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BKT PHASE IN SYSTEMS OF SPINLESS STRONGLYINTERACTING ONE-DIMENSIONAL FERMIONSV. V. Afonin a*, V. Yu. Petrov baIo�e Physio-Tehnial Institute, Russian Aademy of Sienes194021, Saint-Petersburg, RussiabPetersburg Nulear Physis Institute, Russian Aademy of Sienes188300, Saint-Petersburg, RussiaReeived April 8, 2008We present the ground-state wave funtions for a system of spinless one-dimensional fermions in the limit ofan in�nitely strong interation and demonstrate expliitly that the system symmetry is lower than the originalsymmetry of the Hamiltonian. As a result, the system in this limit undergoes a seond-order phase transitioninto a phase with �nite density of hiral pairs. The phase transforms ontinuously into a Berezinskii�Kosterlitz�Thouless (BKT) phase if the interation in the model dereases. Therefore, just the BKT phase is realized innature. The temperature of the smearing phase transition is alulated.PACS: 71.10.Hf, 73.63.Fg1. INTRODUCTIONFor a long time, one-dimensional fermion systemswere a subjet of intensive studies only in theoreti-al physis. Tomonaga [1℄ and Luttinger [2℄ demon-strated in their pioneering papers that the longwaveexitations of suh a system (under rather general on-ditions) an be expressed in terms of noninteratingbosons. These degrees of freedom were made expliit inthe elegant method of bosonization proposed by Mattisand Leeb [3℄. The reent interest in this �eld is mainlydue to the development of submiron tehniques, whihallowed produing very pure quantum wires. In suhwires, only few levels (or sometimes even one) orre-sponding to the quantization of eletrons in perpendi-ular diretions are oupied. Hene, the systems un-der disussion are aessible by experiment today (see,e.g., [4�7℄).The bosonization tehnique allows alulating alln-point orrelation funtions for systems of interatingfermions in one dimension. However, these orrelatorsgive only indiret information about the ground state ofthe system, whih requires further interpretation. Theorrelation funtions of the Luttinger model reveal anumber of anomalies of the fermion system (see [8�10℄):*E-mail: vasili.afonin�mail.io�e.ru

they have osillating ontributions with wave vetorsequal to 2pf or 4pf , whih deay very slowly with dis-tane. In the literature, these ontributions were in-terpreted as follows: the osillations with the Fermimomentum pf doubled were related to the Peierls in-stability (related to the harge density wave [9; 11℄) andthe osillations with the 4pf frequeny were interpretedas a marginal Wigner rystal [12℄. Although the orre-lators of hiral omplexes obey a power law (see [13℄),it is ommonly believed that the system under disus-sion is a kind of normal liquid beause quantum �u-tuations destroy any order parameter. As a result, aphase with a long-range order is impossible even in thezero-temperature region [9℄. The ommon point of viewwas formulated as �Luttinger liquid is a normal (notsymmetry-broken) metalli phase� [14℄ with a gaplessboson spetrum. However, if we speak about quantum�utuations, two more points should be taken into a-ount.1. In low dimensions, some of the systems ap-pear to be in the Berezinskii�Kosterlitz�Thouless phase(BKT) [15; 16℄. In this phase, the order parameter den-sity tends to zero in an in�nite system, but a long-range order exists beause orrelation funtions deayas some power of the distane. This means that the or-relation is present in a whole speimen. As a result, in637



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008its marosopi properties, the system are quite similarto a system with broken symmetry. A BKT phase anform if the gapless exitations, whih should be presentin the system after spontaneous symmetry breaking dueto the Goldstone theorem [17; 18℄, do not interat. Atnonzero temperatures (� 6= 0), this phase an ourin two-dimensional systems; at � = 0, a BKT phaseis possible in one dimension. (The rossover tempera-ture and its relation to the smearing phase transitiontemperature � is onsidered below; see Se. 3.)2. The Goldstone theorem itself an be brokenin one-dimensional models with the Adler�Shwingeranomaly. For that to happen, the interation has to bestrong enough. As an illustration one an onsider themassless Shwinger model [19℄. In the Coulomb gauge,this model is a partiular ase of the Luttinger modelwith the potential given by a linear funtion of the dis-tane between eletrons. This leads to the Goldstonetheorem violation: all exitations have a gap in spiteof spontaneous breaking of the hiral symmetry. Forthis reason, exitations annot suppress the long-rangeorder at temperatures below the gap. As a result, aseond-order phase transition ours in one dimensioneven at �nite temperature [20℄.This makes the statement that the Luttinger liquidat � = 0 is in an unbroken phase doubtful.To larify this question, we alulate the wave fun-tions of the ground states in the Tomonaga�Luttingermodel diretly in the fermion representation. Althoughthe details of these wave funtions ould depend on theinterating potential, all possible ground states quali-tatively reveal the same phenomenon.In one dimension, the Fermi surfae redues to twoisolated points in phase spae (p = �pf ). Transitionsbetween these two points an be negleted. This is agood approximation, at least if the potential is a de-reasing funtion of the momentum transfer. As a re-sult, the number of eletrons near eah point (left andright partiles) must be onserved and the system a-quires a omplementary (hiral) symmetry. This sym-metry, as we see in what follows, breaks down sponta-neously in the model.It is ommon knowledge that the eletron distribu-tion funtion in one dimension hanges drastially evenfor the systems with a weak eletron�eletron intera-tion. It is of the order 1/2 near the Fermi level [21℄.This means that a hole is loated near eah eletron.Naturally, they attrat eah other and form a kind ofbound state onsisting of a right eletron and a lefthole (R�L-pair). This is quite similar to the formationof a Cooper pair in a superondutor, but the quan-tum numbers of the bound state are di�erent: instead

of a nonzero eletri harge, exiton-like (neutral) pairswith nonzero hirality our1).Of ourse, this fat itself is not enough to speakabout a new orrelated phase. Using the expliitground-state wave funtion onstruted in this paper,we verify that long-range order is indeed present in thesystem. As a result, the Luttinger liquid undergoes aphase transition at low temperatures.We see in what follows that in the limit of the in-�nitely strong interation and at zero temperature, thesystem is in a phase with broken hiral symmetry andnonvanishing order parameter density. The propertiesof the Luttinger liquid in this limit are quite analo-gous to the properties of the massless Shwinger model,where the spontaneous breakdown of the hiral symme-try is well known. This an be expeted beause theinteration in the Shwinger model is also in�nite (it in-reases with distane). On the other hand, in ontrastto the Shwinger model, the spetrum of the Luttingermodel remains gapless.If the interation in the Luttinger model is onsid-ered �nite, as it is realized in nature, the order param-eter density vanishes (in the in�nite system). In thisase, the system appears to be in a BKT phase withorrelators deaying as some power of the distane. Butthe properties of this phase are rather lose to those of asystem with a nonzero order parameter. The BKT sys-tem transforms smoothly into the phase with a nonzeroorder parameter as the oupling onstant inreases.The main point of this paper is that the existeneof a symmetry-broken phase underlies the existene ofanomalies in the orrelation funtions. We believe thatthe usual interpretation of the anomalies as an insta-bility of the Peierls type is misleading. There is a lear-ut distintion between the hiral phase and the Peierlsone. Indeed, the phase transition to the Peierls phaseis a seond-order phase transition in the phonon sys-tem, while the hiral symmetry of eletrons is brokenexpliitly, in the Hamiltonian. On the ontrary, thehiral phase originates from the spontaneous symme-try breaking in the eletron system. To manifest thebreakdown of the hiral symmetry in the Luttinger liq-uid, we exatly alulate the ground-state wave fun-tion for the model in the fermion representation anddemonstrate expliitly that its symmetry is lower thanthe original symmetry of the Hamiltonian. (This is thede�nition of spontaneous symmetry breaking.)As regards, possible observations of a ondensate1) To draw an analogy between an exiton-like pair and abound state, we should take into aount that we have a or-relation between the �lled states rather than a real bound pair.638



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :we note that a harge-neutral ondensate annot revealitself in experiments assoiated with harge transfer.But it ontributes to the e�ets involving energy ur-rents and should not transfer heat. Hene, we an thinkabout thermal anomalies related to the ondensate. Infat, we keep in mind the e�et similar to the ther-momehanial e�et in super�uid helium. (The tem-perature dereases with an inrease in the super�uidmass [22℄.) We plan to disuss this problem elsewhere.This paper is organized as follows. In Se. 2, weintrodue the Hamiltonian, the de�nitions of left andright partiles, and so on. We present our results anddisussion in Se. 3. We relegate the derivation of theresults to Se. 4 beause the alulation is rather um-bersome. In Se. 5, we show the symmetry breaking ina di�erent way, namely, from the well-known ground-state wave funtion in the boson representation [23℄.Justi�ably, the boson representation may be onsid-ered a nonobvious way to see the symmetry breakingin a fermion system. However, we perform the alula-tion in order to ompare our approah with a ommonmethod. We onlude the paper with three appendiesthat ontain some mathematial details related to thealulation.2. NOTATION AND GENERAL EQUATIONSWe begin with the usual separation of left and rightpartiles in the eletron wave funtions 	̂ (x) [24℄:	̂ (x) = exp (ipfx) 	̂R (x) + exp (�ipfx) 	̂L (x) : (1)It is implied here that the wave funtions 	̂R;L (x) varyover distanes muh longer than 1=pf . We also re-strit ourself to the Tomonaga�Luttinger model [24℄.For simpliity, we onsider only an eletrially neutralsystem, where a positive harge of ions is distributedhomogeneously along the hannel.We pass to the eletron�hole representation for theright (left) partiles:	̂R;L (x) == 1Z0 dp2� �exp (�ipx) âR;L (p) + exp (�ipx) b̂yR;L (p)� == âR;L (x) + b̂yR;L (x) ; (2)where ây(â) and b̂y(b̂) are reation (annihilation) op-erators for eletrons and holes. The Hamiltonian ofinterating spinless eletrons in one dimension an be

written for a neutral system in terms of the eletrondensity operator% (x) = %R (x) + %L (x)asH = Z dx�� h	̂yR (x) vf (�i�x) 	̂R (x)+	̂yL (x) vf i�x	̂L (x)i++ Z dx dy % (x)V (x� y) % (y) ; (3)where vf is the Fermi veloity.The form of V (x � y) depends on the relation be-tween the usual 3D sreening radius RD (we onsiderthe ase of Debye sreening for simpliity) and thetransverse size of the hannel d. Indeed, we must takeinto aount that the eletrons are one-dimensionalonly for distanes jx � yj muh larger than d. There-fore, if RD � d, we an use a point-like interationV0Æ (x� y)2). This is the ase for metals3). In the op-posite ase RD � d (a semiondutor), an ordinaryCoulomb potential must be used. In what follows, werestrit ourself to the simplest ase, a point-like inter-ation. Thus, V (p) = V0: (4)The Hamiltonian of the Luttinger model in Eq. (3) rep-resented in terms of eletrons and holes is ompletelyde�ned without any additional regularization of theeletron operators. In partiular, the ommutator ofthe R- and L-densities in this representation reproduesthe well-known Shwinger anomaly [19℄:[%R;L (x) ; %R;L (y)℄ = � i2� ��xÆ (x� y) : (5)2) We note that this ase also inludes baksattering of ele-trons with the transition L! R and bak:Z dx	̂yR(x)	L(x)	̂yL(x)	R(x):By antiommuting the 	̂-operators, we an redue this term tothe term without baksattering [9℄; for this model, therefore, theTomonaga�Luttinger Hamiltonian desribes the entire eletron�eletron interation.3) To obtain a real parameter, we should use the standard ex-pression for the Debye sreening radius RD = 1=p4�e2�n=��with the onentration n = pf=�2d2: We took into aounthere that there is only one state for eletrons in diretions per-pendiular to the hannel. Thus, RD � (d=2)p�pfab, whereab = �me2��1 is the Bohr radius. Hene, the ondition RD � dis equivalent to pfab � 1. The last parameter depends only onthe e�etive mass of the eletron. If it is of the order of the freeeletron mass, then ab � 0:5 � 10�8 m and we obtain pfab � 1for the onentrations typial for metals. In other words, we thendeal with a short-range interation.639



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008These relations are the starting point of the bosoniza-tion tehnique. Equations (5) are usually derivedby regularizing the produt of 	 operators by pointsplitting [25℄. This is not neessary, however, in theeletron�hole representation [20℄ beause the reationand annihilation operators for R, L eletrons (â�R;L(x))and holes (b̂�R;L(x)) are nonloal in the oordinate spaeas their antiommutators are:fâyR (x) ; âR (x1)g = fb̂yR (x) ; b̂R (x1)g == 12�i 1x� x1 � iÆ ; (6)fâyL (x) ; âL (x1)g = fb̂yL (x) ; b̂L (x1)g == 12�i 1x1 � x� iÆ (7)(in momentum spae, these antiommutators areÆ-funtions). Using these antiommutators for thedensities of right and left eletrons %R;L (x) ofform (75), we immediately reprodue the Shwingeranomaly. This means that, being formulated in theeletron�hole representation, our theory is ompletelyde�ned without any further rede�nition of the densityoperators.Besides, Hamiltonian (3) is invariant under the hi-ral transformations	R(x) = ei�	R; 	L(x) = e�i�	L; (8)where � is a onstant parameter of the transforma-tion. This invariane leads to onservation of the hi-ral harge (the di�erene of the numbers of right andleft eletrons). However, we see below that the groundstate of the model is onstruted suh that the symme-try is spontaneously broken.3. THE APPROACH, RESULTS, ANDDISCUSSIONThe standard approah to many-partile systems isbased on Green's funtions. The one-partile Green'sfuntion gives the information about the spetrum ofexitations; the many-partile Green's funtions allowalulating di�erent orrelation and response funtions.Of ourse, the Green's funtions give some informationabout the wave funtions of the states, but this infor-mation is indiret.In priniple, the wave funtions of stationary states(and of the ground state in partiular) an be obtainedby solving the orresponding Shrödinger equation di-retly. However, for systems with an in�nite number

of the degrees of freedom, this equation is too ompli-ated. A more pratial approah an be based on theevolution operator [26℄S (T ) =Xm;n jnihnj exp�iHT jmihmj; (9)where jni are the exat wave funtions of the Hamilto-nian H in the seond-quantized representation and T isthe time of observation. The evolution operator deter-mines the evolution of an arbitrary initial wave fun-tion (hmj) from the instant t = 0 to �nal states jni att = T . (We assume from now on that the Shrödingerrepresentation for operators with time-dependent wave-funtions is used.)Formula (9) suggests the general method to obtainwave funtions. We �rst alulate the evolution opera-tor and represent it as a sum of time-dependent expo-nentials. The oe�ients in front of these exponentialsare produts of exat wave funtions and their omplexonjugates. To extrat the ground-state wave funtion,we must take the limit T ! 1 (with an in�nitesimalimaginary part added to the energy). Passing to theEulidean time (T ! �i=�), we see that the evolutionoperator determines the density matrix for the equilib-rium system at nonzero temperature (see end of thissetion).The advantage of this method is that the evolutionoperator an be written expliitly as a funtional inte-gral with de�nite boundary onditions (see Eq. (22)).The expression is nontrivial beause it allows rewritingthe wave funtion in the seond-quantized representa-tion as a funtional integral with unusual boundaryonditions at t = 0 and t = T . This is possible be-ause reation and annihilation operators in Eq. (9) an-tiommute one they orrespond to di�erent instanesof time (see Appendix A for the details). That is, theyshould be onsidered Grassmann variables. (An anal-ogous representation for the Feynman Green's fun-tion desribes the vauum�vauum transitions. In thisase, therefore, Grassmann variables obey zero bound-ary onditions. This distintion is extremely essential.)The funtional integral is rather simple for the Lut-tinger model with Hamiltonian (3) and an be alu-lated exatly. This allows onstruting wave funtionsof all states in the model and, in partiular, the groundstate in terms of the eletron and hole operators. Thissu�es to demonstrate the symmetry breaking. (SeeSe. 5 for further omparison of the approah and thebosonization one.)We keep the size of the system �nite. This is im-portant not only for regularizing infrared divergenes inthe system but mostly beause the harateristi tem-640



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :peratures of the problem depend on the system size L.Therefore, we have to disuss the onept of phase tran-sition in �nite systems. In fat, we identify a param-eter that allows applying the onept of phase transi-tion formulated in the thermodynami limit (L ! 1,with the eletron density �nite) to a real �nite system.We see in what follows that our system is in a ertainsense large enough and we an speak about a smearingseond-order phase transition for the problem.Usually, the ritial temperature is de�ned as apoint where thermodynami quantities have a singu-larity. Of ourse, this is the ase only in an in�nitesystem beause all singularities smear out if the size ofthe system is �nite. The same is true for the oherenelength, whih annot be larger than the system size.In this paper, we adopt the point of view sug-gested by Landau in order to desribe seond-orderphase transitions [27℄. He introdued the order param-eter as the main quantity for the desription of phasetransitions related to the spontaneous symmetry break-ing. By de�nition, the order parameter is zero in thehigh-symmetry phase (with the same symmetry as theHamiltonian) and nonzero in a phase with broken sym-metry. In fat, this is only one of the possible de�ni-tions of the broken (unbroken) phase, but we use it be-low beause it is onvenient for us. In the ase of hiralsymmetry breaking in Eq. (8), the following quantityan serve as the order parameter:� = Z dxh
jâyR (x+ Æx=2)�� b̂yL (x� Æx=2) j
ijÆx!0: (10)This quantity is not invariant under transformations inEq. (8) and should be zero if the hiral symmetry re-mains unbroken. We note that we use a marosopiorder parameter (the integral over the entire system).In the broken phase, this quantity is proportional tothe volume of the system.The BKT phase represents the intermediate asewhere � � L�T ; 0 < �T < 1; (11)and hene� is still in�nite in the thermodynami limit,while the density of the order parameter �=L vanishes.We note that � appears to be nonzero even at � > �due to �utuations of the broken phase in the higher-symmetry phase. It is important that � does not in-rease with L in this ase.Intensive thermodynami quantities remain smoothfor a �nite-size system even at the phase transitionpoint. However, an essential irumstane is that they

depend expliitly on the system size and tend to in�nity(or aquire a jump) as L!1.Usually, one proves that the system is in the BKTphase by investigating the behavior of the four-fermionorrelator that does not break the hiral invariane (be-low, in Se. 4.1, we onsider suh a orrelator�theprobability to �nd an R�L-pair at a large distane r froman L �R pair). If suh a orrelator dereases su�ientlyslowly with the distane, the system is in the BKTphase. The limit ase where the orrelator remainsonstant at large distanes orresponds to a nonzerodensity of the order parameter and the ordinary bro-ken symmetry. In fat, this de�nition of the BKT phaseis equivalent to our de�nition given above, but the def-inition in (10) and (11) is more onvenient for us.In one dimension, the BKT phase an exist only at� = 0 or, to be more preise, for temperatures thattend to zero as L ! 1. There is no need in a mi-rosopi theory in order to estimate the harateristitemperature � at whih the system hanges one typeof behavior for another. To obtain an estimate, we anuse the general phenomenology appliable to all BKTsystems (see, e.g., [24℄). We assume that the hiralsymmetry is indeed spontaneously broken in the Lut-tinger model (of ourse, this an be proved only in amirosopi theory). Aording to the Goldstone theo-rem, the hiral phase � (the phase of the 	+R	L oper-ator) beomes a massless boson �eld. In the long-rangelimit, only �utuations of this �eld are relevant and itse�etive Lagrangian redues to (Eulidean time � = itis used beause we want to onsider nonzero tempera-tures below)Seff [�℄ = V 22 Z d� dmx �(�t�)2 + (w�x�)2� ; (12)where V and w are phenomenologial onstants (al-ulable in a mirosopi theory) and m is number ofspatial dimensions.To deide if the system is in the BKT phase, it suf-�es to onsider the behavior at large distanes jx� yjof the hirality-onserving orrelator:F (x� y) = h	+R(x)	L(x)	+L (y)	R(y)i: (13)We an neglet �utuations of the modulus of the op-erator 	+R(x)	L(x) (as well as higher derivatives in thee�etive ation for the hiral phase). Correlator (13)then redues toF (x� y) = onstZ D� exp(�S[�℄)�� exp(2i�(x)) exp(�2i�(y)): (14)2 ÆÝÒÔ, âûï. 4 (10) 641



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008Calulating this integral at � = 0, we obtainF (x� y) � exp"2iV �2 Z d!dmk(2�)m+1 �� sin2 [(k � (x� y)) =2℄!2 � w2k2 # : (15)For m = 1, the two-dimensional integral (one spaeand one time dimension) in the exponent diverges log-arithmially, and heneF (x� y) � V 2(kmaxjx� yj)1=2�V 2w : (16)This proves the existene of a BKT phase at � = 0.If the temperature is nonzero, the integral over !in Eq. (15) should be replaed by a sum over disretevalues !n = 2�n� (with integer n). At high tempera-tures, only the term with n = 0 survives at large dis-tanes and we are left with a one-dimensional integralwith respet to k, whih leads to the orrelator expo-nentially dereasing with distane:F (x� y) � V 2 exp�� �2�V 2w2 jx� yj�: (17)Clearly, this orrelator desribes the unbroken phase.The power-like behavior of the orrelator in (16) isvalid in the region jx� yj < w=�:For � < � � w=L;this takes plae for the entire sample, i.e., the systemis in a broken phase. The temperature � is the tem-perature of the phase smear transition.In this estimate, we an reognize the exitation en-ergy with the smallest momentum possible in a �nite-size system. In the Luttinger model, this energy isequal to !min = 2�vf=L, with the renormalized Fermiveloity vf = vfp1 + V0=�vf [9℄. Therefore, we seethat if the spetrum of exitations is gapless (as in theLuttinger model), then the phase transition temper-ature is inversely proportional to the sample length.This result an be obtained in the mirosopi theoryas well.At � � �, the integral in Eq. (17) diverges loga-rithmially for m = 2. Therefore, � an also be on-sidered a rossover point where the ritial dimensionof the system hanges from 1 to 2.

Turning to the mirosopi theory, we disuss thesimplest ase: the short-range potential in the limit ofan in�nitely strong interation�vfV0 � 1: (18)In the leading order in this parameter, the evolution op-erator appears to be very simple and the ground-statewave funtion an be represented in a losed form. Inthe temperature region�hiral = 2�vfL � �� � = !min; (19)the ground-state wave funtion is of the form4)j
i� =pZ0 exp�Z dx exp (i�) âyR (x) b̂yL (x) ++ Z dy exp (�i�) âyL (y) b̂yR (y)� jF i; (20)where jF i is the �lled Fermi sphere and Z0 is the nor-malization oe�ient. There is an in�nite set of degen-erate ground states labeled by the ontinuous param-eter �, whih has the meaning of the order parameterphase.The symmetry breaking an be seen immediatelybeause wave funtion (20) is not invariant under hi-ral transformation (8). This is the de�nition of spon-taneous symmetry breaking. Besides, it an be veri�eddiretly that � / L5). This means that a seond-orderphase transition ours at a higher temperature in thislimit.Wave funtion (20) is a mixture of states with dif-ferent hiralities. (We assign hirality +1 to a righteletron and a left hole and �1 to their ounterparts.Therefore, bosons in Eq. (20) are neutral in terms ofeletri harge but have the nonzero hiralities �2).As a result, the order parameter � (see Eq. (10)) doesnot vanish beause suh a ground state implies that4) Stritly speaking, at nonzero temperatures, the system isdesribed not by the wave funtion but by the density matrix.But we are interested in the low-temperature region, where theprobability to �nd the system in an exited state is small. Inthe leading approximation, we an desribe suh a system by thewave funtion.5) To alulate this, we use the identity�â (p) ; exp�Z dp02� ây �p0� b̂y �p0��� == b̂y (p) exp�Z dp02� ây �p0� b̂y �p0��and determine the antiommutator with the same momenta in aregular way: fây (pn) ; â (pm)g = LÆn;m.642



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :the states with di�erent hiralities are all degeneratein energy and transitions between states with di�er-ent hiralities in Eq. (10) exist. The degeneray per-mits onstruting a symmetry-breaking wave funtion,although the Hamiltonian has no symmetry-breakingterms. This is a typial situation for a system witha ondensate: adding one pair to the ondensate doesnot ost any energy. But this degeneray is possibleonly if the size of the system is large enough; we see inwhat follows that it should be L � Lmin � 2�vf=�.In the opposite ase L � Lmin; the ground state hasa �xed hirality (equal to zero; see the disussion be-low Eq. (58)) and the order parameter � vanishes, i.e.,there is no spontaneous symmetry breaking. In fat,the �rst inequality is the parameter that allows theonept of phase transition, whih has been formulatedin the thermodynami limit, to be applied to �nite realsystems. If the states with di�erent hiralities are de-generate, the sample an be onsidered in�nite withregard to symmetry breaking. (See the end of Se. 5for a further disussion of these statements. There, werealulate Eq. (20) from the boson representation.)These onsiderations put a lower bound on thetemperature region where a hiral phase an exist:�� �hiral, with �hiral being the degeneration tem-perature. It is the harateristi energy di�erene be-tween states with varied hirality.We estimate the density of hiral pairs in the groundstate. Wave funtion (20) implies that all eletrons arebound into pairs. Hene, the density of R�L oinideswith the density of R-eletrons:NR (p) = �h
jâyR (p) âR (p) j
i� = L=2 (21)(see footnote 5). This quantity re�ets a well-knownfat: the distribution funtion of eletrons is of the or-der 1/2 near the Fermi surfae [21℄. If the interationis in�nitely strong, all eletrons and all holes are boundinto exiton-like pairs. As a result, we obtain the valuein (21), whih is the maximal possible.In the model under onsideration,NR (p) is momen-tum independent and the total number of pairs NR di-verges at large p. (This is the defet of the point-likeeletron�eletron interation.) The sum over all statesshould be restrited either by pf or, at pfd� 1, by theinverse size of the hannel beause eletrons annot beonsidered one-dimensional at larger p (see footnote 3).In the ase, therefore,NR � L4�d:Hene, the number of pairs NR, in the ase pfd � 1,is only a small fration of the total number of eletrons

(Lpf=2�). This does not mean, of ourse, that theLuttinger liquid behaves like a normal one in this ase.The response of the system to slowly varying external�elds is ompletely determined by the eletrons nearthe Fermi surfae, whih are all paired. This situationresembles super�uid helium, where (even at zero tem-perature) the density of the ondensate is only a fewperent of the total one. Nevertheless, the whole massof helium is super�uid [28℄ at � = 0.We proeed with the region of high temperatures:� � � = !min. In this region, marosopi or-der parameter (10) is proportional not to the vol-ume of the system but to some harateristi length� (�) = vf= (���) (see the end of the next setion)and the density of the order parameter �=L vanishes(as �=L) in the limit L !1, as it should. Hene, thetemperature� indeed has the meaning of the tempera-ture of a smearing phase transition from the symmetriphase to the phase with broken hiral symmetry.The length � (�) plays the role of oherene lengthin our system. At lengths less than � (�), the wavefuntion of the system oinides with oherent expo-nent (20). But at larger distanes, the order disap-pears.The marosopi order parameter� an be nonzeroeven in the symmetri phase due to �utuations of thebroken to the unbroken phase. What matters is the be-havior of � with the size of the system. If � does notinrease with L, it follows that � / � and � � L, andwe deal with an unbroken phase; if � inreases withL, a long-range order appears. (This is just the region� � �, where � � vf= � � L.) This ondition analso be onsidered the de�nition of the smearing phasetransition temperature for a �nite-size system.On the other hand, it is obvious from suh a de�ni-tion that the phase transition temperature in �nite-sizesystems an be de�ned only up to 1=L orretions andthe phase transition is smooth within the 1=L regionnear the phase transition temperature. In the Luttingermodel, where the temperature � itself is of the order1=L, we an de�ne � only up to a fator of the orderof unity. This is the prie we have to pay for onsid-ering a phase transition of a large but �nite-size sys-tem. The above disussion should make it lear thatthis transition is smeared over the temperature regionabout �. But there is still a lear distintion betweenthe ase with a orrelation length of the order of thesystem size (broken phase) and the ase where � � L(unbroken phase). We note that � is not so small forreal systems. Indeed, if we take vf � 107 m/se andL � 10�4 m, then � � 1Æ K � vf=vf .As was already pointed out in the Introdution, the643 2*



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008ase of the in�nitely strong interation is very speial.We see in what follows that if the interation is �nite,then the marosopi order parameter� inreases withthe system size, but more slowly than L (at �� �).In the ase of a short-range potential (see Se. 4.1), �behaves as some power of L. This orresponds literallyto the de�nition of the BKT phase. If we onsidereda potential of the Coulomb type, � would depend onL in a more ompliated way, but would neverthelessinrease with the size L. Physially, this ase is quitesimilar to the usual BKT one. We note that in theformal limit e2=�vf ! 1, we have the ondensate ofindependent hiral pairs with wave funtion (20).To summarize, the Luttinger model at � < � isalways in the BKT phase with broken hiral symmetry.At � � �, it undergoes a phase transition, whih inthe limit of the in�nitely strong interation turns intothe smearing seond-order phase transition with a �nitedensity of pairs.4. GROUND STATE OF THETOMONAGA�LUTTINGER MODELEvolution operator (9) of a quantum system anbe represented as a funtional integral with de�niteboundary onditions (f. [26℄). This representation isusually derived for boson systems, and we therefore givethe derivation for fermions in Appendix A.The theory with an arbitrary eletron�eletron in-teration an be redued to a theory in an external�eld by means of the Hubbard�Stratonovih transfor-mation [29℄ (see Eq. (33) below). Integrating over theexternal �eld is required in order to return to the orig-inal 4-fermion interation. Therefore, we �rst onsiderthe evolution operator for one-dimensional eletronsplaed into an external �eld �(x; t). It is given byŜ (�) = Z(	;	) D	D	expS �	;	�; (22)where 	 and 	 are the eletron �elds (Grassmann vari-ables) and S is the ation:S = i TZ0 dt Z dx	R (x; t) [i�t � vf i�x +�(x; t)℄��	R (x; t) + (R; vf $ L;�vf ) : (23)Integration over 	;	 in Eq. (22) is performed withgiven boundary onditions at t = 0 and t = T .

At t! +0,	R;L (x; t) = âR;L (x) ++ arbitrary negative-frequeny part,	R;L (x; t) = b̂R;L (x) ++ arbitrary negative-frequeny part.At t! T � 0,	R;L (x; t) = b̂yR;L (x) ++ arbitrary positive-frequeny part,	R;L (x; t) = âyR;L (x) ++ arbitrary positive-frequeny part. (24)The reation operators of eletrons and holes â+and b̂+ are the variables entering the wave funtionsof the states in the sum in Eq. (9). The annihilationoperators â and b̂ enter the onjugate wave funtions.They antiommute, fâ; â+g = fb̂; b̂+g = 0, one theybelong to di�erent instanes of time if the evolutionoperator is alulated (see Appendix A for the details).Therefore, we an regard them as Grassmann variablesin alulating the funtional integral.It is possible to expliitly separate the dependeneon the reation and annihilation operators for the evo-lution operator in a given external �eld determined bythe funtional integration region in (22). We introduenew integration variables	R;L = 	0R;L + �R;L;	R;L = 	0R;L + �R;L: (25)The saddle-point �elds 	0R;L are supposed to obey theShrödinger equation in the external �eld �(x; t) withgiven boundary onditions (24). The �quantum" �elds�R;L(x; t) are arbitrary but obey zero boundary ondi-tions: �R;L (0) = �R;L (T ) = 0.The solutions 	0R;L an be represented in terms ofthe Feynman Green's funtion GR;L in a �nite time,de�ned as follows. It is a solution of the Shrödingerequation[i�t � vf i�x +�(x; t)℄GR;L (x; t;x1; t1) == iÆ(2) (x� x1; t� t1) (26)with the following boundary onditions: at t ! +0,the Green's funtion GR(x; t; x1; t1) oinides with the644



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :Green's funtion of free fermions in the lower halfplaneof the omplex variable x (being arbitrary in the up-per halfplane). At t ! T � 0, it oinides with thefree Green's funtion in the upper halfplane. For theGreen's funtion of left eletrons GL(x; t; x1; t1), theupper and lower halfplanes are to be exhanged.The free Feynman Green's funtion is given by [8℄G0R;L (x; t;x1; t1) == 12�i [vf (t�t1)� (x�x1)�iÆ sign (t�t1)℄�1 : (27)In one dimension, Shrödinger equation (26) an besolved for an arbitrary external �eld �(x; t):GR;L (x; t;x1; t1) = G0R;L (x; t;x1; t1)�� exp24i TZ0 dt0 Z dy�(y; t0) �G0R;L (x; t; y; t0) �� G0R;L (x1; t1; y; t0)� 35 : (28)Now it is easy to verify that the saddle-point �elds	0R;L an be expressed in terms of these Green's fun-tions as	0R;L (x; t) = Z dx0 [GR;L (x; t;x0; 0) âR;L (x0) �� GR;L (x; t;x0; T ) b̂yR;L (x0)i ;	0R;L (x; t) = � Z dx0 [GR;L (x0; 0;x; t) �� b̂R;L (x0)� GR;L (x0; T ;x; t) âyR;L (x0)i : (29)
To verify that these �elds obey the required boundaryonditions, we note that âR (x) and b̂R (x) are regularin the upper halfplane (see Eq. (2)). Therefore, thepositive-frequeny part of GR(x; t; x1; t1) at t ! +0 isdetermined by the pole ontribution at x0 = x+ iÆ andis equal to âR (x), as it should. The seond term inEq. (29) yields a negative-frequeny part, whih is ar-bitrary. Similarly, we verify the boundary ondition att ! T � 0. Inside the time interval (0; T ), the saddle-point �elds satisfy the Shrödinger equation, as an beseen from Eq. (26) for the Green's funtions.The ontribution of the saddle-point �eld to the a-tion is

S0 = Xi=R;L Z dx dx0 hb̂i (x0)Gi (x0; 0;x; �) âi (x) ++ âyi (x0)Gi (x0; T ;x; T � �) b̂yi (x) �� âyi (x0)Gi (x0; T ;x; 0) âi (x)�� b̂i (x0)Gi (x0; 0;x; T ) b̂yi (x)i : (30)We here take Eq. (26) into aount. Sine the saddle-point �elds obey the Shrödinger equation, there is noterm linear in the quantum �eld � in the ation.The dependene of the evolution operator in theexternal �eld on the reation and annihilation fermionoperators is ompletely determined by Eq. (30). Theintegral over quantum �utuations produes the de-terminant of the Shrödinger operator in the external�eld �:ln [Det� (T )℄ = � 14� TZ0 dt dt1 �� 1Z�1 dp2�� (�p; t)� (p; t1) jpj �� exp [�ijpjvf jt� t1j℄ : (31)(It is alulated in Appendix B. In fat, we introduedan ultraviolet ut-o� there.) The omplete expressionfor the evolution operator in the external �eld has theform Ŝ (�) = exp (S0 + ln[Det� (T ) ℄)jF ihF j; (32)Now we an express the evolution operator for thesystem of interating fermions in terms of this operator.We use the well-known identity [29℄exp24� i2 TZ0 dt 1Z�1 dp2�V (p) % (p; t) % (�p; t)35 = 1N ��Z D�exp24 i2 TZ0 dt 1Z�1 dp2�� (p; t) � (�p; t)V �1 (p) �� i2 TZ0 dt 1Z�1 dp2� (% (p; t) � (�p; t) ++ % (�p; t)� (p; t))35 : (33)The normalization oe�ient N is645



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008N = Z D�exp24 i2 TZ0 dt �� 1Z�1 dp2�� (p; t)� (�p; t)V �1 (p)35 : (34)To prove Eq. (33), it su�es to shift the integrationvariable � to �� V % in the integralZ D�exp � i2Tr ��y�V �1�� :Applying identity (33) to the funtional inte-gral that determines the evolution operator for theTomonaga�Luttinger model, we express it in terms ofthe evolution operator in the external �eld at the prieof an additional funtional integration over the salar�eld �(x; t):Ŝe�e = 1N Z D�exp24 i2 TZ0 dt �� 1Z�1 dp2�� (p; t) � (�p; t)V �1 (p)35 Ŝ (�): (35)Expression (35) is expliit: while it is not possible toperform the �nal integration in �(x; t) in losed form,it is easy to obtain an arbitrary term of the evolutionoperator by expanding it in the reation and annihila-tion operators. This su�es for the alulation of theevolution operator.Indeed, we expand the evolution operator in pow-ers of the external �eld Sn0 . The arbitrary term of theexpansion ontains a number of Green's funtions inthe external �eld (28), whih are exponentials linear inthe external �eld. Together with ation (35) and de-terminant (34), we obtain a Gaussian-type integral in�(x; t), whih an be easily performed. The result ofthe integration depends of the eletron�hole on�gura-tion onsidered. It is spei�ed by the onrete term ofthe expansion.We introdue the following notation for the oordi-nates entering the eletron�hole reation and annihila-tion operators.1. We let x denote the oordinates of the right par-tiles and y the oordinates of the left partiles.2. We put a tilde on oordinates related to annihi-lation operators (initial state) and leave oordinates ofreation operators (�nal state) without a tilde.3. We put primes on oordinates related to holes.

It is onvenient to proeed in the exponents ofGreen's funtions (28) to momentum spae using theexpression for the free Feynman Green's funtions:G0R;L (p; t; t1) = ��p� (t� t1)�� exp [�ipvf (t� t1)℄� ��p� (t1 � t)�� exp [�ipvf (t� t1)℄ : (36)Colleting all terms in the exponents arising fromGreen's funtion (28), we obtain the ontribution tothe ation linear in the external �eld �,S = i TZ0 dt 1Z�1 dp2�� (�p; t)R (p; t) ; (37)where the �urrent� R depends on the hosen on�g-uration, i.e., on the onrete term in the expansion ofSn0 . It depends on the eletron (hole) operators diretlyand as a result on their oordinates. (See Eq. (50) be-low. A possible on�guration an be seen in expliitform there.) It is equal toR (p; t) = Ri (p) exp (�ijpjvf t) ++Rf (p) exp (�ijpjvf (T � t)) ; (38)andRf (p) = Xx::: ;x0::: ;y::: ;y0::: � (p) [exp (ipx) �� exp (ipx0)℄ + � (�p) [exp (ipy)� exp (ipy0)℄ ;Ri (p) = X~x::: ;~x0::: ;~y::: ;~y0::: � (�p) [exp (ip~x) �� exp (ip~x0)℄ + � (p) [exp (ip~y)� exp (ip~y0)℄ (39)
for the initial (annihilation operators) and �nal (re-ation operators) on�gurations respetively. Coordi-nates x; : : : ; y; : : : in Eq. (39) are the oordinates ofannihilation and reation operators for the on�gura-tion in whih we are interested. Finally, we obtain thefuntional integral646



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :Z D�exp24 i2 TZ0 dt dt1 �� 1Z�1 dp2�� (p; t) � (�p; t1)V �1 (p) Æ (t� t1) �� 14� TZ0 dtdt1 1Z�1 dp2�� (�p; t)� (p; t1) jpj �� exp [�ijpjvf jt� t1j℄ ++ i TZ0 dt 1Z�1 dp2�� (�p; t)R (p; t)35 ; (40)where the �rst term is the ation in Eq. (35), the se-ond term is the quantum determinant, and the thirdterm omes from the Green's funtions in Eq. (37).The integral in Eq. (40) is Gaussian: it an be al-ulated by standard methods, by �nding the saddle-point �eld �0 and shifting the integration variables as� ! � � �0. The integral with respet to the �utu-ations ���0 yields a shift of the ground-state energydue to the eletron interation and the normalizationoe�ient of the ground-state wave funtion. We al-ulate this integral in Appendix C. The operator stru-ture of the evolution operator is ompletely determinedby the terms that appear as a result of substituting thesaddle-point �0 in Eq. (40). We write them as an �ef-fetive ation�:Seff = i2 1Z�1 dp2� TZ0 dt�0 (p; t)R (p; t) : (41)The saddle-point �eld �0(x; t) satis�es the integralequationiV0�0 (p; t)� 12� Z T0 dt1�0 (p; t1) jpj �� exp [�ijpjvf jt� t1j℄ = �iR (p; t) ; (42)whih an be redued to the following di�erential equa-tion (to see this, it su�es to di�erentiate both sides ofEq. (42) with respet to time):�2t�0 (p; t) + !2p�0 (p; t) = 0; (43)where !p = jpjvfs1 + V0�vf : (44)

The boundary onditions for this equation follow fromthe original integral equation (42):�t�0 (p; 0)� ijpjvf�0 (p; 0) = 2ijpjvfV0Ri (p) ;�t�0 (p; T ) + ijpjvf�0 (p; T ) == �2ijpjvfV0Rf (p) : (45)In the derivation of Eq. (43), we have used the fat thatour system is eletrially neutral, and heneRf (p = 0; t) = Ri (p = 0; t) = 0:The solution of the di�erential equation for thesaddle-point �eld (Eq. (43)) gives�0 (p; t) = �2jpjvfV0(!p + jpjvf ) �1� �2p� �� fRi [exp (�i!pt) + �p exp (�i!p (T � t))℄ ++ Rf [�p exp (�i!pt) + exp (�i!p (T � t))℄g ; (46)where �p = 1�p1 + V0=�vf1 +p1 + V0=�vf exp (�i!pT ) :Substituting the saddle-point �eld in the e�etive a-tion (41), we �nally obtainSeff = � 1LXp6=0 V01 +p1 + V0=�vf 11� �2p �� [[Rf (�p)Rf (p) +Ri (�p)Ri (p)℄F2 (p) ++ 2F1 (p)Rf (�p)Ri (p)℄ ; (47)where we introdue the funtionsF1 (p) = exp (�ijpjvfT )� exp (�i!pT )!p � jpjvf ++ �p 1� exp (�i (!p + jpjvf ) T )!p + jpjvf ;F2 (p) = 1� exp (�i (!p + jpjvf )T )!p + jpjvf ++ �p exp (�ijpjvfT )� exp (�i!pT )!p � jpjvf : (48)
In expression (47) for the e�etive ation, we re-turn to a sum over the partile momenta pn = 2�n=Lin aordane with the ordinary rule6):1Z�1 dp2� �! 1LXp :6) This orresponds to periodi boundary onditions for the 	and 	 �elds at the boundaries of the sample. (See also the endof Appendix D.)647



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008This allows qualifying di�erent infrared divergenesthat appear in the e�etive ation. We note that thereis no term with p = 0 in these sums. This fat is re-lated to the gauge invariane of the system: onstant(in spae) �elds �(t) orrespond to a pure gauge ele-tri potential and should not ontribute.We proeed with the ground-state wave funtion inthe Tomonaga�Luttinger model. As mentioned above,in order to separate the ground state, we have to takethe limit T ! 1. (This orresponds to the ase ofzero temperature.) We an omit osillating exponen-tials in this limit. As a result, we are left with only thefuntion F2, whih beomesF2 (p) � "jpjvf  1 +s1 + V0�vf !#�1 :The e�etive ation fatores into ontributions of initialand �nal states:Seff = � 1LXp6=0 V0jpjvf h1 +q1 + V0�vf i2 �� [Rf (�p)Rf (p) +Ri (�p)Ri (p)℄ == Sfeff + Sieff : (49)In addition to Seff , we have to alulate preex-ponential fators that arise from the free FeynmanGreen's funtions. Only the Green's funtions withequal-time arguments survive as T ! 1. As a re-sult, we see that the whole expression for the evolutionoperator for large T fatores into the produt of theground-state wave funtion j
i and its omplex onju-gate. The �nal expression for the wave funtion is ofthe formj
i = 1Xn=0 1n! "Z dx dx02�i âyR (x) b̂yR (x0)x0 � x� iÆ ++ Z dy dy02�i âyL (y) b̂yL (y0)y � y0 � iÆ #n �� expSfeff (x; x0; : : : ; y; y0; : : : ) jF i: (50)We verify that the wave funtion of noninteratingfermions (V = 0) is jF i. The general term in the sumin Eq. (50) is a produt of fators:Z dx dx02�i âyR (x) b̂yR (x0)x0 � x� iÆ jF i:We note now that all singularities of the operatorb̂yR (x0) are those in the upper halfplane (see De�ni-tion 2) and the pole of the Green's funtion. We an

lose the ontour of x0 in the lower halfplane and provethat the orresponding integral vanishes. The onlyterm that survives is the one with n = 0, and henej
i = jF i, as it should be for noninterating fermions.A nontrivial answer for the wave funtion appearsonly owing to singularities of the e�etive ation. It islear from the general struture of the ation (whihis the produt Rf (p)Rf (�p)) that the wave funtionontains only terms where both R- and L-partiles arepresent. All terms with only R (or only L) eletrons orholes vanish. The simplest possible ontribution to theground-state wave funtion j
i (see Eq. (50)) isZ dx dx02�i dy dy02�i âyR (x) b̂yR (x0)x0 � x� iÆ âyL (y) b̂yL (y0)y � y0 � iÆ �� expSfeff (x; x0; y; y0): (51)The e�etive ation Seff for this term is given bySfeff (x; x0; y; y0) = �2�L �� Xpn>0 1pn fexp[ipn (x� y + iÆ)℄ ++ exp [ipn (x0�y0+iÆ)℄� exp [ipn (x0�y+iÆ)℄�� exp [ipn (x� y0 + iÆ)℄g ; (52)where � = V0vf h1 +p1 + V0=�vf i2 : (53)The sums in Eq. (52) an be easily alulated. WeobtainSfeff (x; x0; y; y0) == �� ln (x� y + iÆ) (x0 � y0 + iÆ)(x0 � y + iÆ) (x� y0 + iÆ) : (54)Aording to the harge onservation law, the numberof eletrons has to be equal to the number of holes, andtherefore the number of exponentials with the oppositesign in Eq. (52) is the same. As a result, the ationSeff does not diverge and singularities in the integrandin Eq. (51) are removed by zeroes of the ation or bythe integrations over x0 and y0. Therefore, divergenesin the wave funtion do not exist even for short-rangeinterations.Expression (51) desribes the simplest possible om-plex in the vauum of the interating fermions. This648



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :omplex has all quantum numbers equal to zero.In fat, it desribes eletron�eletron sattering (inthe ross hannel). Correspondingly, all oordinatesx; x0; y; y0 are lose to eah other. In general, this om-plex does not break any ontinuous symmetry.But in the Tomonaga�Luttinger model, a speialsituation arises. The leading ontribution to term (54)omes from the region x0�y; x�y0 ! 0 (of the order ofthe transverse size of the hannel), but x�y and x0�y0an be arbitrarily large. In other words, the omplexdeays into R�L- and �RL-pairs. As we see in what fol-lows, suh a wave funtion leads to a spontaneous hiralsymmetry breaking.We �rst onsider the strong-interation limit:V0�vf � 1: (55)In this limit, �=� ! 1. It an be seen that for �=� = 1,the poles (x = x0 and y = y0) orresponding tofree fermions are aneled ompletely by the fermion�fermion interation (desribed by expSeff ) with the ef-fetive ation in Eq. (54). Instead, we obtain new polesat the points x0 = y � iÆ and y0 = x + iÆ. Reallingthat b̂yR (x0) is analyti in the lower and b̂yL (y0) in theupper halfplane, we an integrate further over x0 andy0. As a result, we obtain the following ontribution tothe ground-state wave funtion:Z dx âyR (x) b̂yL (x) Z dy âyL (y) b̂yR (y) : (56)Thus, the 4-partile omplex deays into 2 noninter-ating �bosons�. They are neutral in the eletri hargebut have a nonzero hirality �2.It an be veri�ed that no other onneted omplexesappear in the limit of strong interation. For example,we onsider harged omplexes. The four-fermion on-tribution is exhausted by Eq. (56), and hene we haveto onsider a 6-fermion omplex:âyR (x) b̂yR (x0)x0 � x� iÆ âyR (x1) b̂yR (x01)x01 � x1 � iÆ âyL (y) b̂yL (y0)y � y0 � iÆ ��(x�y+iÆ) (x1�y+iÆ) (x0�y0+iÆ) (x01�y0+iÆ)(x�y0+iÆ) (x1�y0+iÆ) (x0�y+iÆ) (x01�y+iÆ) : (57)This omplex, indeed, deays into 2 fermions asx1 ! y0 ! x and x0 ! y ! x01 (the relative distanex � x0 is supposed to be large). These fermions are ofthe form âyR (x) âyR (x) b̂yL (x) and âyL (x0) b̂yR (x0) b̂yR (x0).Hene, this ontribution is zero owing to the Paulipriniple. We an also onsider more ompliated

on�gurations that ould produe harged onnetedomplexes and verify that they do not appear in theground-state wave funtion.The Pauli priniple allows one more omplex thatdesribes sattering of hiral pairs:âyR (x) b̂yL (x) âyL (x) b̂yR (x) :The orresponding ontribution an be extrated fromthe onneted part of the general expression (51). Theintegral over x0 and y0 is easily alulated and we obtainZ dx dy âyR (x) b̂yL (x) âyL (y) b̂yR (y) � (x� y) ;where� (x� y) = �iÆy � x� 2iÆ �2 + iÆy � x� 2iÆ� :The funtion � (x� y) is �nite at any x and y (evenat x = y) and therefore its ontribution to the integralvanishes in the limit Æ ! +0. In other words, in thelimit of an in�nitely strong interation, the hiral pairsdo not interat. This interation appears, however, inthe next approximations in the inverse oupling on-stant (see Se. 4.1).To obtain the omplete expression for the ground-state wave funtion, we have to onsider omplexeswith 8, 12, : : : partiles and separate the onnetedparts of these omplexes. This is not neessary, how-ever, beause, aording to a general theorem [30℄, theomplete wave funtion is the exponent of the on-neted omplexes7) and we have proved that the onlyonneted omplexes are the hiral pairs in Eq. (56).On the other hand, the total hirality C of j
i must bezero and only terms with C = 0 an our in the ex-pansion of j
i. To take this into aount, we introduethe projetor PC=0 onto the state with hirality zero.Then the wave funtion an be written asj
i =pZ0P̂C=0 exp �Z dx âyR (x) b̂yL (x) ++ Z dy âyL (y) b̂yR (y)� jF i: (58)The normalization oe�ient Z0 is alulated in Ap-pendix C. We have already disussed the wave fun-tion in Se. 3. Funtion (58) orresponds to an un-broken symmetry phase in spite of the presene of an7) This theorem is in fat a purely ombinatorial statement.In �eld theory, it is mostly applied to Green's funtions. In sta-tistial physis, it is known as the �rst Mayer's theorem (see,e.g., [31℄).649



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008in�nite number of hiral pairs with zero momentum.If the hiral symmetry is broken, the states with dif-ferent hiralities should be degenerate in energy. Thisis not the ase if the system size is �nite: the energyof the state with C = 0 is still minimal and the orderparameter � is zero for � = 0.Wave funtion (58) orresponds to the state withthe minimal possible energy. Hene, it is the wave fun-tion of the system at � = 0. To disuss the nonzerotemperature region, we an proeed to the Eulideantime (T ! �i=�) for equilibrium systems. We haveseen that the ation ontains two types of exponen-tials (see the term with Rf (p)Ri (�p) in Eq. (48)):exp(�vfp=�) and exp(�vfp=�) (with a renormalizedFermi veloity). Corretions of the seond type orre-spond to exitations, and we omit them. But there areno exitations with the energy vfp (this an be seen,e.g., by the method of bosonization). In fat, theseexponentials desribe the hange of the ground statewith temperature (see footnote 4). (We disussed themeaning of the rossover temperature 2�vf=L in Se. 3in detail.) Obviously, for � � 2�vf=L, this exponen-tial fator is not small but the preexponential fator,i.e., the Green's funtion with the imaginary time dif-ferenes about 1=�, gives the smallness. This is om-pensated by the ation, beause it is proportional toln(1=�): This is the ase for the temperature region un-der onsideration. In the opposite ase � � 2�vf=L,the Green's funtion (27) is inappliable. We an useEq. (36), but it is impossible to transform the sums overpn to integrals in order to obtain Eq. (27). As a result,the Green's funtion is proportional to a small exponen-tial fator. It annot be ompensated by a logarithmidivergene from the ation and the whole term withexp(�vfp=�) is small. Therefore, ground-state wavefuntion (58) is valid if�� �hiral = 2�vfL : (59)Of ourse, we assume that the number of states is large,i.e., pfL � 1. This allows passing from sums to inte-grals in the expressions independent of � (or T ).In the region of higher temperatures, �hiral � �;Eq. (27) for the Green's funtion is appliable. In thisase, after similar algebrai transformations, the e�e-tive ation Seff in Eq. (47) for an in�nitely strong in-teration an be rewritten as

Seff = ��LXn6=0 1jpnj �� th jpnjvf2� [Rf (�p)Rf (p)+Ri (�p)Ri (p)℄�� 2�L Xn6=0 1jpnj exp �jpnjvf� � exp �jpnjvf�1 + exp �jpnjvf� ��Rf (p)Ri (�p) ; (60)where vf = vfp1 + V0=�vf : If�hiral � �� 2�vf=L (61)then Eq. (60) an be transformed to8)Seff = ��LXn6=0 1jpnj [Rf (�p) �� Rf (p) +Ri (�p)Ri (p)℄�� 2�L Xn6=0 1jpnj exp �jpnjvf� Rf (�p)Ri (p) : (62)Hene, in the temperature region of interest, we shouldtake another 4-fermion ontribution to the ground stateinto aount:Z dx d~x2�i dy0d~y02�i âyR (x) âR (~x)~x� x+ vfT � iÆ �� b̂yL (y0) b̂L (~y0)~y0 � y0 � vfT + iÆ expSfeff (x; ~x; y0; ~y0): (63)(At lower temperatures, this ontribution is exponen-tially small. Here, we work with real time T until theend and proeed to Eulidean time only at the laststep.) The ation for this on�guration isln (~y0 � y0 � vfT + iÆ) (x� ~x� vfT + iÆ)(x� y0 + iÆ) (~y0 � ~x+ iÆ) : (64)Thus, we have a similar result: a pair âyR (x) b̂yL (x)in j
i and âR (~x) b̂L (~x) in h
j: However, the existeneof an extra pair implies that the total hirality C ofthe state is nonzero. Hene, states with any C exist.Their energies di�er by values of the order of 2�vf=L:For temperatures (61), these states an be onsidereddegenerate. Then a state with a �xed hirality is un-stable relative to an in�nitesimal interation that mixes8) The terms in the equation for Seff with the fatorexp ��jpnjvf=�� desribe an exited state. We do not disussthem beause suh e�ets an be alulated more easily by usingthe bosonization tehnique.650



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :right and left partiles (e.g., in�nitesimal bak satter-ing). Similarly to the theory of superondutivity, thereal ground state of the system is a mixture of stateswith di�erent hiralities, but with a �xed hiral phase�. Therefore, we have derived the wave funtion orre-sponding to Eq. (20) disussed in Se. 3. An alternative(in the boson representation) form of the ground-statewave funtion is given in Se. 5.To prove that� = !(2�=L) = 2�vf=L (65)is the phase transition temperature, we must onsiderthe higher-temperature region � � �. The log-arithmi ontribution to the ation Seff arises fromn � nmin � L�=2�vf � 1: At smaller n, the loga-rithmi divergene does not our. Hene,Seff = ��L Xjnj>nmin 1jpnj �� [Rf (�p)Rf (p) +Ri (�p)Ri (p)℄�� 2�L Xjnj>nmin 1jpnj exp �jpnjvf� Rf (�p)Ri (p) : (66)This is to be ompared with Eq. (60). The sums inEq. (66) are alulated in Appendix D. As a result, thelogarithms in Eq. (54) are to be replaed byln (�x+ iÆ)(�x0 + iÆ) ! �(�x+iÆ)Z�(�x0+iÆ) dzz exp�� iz� (�)� ; (67)where � (�) = vf= (���) (68)is the oherene length.The right-hand side of Eq. (67) an be expres-sed in terms of the integral exponential funtionwith imaginary argument. To prove that � (�)is the oherene length, we note that at lengths�x � � (�), the right-hand side of Eq. (67) tendsto ln ((�x+ iÆ) = (�x0 + iÆ)); i.e., the system is har-aterized by the wave funtion in Eq. (20), with theexeption of the normalization oe�ient. (Indeed, itis then possible to repeat the alulations in the pre-vious setion with all onneted omplexes separatedby distanes shorter than � (�).) Thus, in a regionof a sample smaller than �, a oherent state exists. Inthe opposite ase (distanes between pairs �x = jx�yjlarger than � (�)), the integrand begins to osillate and

the divergene does not our. As a result, we havesmall orretions to the ation approximately given byexp�� i�x� (�)� � (�)�x :Hene, the 4-fermion ontribution in (63) leads to thetermZ dx dy� � (�)jx� yj�2 âyR (x) b̂yL (x)�� jF ihF jb̂L (y) âR (y) (69)in the evolution operator. Thus, at distanesjx � yj � �, we have on�gurations with free bosons.Consequently, the state is nonoherent at this sale.Therefore, the long-range order does not exist atlengths larger than � (�). We an also verify thisdiretly. For this, we alulate the ontribution ofstate (69) to the order parameter density orrela-tor hjâyR (y1) b̂yL (y1) b̂L (x1) âR (x1) ji in the regionjx1 � y1j � L � �: After the integration over x1 andy1, we have the ontribution of this state to �2:L=2Z�L=2 dx�2 (�)L � �2 (�) :Beause � is independent of L, we have the normalphase (see Se. 3) with low-symmetry phase �utua-tions. This means that � is indeed the phase tran-sition temperature and � is the oherene length. Be-sides, we have a more obvious de�nition of �:� (�) � L:In this ase, the entire system an be desribed by thebroken-symmetry wave funtion in Eq. (20). Hene, thelow-symmetry phase should be regarded as realized if� < �. The above disussion must make it lear thatthis transition is smeared over the temperature regionabout �, as it should be for a �nite-size sample.4.1. Berezinskii�Kosterlitz�Thouless phaseWe prove that the BKT phase [16℄ is likely to formin the Tomonaga�Luttinger model if orretions to theation due to �vf=V0 are taken into aount.We begin with the ase of zero temperature andagain onsider the 4-fermion ontribution, Eq. (51), tothe ground wave funtionZ dx dx02�i dy dy02�i âyR (x) b̂yR (x0)x0 � x� iÆ âyL (y) b̂yL (y0)y � y0 � iÆ �� � (x� y + iÆ) (x0 � y0 + iÆ)(x0 � y + iÆ) (x� y0 + iÆ)��0 jF i; (70)651



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008where �0 � �=�. For simpliity, we onsider �0 loseto unity. We onsider the on�guration with two on-neted hiral omplexes separated by a distane R largeompared to the transverse size of the hannel d: x0�y,x � y0 � d ! 0 and jx � x0j � R, jy � y0j � R ! 1.The ontribution in whih we are interested is deter-mined by two uts, y0 = x+ iÆ and x0 = y + iÆ, and isproportional to�1� e2�i�0� xZ�1 dy02�i b̂yL (y0) 1(y0 � x)�0 (x0 � y0)�0(y0 � y) :The last fator in the integrand is of the order of1=R1��0 . Distanes inside the pair y0�x, x0� y are ofthe order of d. The ontribution of the distant hiralpairs to integral (70) isZ dx dyâyR (x) b̂yL (x) âyL (y) b̂yR (y)��� djx� yj�2(1��0) jF i: (71)In temperature region (19), we an also onsider on-tributions of the states with C 6= 0 to the ground state.The simplest ontribution omes again from Eq. (63)and has the form9)Z dx dy� djx� yj�2(1��0) �� âyR (x) b̂yL (x) jF ihF jb̂L (y) âR (y) : (72)As an be seen from Eqs. (71) and (72), the probabilityto �nd hiral pairs at the distane R isP (R) = j�(R)j2 � 1=R2(1��0):This probability dereases with R but muh moreslowly than in the theory without interation. The av-erage distane between orrelated pairshRi = LZ0 dRRP (R) � L2�0diverges as L!1.9) The bosonization tehnique allows alulating the 4-partileorrelator exatly (i.e., with pair sattering). As a result, wehave the well-known exponent�T = 1� 1= s1 + V0�vf :It oinides with �0 only in the strong interation limit. Thisdistintion arises from the fat that the term in whih we areinterested involves only the diret interation between two pairs.

It is instrutive to onsider the same quantities inthe theory with noninterating eletrons. There, theprobability to �nd a hiral pair isPfree = � djx� yj�2(see Eq. (69)). As we have seen, this results in the in-dependene of � from L. The other limit ase is thesystem with a nonzero density of the order parameter.There, the probability to �nd a hiral pair is indepen-dent of the distane R and � / L. The probabilityunder disussion has an intermediate behavior. As aresult, � inreases with L, but the power exponent issmaller than unity. Both these properties an be on-sidered a de�nition of the BKT phase. Moreover, theexistene of a marosopi, i.e., inreasing with vol-ume, number of bosons in the ground state is a suf-�ient ondition for a long-range order itself. This isthe ase although their density tends to zero in thethermodynami limit beause eah matrix element isproportional to the square root of the boson number inthe state.In the BKT system at �0 < 1, the temperature �of the phase transition to the unbroken phase is of thesame order as in the limit of the in�nitely strong in-teration. Indeed, our estimate of � in the previoussetion was based on the logarithmi divergene of theation. This divergene also exists for �0 < 1 and heneour expressions for � and the orrelation length � arevalid in this ase. We note that the upper-temperatureboundary of the hiral phase oinides with the tem-perature region where power-law orrelators exist, as itshould. Indeed, it is well-known that for a �nite tem-perature, the orrelators derease exponentially at dis-tanes longer than vf=� [11℄. Beause we do not wishthat the exponential asymptoti be reahed within thesize of the sample, it has to be smaller than vf=�, or�� vf=L � �.The wave funtion for the BKT phase does not havethe simple form in Eq. (20) beause the interation ofhiral pairs is nonzero. Also hiral omplexes with morethan two partiles are present in the ground-state wavefuntion. However, properties of this phase are quitesimilar to properties of the phase with broken symme-try that appears in the limit of in�nitely strong inter-ation.5. BOSON REPRESENTATION ANDSYMMETRY BREAKINGWe onsider the relation between the ground-statewave funtion in the boson representation and in our652



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :representation. It is onvenient to use the �rst in theform given in [23℄ for the Luttinger model (as it should,it oinides in the limit of in�nitely strong interationth � ! 1 with the Shwinger model [32℄):jGS0i == N exp � 1LXn>0 th �ĈyL (pn) ĈyR (pn)! jF i; (73)where ĈyR is the boson reation operator determinedby the density of the right eletrons; the subsript Ldenotes left bosons:ĈR;L (p) =r2�p Z dx exp(�ipx)%R;L (x) ; (74)all p > 0; and%R;L (x) = âyR;L (x) âR;L (x) � b̂yR;L (x) b̂R;L (x) ++ âyR;L (x) b̂yR;L (x) + b̂R;L (x) âR;L (x) : (75)The parameters sh � and h � allow passing to the newdiagonalized �elds Ĉ (�p). Wave funtion (73) hasthe lowest possible energy and satis�es the relationĈ (�p) jGS0i = 0: We laim that the wave funtionjGS0i oinides with our ground-state wave funtionwith zero hirality (see Eq. (58)). We used the fermionrepresentation in the paper beause we need to see thesymmetry breaking in the eletron system. RewritingjGS0i in terms of eletron operators diretly with thehelp of Eq. (75) is a rather involved and nonuniversalproedure. In the boson approah, it is preferable toknow results in advane beause the boson representa-tion is the most veiled way to see a symmetry break-ing. The problems begin with nonommuting terms inEq. (75). It is extremely di�ult to �nd omplexes de-aying into hiral pairs and to prove the absene of theneutral ones in all orders. (We note that the form ofthe hiral omplexes depends on a problem. For exam-ple, it hanges drastially with inreasing the eletronomponent number, see [33℄, and the alulations be-ome muh more bulky in the ase.) In the fermiontreatment in this paper, the operator struture of thewave funtion is determined by the ontribution of thesaddle-point �eld to the ation, S0 (Eq. (30)). Theoperators are here onsidered antiommuting (see Ap-pendix A for the details). This allows formulating thealulation rule for the ation for a given eletron op-erator on�guration in expliit form (Eq. (37)).In addition, the pairing e�et annot be obtainedin any order of the perturbation theory (i.e., in theexpansion of (73) in powers of ĈyLĈyR). It is a nonper-turbative e�et. However, if the omplexes are known

from the outset, it is possible to rewrite jGS0i in thefermion representation. Indeed, we know that the sim-plest omplex deaying into hiral pairs for a zero hi-rality state is âyRb̂yLâyLb̂yR. We extrat the relevant termfrom the entire state jGS0i:N exp � 1LXn>0 ĈyL (pn) ĈyR (pn)! jF i == N h1+Tr�F (2) (x; x0; y; y0) âyR (x) b̂yL (y0) âyL (y) �� b̂yR (x0)�+ : : : i jF i: (76)To alulate the oe�ient F (2), we have to projet theentire state on hF jâRb̂LâL b̂R, and heneF (2) (~x; ~x0; ~y; ~y0) = hF jâR (~x) b̂L (~y0) âL (~y) b̂R (~x0)�� exp � 1LXn>0 ĈyL (pn) ĈyR (pn)! jF i: (77)The further train of thought is obvious. After bosoniza-tion, the matrix element is to be rewritten as a fun-tional integral using the well-known relationhF jR�Ĉ�R0 �Ĉy� jF i == Z DCDCR (C)R0 �C� exp ��TrCC� ;whereR andR0 are arbitrary funtions and C is a om-plex Bose �eld. Wave funtion (73) depends on the leftand right eletron densities, and it is therefore onve-nient to use the bosonization sheme involving left andright �elds, ĈL and ĈR (see [32℄), rather than a shemewith the total density and momentum anonially on-jugate to it:	yR;L (x) = exp�AyR;L (x)� �yR;LpL �� exp (�AR;L (x)) : (78)Here AyR;L (x) = 1LXn>0 exp (�ipx)r2�p ĈyR;L;and � is the operator with a set of harateristis deter-mined by	R;L. For example, from the antiommutatorof the eletron operators, we have �yR;L�R;L = 1 andf�R;L; �L;Rg = 0. Also, � and �y should ommute withĈL;R and hF j�yR;LjF i = 0. It follows thatZ dx	yR;L (x) jF i = L�1=2�yR;LjF i;653



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008that is, �yR;L oinides with the ladder operator of Hal-dane [23℄. The sheme in (78) is idential to the stan-dard one for ondensed matter physis (see, e.g., [11℄)but is more onvenient in our problem.To extrat the eletron or hole parts from (78), wean use the identities suh asâL (~y) = 12�i Z dx 	L (x)(~y � x� i0) :As a result, we obtainF (2) (~x; ~x0; ~y; ~y0) == 1(2�i)2 1(~x� ~y0 + i0) (~x0 � ~y + i0) : (79)This implies that the seond term in Eq. (76) is equalto Z d~x d~y âyR (~x) b̂yL (~x) b̂yR (~y) âyL (~y) ;in aordane with our previous result.To obtain the hiral wave funtion, we prove thatthe state jGS1i = �L�yRjGS0i is the state with an ad-ditional hiral pair. In the same way, we haveF (1) (~x; ~y0) = 12�i 1~x� ~y0 + i0 ;and hene the one-pair state isZ d~x âyR (~x) b̂yL (~x) jF iand the entire state jGS1i is not invariant under hiraltransformations. (It is highly essential that the eletronand the hole are at the same spatial point. In priniple,the form of jGS1i might suggest that their positions areunorrelated.) Of ourse, the energy di�erene betweenthe state and jGS0i is 4�vf=L. At the same time, in or-der to have a nonzero order parameter, the states withdi�erent hiralities have to be degenerate in energy.This would allow onstruting a wave funtion giving anonzero order parameter, Eq. (10), although the Hamil-tonian has no symmetry-breaking term. To obtain thedegeneray, the thermodynami limit L ! 1 is typi-ally used. This treatment is forbidden for us beause� ! 0 in the limit as well. At the same time, in thetemperature region � � �hiral = 2�vf=L, we anonsider these states degenerate too (f. the disussionin Se. 3 between Eqs. (20) and (21)). Therefore, theground-state wave funtion with an arbitrary hiralityand �xed phase an be onstruted asj�i = 1X�1 exp (in�)jGSni; (80)

where jGSni = ��L�yR�n jGS0ifor n > 0 and jGSni = ��R�yL�n jGS0ifor n < 0. (Indeed, Ĉ (�p) j�i = 0 and in orderto hek hirality of the state, any n-pair amplitudean be alulated in the same way.) Equation (80)is an alternative (in the boson representation) formof our symmetry-breaking ground-state wave funtion,Eq. (20).It is not surprising that the boson representationis a nonobvious way to see a symmetry breaking ina fermion system. To realulate the wave funtion,we should know the result in advane. We believethat the exlusive use of the boson representation inan analyti alulation is the reason why the fat ofsymmetry breaking has been unknown so far.We are grateful to V. L. Gurevih, Yu. M. Galperin,and V. I. Kozub for a number of interesting disussionsand to V. L. Gurevih and W. von Shlippe for readingthe manusript. V. V. A. also aknowledges for partialsupport RFBR (grant � 06-02-16384).APPENDIX AEvolution operator for fermion systemsIn this appendix, we derive the representation forthe evolution operator of fermions in the external �eldas a funtional integral with de�nite boundary ondi-tions.In the Shrödinger representation, the evolution op-erator S(T ) isS[T ℄ = T exp(�i TZ0 H dt)jF ihF j;where H is a fermion Hamiltonian in the external �eld,whih is bilinear in the fermion �elds. As we have seen,the general problem with the eletron�eletron intera-tion an be redued to this problem at the prie ofintegration over the external �eld. For simpliity, webegin with the model with an empty ground state j0irather than the Fermi one. (This allows writing theequations in a more ompat form.) We also omit thespatial arguments.We divide the time interval T into N in�nitesimalpiees Æ = T=N (with the point i = N orresponding to654



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :t = 0 and i = 1 to t = T ) and introdue the sum overthe omplete set of quantum mehanial states jkihkjat the intermediate points:S[T ℄ =Xni jkN ihkN j (1� iÆH) jkN�1i : : :: : : hk2j (1� iÆH) jk1ihk1j: (A.1)For any omplete set of wave funtions in the se-ond-quantized representation, we haveXn jki(n)ihki(n)j = Z D�iD�yi exp��Tr �yi �i��� exp �Tr �iây� j0ih0j exp��Tr �yi â� (A.2)(the index n orresponds to the set of all quantum num-bers). The Grassmann variables � are de�ned in theusual way:Z d�i(n) = 0; Z d�i(n)�i(n) = 1;h�yi (n); �i(n)i+ = 0; D�i =Yn d�i(n):Equation (A.2) an be proved by diret omparison ofthe left- and right-hand sides. We use this represen-tation to rewrite the sum over states as a funtionalintegral.At eah point i, we obtain the following matrix el-ement of the Hamiltonian:exp��Tr �yi �i� h0j exp��Tr �yi â��� �1� iÆH �ây; â�� exp��Tr �yi+1�i+1��� exp �Tr �i+1ây� j0i: (A.3)To alulate this matrix element, we move all reationoperators to the right. For the Hamiltonian H depend-ing linearly on â and â+, e.g., for the Hamiltonian inthe external �eld, the result isexp�Tr �yi (�i+1 � �i) + iÆTrH ��yi ; �i+1�� :Thus, the result of the alulation is that the reationand annihilation operators in the Hamiltonian are sub-stituted by the Grassmann variables � and �+.The produt over all intermediate points asN !1tends toexp0�� TZ0 dt	(t) [�t+iH℄ 	 (t)1A = exp0�i TZ0 dtL1A ;L = 	 [i�t �H℄ 	;

where L is the Lagrangian of the system. This expres-sion should be integrated over 	; �	 at all intermedi-ate points in time. The boundary points are speial,however. The reation operators entering jkN i and theannihilation operators entering hk1j are not ontrated.They are variables on whih the evolution operator de-pends.We integrate over all intermediate variables andonsider the answer as a funtion of the Grassmannvariable �+1 (and �yN ). This funtion an be only linear:A+B�1. Then the last integration in �1 and �+1 givesZ D�1D�y1 exp��Tr �y1�1��� exp��Tr �y1â� (A1 +TrB1�1) = A1 +TrB1a:Thus, we see that the variable �1 should be substitutedby an annihilation operator. Integrating over �+N , weonlude that �+N is substituted by a reation operator.Finally, we an formulate the following reipe:to alulate the evolution operator, we integrateexp i TR0 L! over 	; �	 at all intermediate points. Att = 0, 	 is �xed to â, and at t = T , �	 is �xed to â+.The values of �	 at t = 0 and 	 at t = T remain arbi-trary. As a result, the operators â and â+ are de�nedat di�erent times. Therefore, they are to be regardedhere as antiommuting.If the ground state of our system is a �lled Fermisphere, we have to introdue two types of reation andannihilation operators â� and b̂� orresponding to ele-trons and holes. Then we an apply the above deriva-tion in this ase as well. We should introdue negative(	�) and positive (	+) frequeny parts of 	 variablesand double the number of the � variables.APPENDIX BCalulation of Det�We alulate the funtional integral over the �elds� and ��. They obey zero initial onditions:Det� = Z D�D��� exp0�i TZ0 dt Z dx� (i�t �Hext (x))�1A ; (B.1)where Hext = H0 (x) + � (x; t) : In the ordinary ase,Det� an be alulated in the usual way using the iden-tity ln [Det�℄ = Tr ln�:655



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008After di�erentiation over �, the right-hand side of thisidentity is represented asTr24�i 1Z0 d� (��t � iH0 (x)� i�� (x))�1 � (x)35 ;where the inverse operator is the Green's funtion withthe same arguments. The result is usually independentof the order of the arguments. However, in the the-ory with the Adler�Shwinger anomaly, the sequeneof time and spatial arguments is essential. The sim-plest way is to make spatial arguments equal �rst. Inthis ase, the result ontradits the gauge invarianeof the theory. In paper [20℄, a proedure free of thisdi�ulty was suggested. The problem does not ex-ist in the proedure beause all alulations are donewith nonequal variables until the end. It is based onthe Heisenberg equation for the eletron evolution op-erator Ŝ (�) = Det� expS0 (T ) in the external �eld(without a diret eletron�eletron interation). Thislaim guarantees the onservation of the eletron num-ber and, as a result, the theory is gauge invariant. Thedependene of Det� on the sequene time and spa-tial arguments onsidered above implies the existeneof an ultraviolet divergene in the theory. In fat, wehave regularized it in the usual way for the theory withthe Adler�Shwinger anomaly: we required a gauge-invariant result (see [19℄).In the Heisenberg representation, we havei �Ŝ�T = hHext; Ŝi ;where Hext is the noninterating eletron Hamiltonian(the external �eld is dependent on the time T ), andthe ation S0 is de�ned by Eq. (30). We note thatall reation operators are de�ned at the instant T andthe annihilation operators at t = 0, and therefore, inthe ommutator [Hext;S0 (T )℄, only the terms with re-ation operators do not ommute with S0.We an rewrite the last equation asi� lnDet ��T = exp (�S0) [Hext; expS0℄� i�S0�T : (B.2)To alulate the ommutator in this equation, we anuse the well-known identity�â (x) ; exp�Z dx0K (x0) ây (x0)�� == Z dx1�(x1�x0)K (x1) exp�Z dx0K (x0) ây (x0)�;whih an be proved by expanding the exponentials.(Here, K is an operator antiommuting with â and

�(x1 � x0) is the antiommutator fâ (x) ; ây (x0)g de-�ned in Eq. (7).) The left-hand side of Eq. (B.2)is a -number; this means that all operators in theright-hand side of this equation have to vanish. The-number parts arise only from the following ommu-tators:Z dx� (x) �b̂ (x) â (x) ;exp�Z dy dy0ây (y0)G (y0T; yT � ") b̂y (y)�� :As a result, we havei� lnDet ��T = Z dx dy dy0(2�i)2 � (x; T )�� � GR (y0T; yT � ")(y0 � x� iÆ) (y � x� iÆ) ++ GL (y0T; yT � ")(x� y0 � iÆ) (x� y � iÆ)� : (B.3)This representation is general. To rewrite the right-hand side of this equation in our ase, we reall thatonly the region y ! y0 ! x is essential in the �rstterm. However, at the point y ! y0, the argument ofthe exponential in Green's funtion (28) vanishes. Thismeans that the ontribution is determined by the pre-exponential pole and only the �rst and the seond termsof the expansion of the exponential an give nonvan-ishing ontributions. All singularities in the integrandwith respet to y in the funtion oming from the �rstterm are in the same halfplane. We an lose the on-tour in the other halfplane and prove that this integralvanishes. In the next order in �, only the part with asingularity in the lower halfplane of y gives a nonvan-ishing term. After the integration over y0, we have (inthe momentum-spae representation)�i2� TZ0 dt1 1Z0 dp2�p��p (T )�p (t1) exp (�ipvf (T�t1)):The L eletrons give the same result but with the oppo-site sign of p in the region p < 0. After the integrationof Eq. (B.3) and symmetrization, we obtain Eq. (31).We note that Eq. (31) is gauge invariant: the �eldsdepending only on time do not ontribute to Eq. (31).APPENDIX CNormalization oe�ient and energy shiftWe have seen that the matrix element in Eq. (9) anbe expressed as a Gaussian-type funtional integral. It656



ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008 BKT phase in systems of spinless strongly : : :gives the normalization oe�ient and the ground-stateenergy shift. Indeed, we an expand the exat wavefuntion with respet to the free-eletron funtions. Inthe limit T !1, only the matrix element between thelowest energy level survives. It an be represented asZ = exp (�i�ET )jh
jF ij2;where �E is the ground-state energy shift. Compar-ing Z with the de�nition of the normalization oe�-ient Z0 in Eq. (20), we an see that it is equal to theoverlap probability of the ground states of the free andinterating eletrons, jh
jF ij2: The normalization o-e�ient should be alulated for a �nite-size system,beause it is exponentially small with the volume.On the other hand, the matrix element in whih weare interested isZ = 1N Z D�exp24 i2 TZ0 dt dt1 �� 1Z�1 dp2�� (p; t) � (�p; t1)V �1 (p) Æ (t� t1) �� 14� TZ0 dt dt1 1Z�1 dp2�� (�p; t) � (p; t1) jpj �� exp [�ijpjvf jt� t1j℄35 ; (C.1)where 1=N is normalization oe�ient (34).It is onvenient to transform the integral operator.A more e�etive proedure is the transformation of in-tegral operator (C.1) to a di�erential form. For this,we note the identity1�2ijpjvf � �2�t2 + p2v2f� TZ0 dt1�p (t1)�� exp (�ijpjvf jt� t1j) = �p (t) : (C.2)Thus, symbolially,exp (�ijpjvf jt� t1j) = �2ijpjvf� �2�t2 + p2v2f�Æ (t� t1) ;and the kernel in Eq. (C.1) is equal toi2V0 �2�t2 + !2p�2�t2 + p2v2f Æ (t� t1) : (C.3)

As a result, we haveZ = 1N Z D�exp264 i2 TZ0 dt 1Z�1 dp2�V �1 (p) �� � (�p; t) �2�t2 + !2p�2�t2 + p2v2f � (p; t)375 : (C.4)Taking into aount that the normalization oe�ientN anels pDet (i=2Vp) that arises from the di�eren-tial kernel de�nition, we obtainZ�2 = Det i� �2�t2 + !2p�i� �2�t2 + p2v2f� = DD0 :To de�ne the di�erential operator, we should have twoinitial onditions. In exatly the same way as in thederivation of the equation for the saddle-point �eld, weobtain the onditions�t� (p; 0)� ijpjvf� (p; 0) = 0;�t� (p; T ) + ijpjvf� (p; T ) = 0: (C.5)Usually, determinants are alulated with zeroboundary onditions�p (0) = �p (T ) = 0:To redue our problem to the problem with zero bound-ary onditions, we introdue�p (t) = �p (t) + � (t) :The �eld �p (t) is assumed to obey the equation�t�p (t) = 0 with the initial onditions in Eq. (C.5).(As usual, �t = �2=�t2 + !2p.) The �eld � (t) is arbi-trary but with zero boundary onditions. The solution�p (t) an be expressed as�p (t) = �p (0) sin(!p (T � t))sin(!pT ) + �p (T ) sin(!pt)sin(!pT ) :(The onstants �p (0) and �p (T ) are arbitrary.) Thismeans that the determinant is given byD�1=2 = 1Z�1 d�p (0) d�p (T )�� exp [i (�p (T )�t�p (T )��p (0)�t�p (0))℄�� Z D�p (t) exp (��p (t)�t�p (t)): (C.6)3 ÆÝÒÔ, âûï. 4 (10) 657



V. V. Afonin,V. Yu. Petrov ÆÝÒÔ, òîì 134, âûï. 4 (10), 2008The integral over �p an be alulated in the usual way,C (p = 0) !psin(!pT ) ;where C (p = 0) is the p = 0 ontribution. It anels inthe �nal expression. With the identity�p (T )�t�p (T )��p (0) �t�p (0) == ���p (0)2 +�p (T )2� (jpjvf � i!p tg(!pT )) ++ 2i!psin(!pT )�p (0)�p (T ) ;we haveZ�2 = Yp6=0 sin(!pT )sin (vf jpjT ) �� p2v2f � 2i!pjpjvf tg(!pT ) + !2p2jpjvf!p (1� i tg(!pT )) : (C.7)If the temperature is nonzero, we should substitute Tby 1=�. We note that Eq. (C.7) is valid even at thetemperatures � � �hiral; beause only the Green'sfuntions with equal-time arguments were used. In thistemperature region, Z an be expressed asZ = Yp6=0 exp��!p � jpjvf2� �4pjpjvf!p!p + jpjvf : (C.8)It is onvenient to rewrite this equation in the formZ = exp24�L� 1Z0 dp2� (!p � pvf ) ++ 12Xp6=0 ln 4pjpjvf!p!p + jpjvf 35 ; (C.9)whih shows the energy shift (the �rst term in the ex-ponent) and the normalization oe�ient (the seondterm) expliitly. The sums in this equation diverge be-ause of the gapless spetrum. They have to be uto� at pmax � 1=d. To take the preexponential fatorinto aount, we should alulate the next orretionafter the Riemann sum. As a result, for a short-rangepotential, we have�E � L4�d vfd s V0�vffor the energy shift andZ0 = 4r�vfV0 exp�� L4�d ln V0�vf �for the normalization oe�ient.

APPENDIX DCalulation of SumsAll the sums in the equation for the ation an bealulated by di�erentiating S (�) with respet to theparameter �:S (�) = �2�L 1Xnmin 1pn exp �2�in�L (x+ iÆ)�;(� ranges within (1; i1)). After summation of the ge-ometri series, we an rewrite it asS (1; x) = 1�y0Z1 dyy (1� y)nmin�1 ;where y0 (x) = exp (2�i=L) (x+ iÆ) :It is understood that x � L here. This result an ap-ply at x � L as an order-of-magnitude estimate only.The �nal expression appearing in the ation isS (1; x)� S (1; y) = x+iÆZy+iÆ dzz exp�� iz� �; (D.1)where � = L=2� (nmin � 1)�1 : If nmin � L�=2�vf ,then � is equal to the oherene length in Eq. (68).We onsider the in�uene of the boundary ondi-tions on the ation. In priniple, any of them an berewritten as pn = 2� (n+ Æn) =L; jÆnj < 1=2: In thisase, at � = 0, the ation is determined by the sumS0 (�) = �2�L 1X1 1pn exp �2�i (n+ Æn)�L (x+ iÆ)�:In the same way, we obtainS0 (1; x)� S0 (1; y) = x+iÆZy+iÆ dzz exp��2�izÆnL �:The result is that up to jx � yj � L at � = 0, theation is independent of the boundary onditions. For�� �, we should ut o� the sum at some n = nmin:As a result, � is substituted by L=2� (nmin + Æn� 1)�1in Eq. (D.1). This suggests the replaement of � by(1� Æn)�10). However, the transition temperaturean be de�ned only up to a fator of the order of unity.Therefore, we should not take this into aount.10) This means that � is determined by the exitation energywith the smallest momentum.658
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