} = 55558$ мс и $T_{1\rho\rho}^{d*} = 9093$ мс соответственно при $T_0 = -24$ °С и $T_0 = -12$ °С. Формула для $T_{1\rho\rho}^{d*}$ в теории слабых столкновений при $\gamma H_{e1}\tau_c \gg 1$ (что у нас выполняется) имеет вид [24]

$$\frac{1}{T_{1\rho\rho}^{d*}} = \frac{7}{4} \frac{(H_{L\rho}^n)^2}{H_{e1}^2} \frac{1 - g_{\rho\rho}}{\tau_c^d}.$$
 (11)

В нее вместо поля H_L^s поставлено равное ему в условиях наших экспериментов поле $H_{L\rho}^n$ и дополнительно введен параметр $1-g_{\rho\rho}$, так как при перескоке молекулы величина $(H_L^s)^2$ уменьшается лишь частично [28–31]. Используя известное значение поля H_L^s ($\gamma_0 H_L^s = 3.12$ кГц [21]) и значения других параметров, из формулы (11) для каждой из температур получаем

 $1 - g_{\rho\rho} = 2.5 \cdot 10^{-4},$

$$\delta(\gamma_0 H_{L\rho}^n)^2 = (\gamma_0 H_{L\rho}^n)^2 (1 - g_{\rho\rho}) = 2469 \ \Gamma \mathfrak{u}^2.$$

В случае же $T^{d}_{1\rho\rho}$ подобные параметры равны

$$1 - p_{\rho\rho} \approx 0.3$$
 (см. таблицу)

$$\delta(\gamma_0 H_{L\rho\rho}^n)^2 = (\gamma_0 H_{L\rho\rho}^n)^2 (1 - p_{\rho\rho}) = 11830 \ \Gamma \mathfrak{u}^2.$$

Следовательно,

$$\delta(\gamma_0 H_{L\rho\rho}^n)^2 / \delta(\gamma_0 H_{L\rho}^n)^2 = 4.8,$$

т.е. в ДВСК несекулярное трехспиновое локальное поле $H^n_{L\rho\rho}$ усредняется диффузионным движением молекул сильнее, чем в ВСК двухспиновое поле $H^n_{L\rho}$.

4. ЗАКЛЮЧЕНИЕ

Эксперименты в ДВСК показали, что зависимость времени $T^d_{1\rho\rho}$ от поля H_2 при $H_2 > H^s_{L\rho}$, $\tau_j \ll T^s_{m
ho
ho}$ хорошо описывается обобщенной теорией сильных столкновений, в которой учитываются одни лишь несекулярные дипольные взаимодействия спинов. Это справедливо как при $\tau_j > T_{2\rho\rho}$, так и при $\tau_j < T_{2\rho\rho}$. Применимость модели во втором случае, видимо, обусловлена тем, что в подвижной решетке скорость объединения спиновых подсистем определяется не только скоростью спин-спиновой релаксации, но также и вероятностью спин-решеточного перехода, при котором зеемановские взаимодействия обмениваются квантом энергии с несекулярными дипольными взаимодействиями. Этот процесс и есть обмен энергией спиновой системы с решеткой, так как несекулярные взаимодействия зависят от взаимного расстояния r_{ii} между спинами i и j (как r_{ij}^{-3}) и от пространственной ориентации радиус-вектора \mathbf{r}_{ij} [1,8].

Теория слабых столкновений в ее классическом варианте в слабых полях качественно расходится с экспериментом. Но если вместо реально действующего поля H_2 ввести локально-эффективное $H_2^* = \sqrt{H_2^2 + (H_{L\rho\rho}^n)^2}$, соответствующее величине локального поля квантования спинов, то при $\gamma H_2 \tau_c^d \gg 1$ получаем ту же формулу для $T_{1\rho\rho}^d$, что и в случае обобщенной теории сильных столкновений. Поэтому естественно заключить, что в этих условиях сильным и слабым столкновениям соответствует один механизм спин-решеточной релаксации, который можно эквивалентно рассматривать либо как классический резонансный обмен энергией между спиновой системой и решеткой, либо как передачу энергии от зеемановской подсистемы к несекулярной дипольной (и наоборот) в результате их объединения в одну подсистему. Наглядная интерпретация этого процесса с использованием представления о локальных осях квантования спинов описана во Введении.

Отметим, что в работе [22] эти механизмы рассматриваются как самостоятельные, действующие одновременно, что, как следует из изложенного выше, не верно.

Отметим также, что при соответствующих условиях эти два подхода в обобщенном варианте дают одно и то же выражение для времени $T_{1\rho}$ в ВСК и для времени T_1 в ЛСК, которое, в частности, вытекает из соответствующих формул, полученных в модели слабых столкновений [28–31]. При этом в случае $T_{1\rho}$ нужно исключить не зависящие от поля H_1 члены и в обоих случаях учесть, что в порошкообразных образцах $H_{L\rho}^n = (3/4)H_L^s$, а $H_L^n = (4/5)H_L$, где H_L , H_L^s и H_L^n — полное, секулярное и несекулярное средние локальные поля в ЛСК [5, 15].

Автор благодарит участников Московского семинара «Проблемы магнитного резонанса» и особенно В. А. Ацаркина и Т. Н. Хазановича за обсуждение результатов работы.

ЛИТЕРАТУРА

- N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).
- 2. А. Абрагам, *Ядерный магнетизм*, Изд-во иностр. лит., Москва (1963).
- C. P. Slichter and D. Ailion, Phys. Rev. A 135, 1099 (1964).
- D. Ailion and C. P. Slichter, Phys. Rev. A 137, 235 (1965).
- D. Ailion, in Advances in Magnetic Resonance, Vol. 5, ed. by J. S. Waugh, Acad. Press, New York (1971), p. 177.
- R. L. Strombotne and E. L. Hahn, Phys. Rev. A 133, 1616 (1964).
- J. Jeener, H. Eisendrath, and R. Van Steenwinkel, Phys. Rev. A 133, 478 (1964).

- 8. М. Гольдман, Спиновая температура и ЯМР в твердых телах, Мир, Москва (1972).
- 9. В. А. Ацаркин, ФТТ 27, 656 (1985).
- 10. J. Jeener, R. Du Bois, and P. Broekaert, Phys. Rev. A 139, 1959 (1965).
- А. Е. Мефёд, в сб. *Радиоспектроскопия*, Пермский ун-т, Пермь (1989), с. 90.
- 12. A. E. Mefed, Appl. Magn. Reson. 16, 411 (1999).
- 13. H. T. Stokes and D. C. Ailion, Phys. Rev. B 16, 3056 (1977).
- 14. D. Wolf and P. Jung, Phys. Rev. B 12, 3596 (1975).
- 15. D. Wolf, Spin Temperature and Nuclear Spin Relaxation in Matter, New York, Oxford Univ. Press (1979).
- 16. R. Messer, S. Dais, and D. Wolf, in Proc. 18th AMPERE Congress, Vol. 2, Nottingam (1974), p. 327.
- 17. T. Gullion and M. S. Conradi, Phys. Rev. B 32, 7076 (1985).
- 18. С. П. Габуда, А. Г. Лундин, Внутренняя подвижность в твердом теле, Наука, Новосибирск (1986), с. 110.
- A. E. Mefed and V. A. Atsarkin, Phys. Stat. Sol. (a) 93, K21 (1986).
- 20. А. Е. Мефёд, ЖЭТФ 86, 302 (1984).
- А. Е. Мефёд, В. А. Ацаркин, М. Е. Жаботинский, ЖЭТФ 91, 671 (1986).
- 22. A. G. Krushelnitsky, A. E. Mefed, A. A. Kharitonov, and V. D. Fedotov, Appl. Magn. Reson. 20, 207 (2001).
- 23. В. А. Ацаркин, А. Е. Мефёд, М. И. Родак, ФТТ 21, 2672 (1979).
- **24**. В. А. Ацаркин, Т. Н. Хазанович, ЖЭТФ **87**, 279 (1984).
- 25. В. Е. Зобов, А. В. Пономаренко, Препринт 657Ф, Красноярск, Ин-т физики СО АН СССР(1990).
- 26. В. Е. Зобов, М. А. Попов, ЖЭТФ 110, 635 (1996).
- 27. Н. В. Заварицкий, И. С. Солодовников, ЖЭТФ 114, 1006 (1998).
- 28. D. C. Douglass and G. P. Jones, J. Chem. Phys. 45, 956 (1996).
- 29. R. Sjoblom, J. Magn. Res. 22, 425 (1976).
- **30**. Ю. Н. Москвич, Н. А. Сергеев, ФТТ **20**, 258 (1978).
- 31. G. Soda and Chihara, J. Phys. Soc. Jpn. 36, 954 (1974).