ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ОДНОЧАСТИЧНЫХ ВОЗБУЖДЕНИЙ В ЖИДКИХ ДИЭЛЕКТРИКАХ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ И ТЕМПЕРАТУРАХ

А. Г. Храпак^{*}, В. Е. Фортов

Объединенный институт высоких температур Российской академии наук 125412, Москва, Россия

Поступила в редакцию 15 октября 2007 г.

Исследовано влияние давления на проводимость молекулярных жидкостей (водорода, кислорода и азота) и щелочных металлов (цезия и рубидия) в области экспериментально наблюдаемого перехода диэлектрик-металл. Показано, что в этих жидкостях при умеренно высоких давлениях и температурах энергетически выгоден захват свободных электронов атомами или молекулами с образованием отрицательных ионов. Несмотря на увеличение потенциала ионизации с ростом плотности, энергия перехода электрона на уровень отрицательного иона убывает, а следовательно, уменьшается и ширина запрещенной зоны. При больших плотностях уровень отрицательных ионов уширяется и превращается в зону проводимости. Предполагается, что экспоненциальная зависимость проводимости от плотности и температуры в переходной области связана с переносом квазисвободных электронов, находящихся на уровне атомарных отрицательных ионов. Определен спектр отрицательных ионов водорода, кислорода и цезия в сильно сжатом состоянии и рассчитана ширина запрещенной зоны в этих веществах, неплохо согласующаяся с результатами, полученными для водорода и кислорода в однократных ударно-волновых экспериментах.

PACS: 72.20.-i, 52.27.Gr

1. ВВЕДЕНИЕ

При высоких давлениях, реализуемых в ударно-волновых экспериментах, наблюдается переход жидких водорода, кислорода и азота в состояние с высокой проводимостью, близкой к проводимости металлов [1–3]. При низких давлениях и температурах эти молекулярные жидкости являются хорошими диэлектриками. С ростом давления и температуры часть молекул ионизуется, что приводит к появлению проводимости, экспоненциально растущей с ростом плотности. При давлении порядка 100 ГПа и температуре около 2000 К проводимость всех трех «закритических» жидкостей становится равной постоянному значению порядка 10^3 $Ommode M^{-1} \cdot cm^{-1}$, которое соответствует «минимальной металлической проводимости» [3, 4]. Высокая проводимость этих веществ обычно связывается с практически полной ионизацией атомов и используются теоретические

модели физики сильнонеидеальных кулоновских систем. В то же время электрофизические свойства этих жидкостей в переходной полупроводниковой области параметров в литературе практически не обсуждаются. В настоящей работе предложена простая модель для оценки ширины электронной запрещенной зоны в широком интервале давлений, от тройной точки до порога металлизации. Показано, что при низких давлениях электроны локализованы в отрицательных молекулярных ионах. Проводимость при этом связана с переносом положительно заряженных кластеров и отрицательно заряженных ионных пузырьков. Она имеет активационный характер, подобный жидким полупроводникам. С ростом давления и температуры происходит диссоциация молекул и локализация электронов на атомах становится более выгодной. При достаточно высоких атомных концентрациях вероятность туннелирования электрона от одного атома к другому становится близкой к единице, уровень отрицательного иона вырождается в зону, и проводимость связана с

^{*}E-mail: khrapak@mail.ru

переносом этих квазисвободных электронов. Предполагается, что этот механизм переноса заряда может играть важную роль в области перехода жидких водорода, кислорода и азота в состояние с высокой проводимостью.

2. МЕТАЛЛИЗАЦИЯ ДИЭЛЕКТРИКОВ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ И ТЕМПЕРАТУРАХ

В настоящее время наиболее полно изучены термодинамические и электрофизические свойства водорода и дейтерия при высоких давлениях, исследование свойств которых в твердом, жидком и плазменном состояниях представляет большой интерес, как для фундаментальной, так и для прикладной науки. Для астрофизики этот интерес обусловлен тем, что водород является самым распространенным химическим элементом во вселенной. Юпитер и Сатурн состоят в основном из водорода, нагретого и сжатого до высоких температур и давлений. В этих условиях водород обладает высокой проводимостью и его конвективное движение ответственно за магнитное поле планет-гигантов. Знание физических свойств водорода очень важно для успешного решения проблемы инерциального термоядерного синтеза. На протяжении ряда лет обсуждается интригующая возможность существования метастабильной металлической и даже сверхпроводящей фазы твердого водорода при нормальном давлении [5].

В 1935 г. Вигнер и Хантингтон предсказали, что водород должен перейти в металлическое состояние при давлении порядка 25 ГПа [6]. Современные прогнозы лежат вблизи 400 ГПа [7]. Однако, несмотря на неослабевающие усилия экспериментаторов, металлизация твердого водорода до сих пор не обнаружена. В закритической жидкой фазе измерения электропроводности при многократном ударно-волновом сжатии показали, что водород приобретает металлическую проводимость при давлении около 140 ГПа и температуре порядка 3000 К [1, 8–11]. В области перехода в состояние с высокой проводимостью плотность почти в девять раз превышала плотность жидкого водорода в тройной точке. Электропроводность водорода и дейтерия была также измерена при однократном ударно-волновом сжатии до давления 20 ГПа и температуры 4600 К [12]. Анализ экспериментальных данных в области давлений 93-120 ГПа приводит к экспоненциальной зависимости электропроводности от

температуры, типичной для жидких полупроводников:

$$\sigma = \sigma_0 \exp\left[-\frac{E_g(\rho)}{2k_BT}\right],\tag{1}$$

где $E_g(\rho)$ — ширина электронной запрещенной зоны. При давлении выше 120 ГПа электропроводность водорода практически постоянна.

Электропроводность жидких кислорода и азота была недавно измерена в работах [13, 14]. В кислороде в процессе многократного ударно-волнового сжатия достигалось четырехкратное увеличение плотности, давление достигало 190 ГПа, а температура не превышала 7000 К [13]. С ростом давления в диапазоне от 30 до 100 ГПа электропроводность резко возрастает почти на шесть порядков, а при дальнейшем росте давления демонстрирует очень слабую зависимость от давления или плотности. Как и в случае водорода, зависимость электропроводности от температуры в переходной области носит активационный характер и может быть описана формулой (1). Зависимость электропроводности жидкого азота от давления, плотности и температуры аналогична зависимости, наблюдаемой в водороде и кислороде [14]. При давлениях от 80 до 120 ГПа и при температуре порядка 7000 К она также носит полупроводниковый характер, а достигнув уровня $1000 \text{ Om}^{-1} \cdot \text{сm}^{-1}$, становится практически постоянной.

Электропроводность при высоких давлениях и температурах была измерена в статических экспериментах в двух щелочных металлах — цезии и рубидии (см., например, [4, 15, 16]). При температуре около 2000 К с ростом плотности (и давления) электропроводность цезия и рубидия экспоненциально увеличивается и при значениях порядка 10³ Ом⁻¹·см⁻¹ достигает насыщения. Несмотря на то что при нормальных условиях жидкие цезий и рубидий обладают высокой проводимостью, порядка $10^5 \text{ Om}^{-1} \cdot \text{см}^{-1}$, их переход с ростом плотности из слабо проводящего газообразного состояния в состояние, обладающее «минимальной металлической проводимостью», качественно подобен переходу диэлектрик-металл в жидких диэлектриках [2, 16]. Поэтому в настоящей работе сделана попытка объяснить электрофизические свойства водорода, кислорода, азота, цезия и рубидия в области перехода диэлектрик-металл с единых позиций.

Таблица 1.	Плотности	1 перехода д <i>и</i>	иэлектрик-	металл	согласно	критери	но Х	Серцфельда	для а	томарны	х Q1	и моле-
кулярных ϱ_2	веществ, эк	кспериментал	тьные пло	тности п	ерехода и	p_{exp} [3, 4	4]и	поляризуем	ости а	атомов с	а и	молекул
				α_2 [20	D, 21]							

	Атомы		Mo.	лекулы	Эксперимент		
	α_1, a_0^3	$\varrho_1, \operatorname{r\cdot cm}^{-3}$	α_2, a_0^3	$\varrho_2, \operatorname{r\cdot cm}^{-3}$	$\varrho_{exp}, r \cdot cm^{-3}$		
Водород	4.5	0.60	5.4	1.0	0.70		
Кислород	5.4	8.0	10.6	8.0	4.5		
Азот	7.5	5.1	11.7	6.5	3.7		
Рубидий	310	0.74	460	1.0	0.87		
Цезий	385	0.93	607	1.2	1.3		

3. «ДИЭЛЕКТРИЧЕСКАЯ КАТАСТРОФА», ПЕРЕХОД МОТТА И «МИНИМАЛЬНАЯ МЕТАЛЛИЧЕСКАЯ ПРОВОДИМОСТЬ»

Критерий перехода диэлектриков в металлическое состояние был впервые сформулирован Херцфельдом [17, 18] исходя из идеи о так называемой диэлектрической катастрофе. Согласно этому критерию, являющемуся следствием уравнения Клаузиуса-Моссотти, необходимым и достаточным условием металлизации является равенство единице индекса рефракции *b* или обращение в бесконечность диэлектрической проницаемости ε диэлектрика:

$$\varepsilon = \frac{1+2b}{1-b}, \quad b = \frac{4\pi}{3}\alpha n, \tag{2}$$

где α — поляризуемость, а n — концентрация атомов или молекул диэлектрика. Несмотря на свою простоту, критерий Херцфельда дает правильные результаты для большинства веществ — у металлов b > 1, а у диэлектриков при нормальных условиях b < 1. С его помощью были определены условия перехода в металлическое состояние для целого ряда диэлектриков (водород, инертные газы, иод, галогениды щелочных металлов) [19], которые впоследствии подтвердились экспериментально [3, 4].

В табл. 1 приведены результаты оценки плотности перехода диэлектрик-металл для водорода, кислорода, азота, цезия и рубидия. Поскольку при мегабарных давлениях и высоких температурах степень диссоциации молекул всех этих веществ точно не известна, оценки выполнены для двух предельных случаев — полной диссоциации и отсутствия таковой. Видно, что экспериментальные значения плотности перехода хорошо согласуются с оценками в рамках гипотезы Херцфельда о диэлектрической катастрофе. На рис. 1 приведены результаты измерения проводимости сильно сжатых водорода, кисло-

Рис.1. Зависимость от индекса рефракции электропроводности жидких водорода — ♦ [10], кислорода — ▲ [13], азота — • [14], цезия — ⊽ и рубидия — □ [16]

рода, азота, цезия и рубидия в зависимости от величины индекса рефракции b. Несмотря на разную зависимость от индекса рефракции в переходной области проводимость достигает уровня металлической проводимости и насыщается при близких значениях $b \sim 1$.

Критерий Херцфельда опирается на очевидное предположение, что при достаточно большой плотности, когда $\varepsilon \to \infty$, вещество должно терять диэлектрические свойства. Херцфельд обосновал это, решая в классической постановке задачу о влиянии поляризационного взаимодействия на спектр связанного в атоме или молекуле электрона. Уравнение движения внешнего электрона изолированной молекулы в электрическом поле E записывалось в виде

$$\ddot{r} + \omega_0^2 r = eE, \qquad (3)$$

где ω_0 — характерная частота колебаний электрона в изолированной молекуле. В плотной среде поляризация молекулы в поле *E* индуцирует дополнительное поле диэлектрической поляризации $P = (4\pi/3)enr$ и уравнение (3) приобретает вид

$$\ddot{r} + \omega_0^2 \left(1 - \frac{4\pi e^2 n}{3\omega_0^2} \right) r = eE.$$
 (4)

Считая, что в рамках использованной модели индекс рефракции $b = 4\pi e^2 n/3\omega_0^2$, Херцфельд сделал вывод о том, что при b = 1 удерживающая электрон в молекуле сила исчезает и он становится свободным. Другими словами, энергия связи электрона или ширина запрещенной зоны уменьшается с ростом ε и обращается в нуль при $\varepsilon = \infty$, что приводит к слиянию валентной зоны и зоны проводимости. Отметим, что использованная Херцфельдом модель может вполне адекватно описывать высоко возбужденные уровни атомов, когда в орбиту электрона попадает много атомов окружения, но она неприменима для основного уровня. Дело в том, что поляризационное взаимодействие находящегося в основном состоянии электрона с атомами окружения практически отсутствует и к сдвигу потенциала ионизации может приводить лишь взаимодействие с атомами окружения свободных электрона и иона, образовавшихся в результате процесса ионизации. Как известно, во взаимодействии электрона с атомами среды наряду с поляризационным взаимодействием важную роль играет обменное взаимодействие, которое может приводить к увеличению потенциала ионизации с ростом плотности [22, 23]. Подробнее этот вопрос рассматривается в следующем разделе.

Другой критерий перехода диэлектрик-металл был предложен Ликальтером [24–26]. Согласно ему диэлектрик становится проводником, когда с ростом плотности волновые функции внешних электронов соседних атомов начинают перекрываться, появляются каналы протекания и основной уровень уширяется, образуя зону проводимости. Этот критерий также имеет простой вид:

$$n_m (a^*)^3 \approx 1,\tag{5}$$

где n_m — плотность атомов или молекул на пороге металлизации, a^* — их эффективный боровский радиус. Критерии Херцфельда и Ликальтера дают близкие результаты для n_m . Это можно понять, если учесть, что эффективный боровский радиус $a^* = e^2/2I$ обратно пропорционален потенциалу ионизации I (e — заряд электрона). С другой стороны, если рассматривать внешнюю оболочку атома как поверхность проводящей сферы радиуса a^* , то ее поляризуемость $\alpha = (a^*)^3$. Таким образом, $\alpha \propto I^{-3}$, что с хорошей точностью подтверждается прямым сопоставлением экспериментальных значений I и α . Окончательно получаем соотношение

$$b \sim n_m \alpha \sim n_m I^{-3} \sim n_m (a^*)^3, \tag{6}$$

из которого следует почти полная адекватность критериев Херцфельда и Ликальтера.

Еще один широко используемый критерий металлизации диэлектриков был предложен Моттом (см., например, [27]). Этот критерий опирается на предположение, что вещество должно терять свои металлические свойства, когда экранировка кулоновского взаимодействия между электронами и ионами перестает препятствовать образованию атомов. Приравнивая длину экранирования Томаса – Ферми

$$r_{TF} = \frac{1}{2} \left(\frac{\pi a_0^3}{3n_e} \right)^{1/6} \tag{7}$$

размеру атома a^* , получаем условие перехода диэлектрик-металл, при выполнении которого концентрация валентных электронов n_e достигает критического значения n_{em} :

$$(a^*)^2 n_{em}^{1/3} \approx 0.25 a_0, \tag{8}$$

где a_0 — боровский радиус. В случае водорода и дейтерия $a^* = a_0$ и условие (8) приобретает более привычный вид:

$$a_0 n_{em}^{1/3} \approx 0.25,$$
 (9)

иногда ошибочно используемый и для оценок в случае атомов и молекул, эффективный радиус которых заметно отличается от радиуса Бора [2, 3]. Различие формул (8) и (9) особенно важно учитывать в случае атомов с малым потенциалом ионизации, таких как цезий и рубидий.

Обсуждавшиеся выше критерии перехода постулируют сам факт существования перехода диэлектрик-металл, но не содержат информации о проводимости в переходной области и в проводящем состоянии. Если рассматривать электроны в металле как почти идеальный газ, то согласно формуле Друде

$$\sigma = \frac{e^2 n_e \tau}{m} = \frac{e^2 n_e l}{mv},\tag{10}$$

где m — масса электрона, а τ , l и v — соответственно среднее время столкновений, длина свободного пробега и средняя скорость электронов. Согласно принципу Иоффе – Регеля [28], длина свободного пробега

	$n_e, {\rm cm}^{-3}$	$\sigma_{min},$ $OM^{-1} \cdot CM^{-1}$	$\sigma_{exp},$ $OM^{-1} \cdot CM^{-1}$
Водород	$4.2 \cdot 10^{23}$	$6.1 \cdot 10^{3}$	$2 \cdot 10^3 \ [10]$
Кислород	$5.1 \cdot 10^{23}$	$6.5 \cdot 10^{3}$	$10^3 [13]$
Азот	$6.4 \cdot 10^{23}$	$7.0 \cdot 10^{3}$	$10^3 \ [14]$
Рубидий	$5.8 \cdot 10^{21}$	$1.5 \cdot 10^{3}$	$2 \cdot 10^3 \ [16]$
Цезий	$6.1 \cdot 10^{21}$	$1.5 \cdot 10^{3}$	$2 \cdot 10^3 \ [16]$

Таблица 2. Концентрация электронов n_e и минимальная металлическая проводимость σ_{min}

не может быть меньше среднего расстояния между рассеивателями, $l \leq n_e^{-1/3}$. Учитывая, что в вырожденном газе средняя скорость электронов равна фермиевской, $v = v_F$, приходим к выражению для минимальной металлической проводимости [10]:

$$\sigma > \sigma_{min} = \frac{e^2 n_e^{2/3}}{v_F} \approx \frac{e^2 n_e^{1/3}}{3\hbar}.$$
 (11)

Приближение Иоффе-Регеля является оценкой проводимости снизу — если это приближение справедливо, то проводимость не может быть ниже, чем даваемая формулой (11). В табл. 2 значения минимальной металлической проводимости, рассчитанные по формуле (11), сопоставлены с экспериментальными значениями (при оценке концентрации электронов учитывалась валентность атомов). Видно, что в случае щелочных металлов имеется хорошее согласие, а для молекулярных диэлектриков экспериментальные значения проводимости в несколько раз ниже соответствующих значений минимальной металлической проводимости. Этот факт ставит под сомнение предположение о полной ионизации атомов на пороге металлизации, которое делается при выводе формулы (11) и при расчете проводимости в рамках различных моделей неидеальной полностью ионизованной плазмы [4]. Если все же предположить, что формула (11) верна и может быть использована для оценки проводимости на пороге металлизации, то следует считать степень ионизации малой, порядка 10^{-2} - 10^{-1} .

4. ЭЛЕКТРОННЫЕ СВОЙСТВА ЖИДКИХ И ГАЗООБРАЗНЫХ ДИЭЛЕКТРИКОВ

Жидкие водород, кислород и азот при нормальных условиях (в частности, на линии насыщения и

в тройной точке) являются хорошими диэлектриками. Их низкая проводимость связана, прежде всего, с высоким потенциалом ионизации молекул, порядка 10 эВ. Кроме того, хорошо известно, что подвижность электронов, инжектированных в эти жидкости, на много порядков ниже ожидаемой подвижности свободных электронов [22, 23, 29–31]. Это связано с локализацией электронов либо в пузырьках (аналогичных электронным пузырькам в жидком гелии), либо в отрицательных ионах. В работе [31] было показано, что в жидких водороде и дейтерии энергетически более выгодно образование атомарных или молекулярных отрицательных ионов. Ниже мы предполагаем, что в кислороде и азоте локализация электронов происходит также с образованием отрицательных ионов. Поэтому при обсуждении механизма электропроводности жидких молекулярных диэлектриков в переходной области мы уделим основное внимание свойствам ионных и электронных состояний и их зависимости от плотности жидкости. Если молекула является составной частью конденсированной среды, состоящей из идентичных молекул, то дополнительные силы взаимодействия, существенно влияющие на ионизацию молекул и прилипание электронов, вступают в действие. Поляризационное взаимодействие приводит к стабилизации положительных и отрицательных ионов. Во взаимодействие квазисвободных электронов со средой кроме поляризационного притяжения дает вклад и обменное отталкивание. Поэтому взаимодействие электрона со средой приводит к уменьшению потенциала ионизации, когда поляризационное взаимодействие превалирует над обменным, и к его увеличению в противном случае.

На рис. 2 схематически показана система молекулярных энергетических уровней, включая отрицательные ионы. Такой тип диаграмм был впервые предложен для описания системы уровней органических диэлектриков [32, 33]. В средней части рис. 2 показана часть уровней изолированной молекулы и отмечены потенциал ионизации I_g и энергия прилипания электрона A_g. Отметим, что в процессе ионизации и последующего прилипания электрона участвуют разные нейтральные молекулы. При образовании отрицательного или положительного иона энергия диэлектрика уменьшается соответственно на величину поляризационной энергии Р_ или Р_. Таким образом, ионы обоих типов становятся более стабильными внутри диэлектрика. Энергия квазисвободных электронов V₀ уменьшается на величину поляризационной энергии Pe, но возрастает на величину энергии нулевых колебаний T_e [22, 23]. Вну-

Основное состояние

Рис.2. Энергетические уровни изолированной молекулы (в центре) и молекулы, помещенной в конденсированный диэлектрик, обладающей положительным $(V_0 > 0)$ и отрицательным $(V_0 < 0)$ сдвигом границы непрерывного спектра. Штриховые линии связывают соответствующие уровни молекулы в вакууме и в веществе

три диэлектрика рождение пар противоположно заряженных частиц, необходимых для появления конечной электропроводности, может протекать двумя путями — за счет ионизации с затратой энергии I_c и за счет перехода валентного электрона на одну из соседних молекул с образованием отрицательного иона с затратой энергии E_q. Из рассмотрения рис. 2 следует, что если отрицательные ионы существуют хотя бы в конденсированном диэлектрике, то энергия перехода электрона на уровень отрицательного иона E_g меньше потенциала ионизации I_c и ее следует рассматривать как ширину запрещенной зоны. Именно эта энергия выделяется в веществе при рекомбинации положительных и отрицательных ионов. Важно отметить, что даже если часть электронов тем или иным образом будет переведена в квазисвободное состояние, то при установлении равновесия часть из них рекомбинирует, а остальные будут захвачены на уровень отрицательного иона. Тем самым проводимость слабо проводящей жидкости определяется концентрацией и подвижностью ионов обоих знаков и должна носить активационный характер с энергией активации E_g.

В слабоионизованных газах и жидкостях, когда кулоновским взаимодействием между заряженными частицами можно пренебречь, ширина запрещенной зоны E_g и потенциал ионизации в среде I_c могут быть оценены исходя из соотношений

$$E_{g} = I_{c} - A_{c},$$

$$A_{c} = A_{g} - P_{-} + V_{0},$$

$$E_{g} = (I_{g} - A_{g}) + (P_{+} + P_{-}),$$

$$I_{c} = I_{g} + P_{+} + V_{0} = I_{g} + T_{e} + (P_{+} + P_{e}).$$
(12)

Энергии поляризационного взаимодействия P_+ , $P_$ и P_e все отрицательны, близки по абсолютной величине и увеличиваются с ростом плотности, а T_e положительно и также растет с плотностью. Таким образом E_g уменьшается с ростом плотности и может обратиться в нуль, в то время как разность энергий $I_c - E_g$ увеличивается с ростом плотности. Для качественной оценки энергетических характеристик положим $P_+ = P_- = P_e = P$, а величину P будем рассчитывать по формуле Борна

$$P = -\frac{e^2}{2R_s} \left(1 - \frac{1}{\varepsilon}\right),\tag{13}$$

где $R_s = (3/4\pi n)^{1/3}$ — радиус ячейки Вигнера-Зейтца. Знак и величина энергии дна электронной зоны проводимости V_0 определяются конкуренцией между поляризационным и обменным взаимодействиями электрона с молекулами вещества:

$$V_0 = T_e + P_e. \tag{14}$$

Напомним, что $T_e > 0$ — минимальная кинетическая энергия, которую свободный электрон может иметь, находясь в системе короткодействующих отталкивающих рассеивателей, а $P_e \approx P < 0$ — энергия поляризации диэлектрика электроном. В идеальном газе для оценки V₀ может быть использована оптическая модель [34], $V_0 = 2\pi \hbar^2 Ln/m$ (L — длина рассеяния электрона на молекуле). В конденсированном диэлектрике взаимодействие между молекулами играет важную роль и оптическая модель неприменима для оценки V₀ и T_e. Вместо нее обычно используют модель Вигнера-Зейтца [22], для чего необходимо прежде всего определить короткодействующую часть потенциала взаимодействия. Взаимодействие электрона с атомом или молекулой в вакууме качественно может быть описано потенциалом $V(r) = \{\infty, r \leq R_c; -\alpha e^2/2r^4, r > R_c\}$. Единственный неизвестный параметр этого потенциала — радиус твердого кора R_c — может быть оценен по известным значениям энергии прилипания или длины рассеяния электрона [31]. В рамках модели Вигнера-Зейтца вещество разбивается на эквивалентные сферы радиуса R_s. Каждая сфера содержит твердую сердцевину радиуса R_c. Свободный электрон с равной вероятностью может находиться в любой из ячеек. Поэтому электронная волновая функция

Рис. 3. Результаты оценки для водорода потенциала ионизации I_c , энергии дна электронной зоны проводимости V_0 и ширины запрещенной зоны перехода электрона из основного состояния на уровень атомарного E_{g1} и молекулярного E_{g2} отрицательных ионов. Экспериментальные значения I в тройной точке — • [35], $V_0 - \triangle$ [36], E_g по измерению электропроводности при однократном — \blacksquare [12] и многократном — пунктир [10] ударно-волновом сжатии водорода. Штрихпунктиром указаны верхняя и нижняя оценки ширины запрещенной зоны в

рамках модели «ограниченного атома» [1]

 $\psi(r) \sim r^{-1} \sin[k(R_s - R_c)]$ и ее производная должны быть непрерывны на границе ячейки. Это приводит к уравнению

$$T_e = \frac{\hbar^2 k^2}{2m}, \quad kR_s = tg[k(R_s - R_c)].$$
 (15)

На рис. 3-5 приведены энергетические характеристики водорода, кислорода и цезия рассчитанные в рамках предложенной модели с помощью уравнений (12)–(15). Радиус кора R_c для всех атомов и молекул (кроме H₂) определялся из решения уравнения Шредингера по известным значениям энергии прилипания A_q . В случае молекулярного водорода, у которого отрицательный ион в вакууме отсутствует, радиус кора определялся по значению длины рассеяния L известному из экспериментов по подвижности электронов. Оценки ширины запрещенной зоны выполнены для перехода электрона на уровень молекулярного (E_{q2}) и атомарного (E_{q1}) отрицательных ионов. В ударно-волновых экспериментах рост давления и плотности сопровождается ростом температуры. Это приводит к частичной диссоциации молекул и появлению атомарных отрицательных ионов. С ростом степени диссоциации должен происходить переход с ветви $E_{g2}(n)$ на ветвь $E_{g1}(n)$. У цезия раз-

Рис. 4. Результаты оценки для кислорода потенциала ионизации I_c , энергии дна электронной зоны проводимости V_0 и ширины запрещенной зоны перехода электрона из основного состояния на уровень атомарного E_{g1} и молекулярного E_{g2} отрицательного иона. Экспериментальные значения E_g по измерению электропроводности при однократном — • и многократном — • ударно-волновом сжатии [13]

Рис.5. Результаты оценки для цезия потенциала ионизации I_c , энергии дна электронной зоны проводимости V_0 и ширины запрещенной зоны перехода электрона из основного состояния на уровень атомарного или молекулярного отрицательного иона E_g

личие между энергиями этих ветвей практически отсутствует и на рис. 5 показана общая зависимость $E_g(n) \approx E_{g2}(n) \approx E_{g1}(n).$

Из анализа рис. 3-5 следует, что с ростом плотности потенциал ионизации либо растет (H₂ и Cs), либо мало меняется (O₂). Это связано с тем, что обменная энергия взаимодействия свободных электро-

нов с атомами или молекулами Т_е превышает или сравнима с энергией поляризационного взаимодействия P_e. В то же время ширина запрещенной зоны относительно перехода на уровень молекулярного или атомарного отрицательных ионов убывает и при плотностях, близких к порогу металлизации, запрещенная зона практически исчезает. В случае водорода наша оценка согласуется с экспериментальным значением потенциала ионизации в тройной точке (16.3 эВ), полученном из формул (12) подстановкой $I_q = 15.4$ эВ, $V_0 = 1.6$ эВ [36] и $P_+ = -0.7$ эВ [31]. Имеется также неплохое согласие с экспериментальным значением ширины запрещенной зоны, полученным при измерении электропроводности в экспериментах по однократному ударно-волновому сжатию водорода [12]. Отличие полученных результатов от эксперимента в водороде и кислороде в непосредственной близости к порогу металлизации, где степень ионизации молекул близка к единице, возможно, связано с неучетом кулоновского взаимодействия, важного в этой области. Кулоновское взаимодействие приводит одновременно к уменьшению ширины запрещенной зоны и потенциала ионизации атомов и молекул, не меняя принципиально соотношения между ними. Качественная схожесть зависимости ширины запрещенной зоны от плотности атомов во всех исследованных веществах позволяет предположить, что механизм перехода в проводящее состояние, предложенный нами ранее для водорода [31], может быть распространен на кислород, азот, цезий и рубидий. Этот механизм состоит в следующем. При низких давлениях и температурах электропроводность всех этих веществ связана с переносом положительных и отрицательных ионов. Концентрация ионов экспоненциально зависит от температуры с энергией активации, уменьшающейся с ростом плотности. С ростом температуры растет также степень диссоциации молекул и электроны начинают захватываться преимущественно атомами. При достаточно большой концентрации атомов вероятность туннелирования связанного электрона от одного атома к другому становится близкой к единице, уровень отрицательного иона уширяется и превращается в зону проводимости. Выход на плато электропроводности водорода, кислорода и азота может быть связан с тем, что на пороге металлизации степень диссоциации молекул конечна и максимальная концентрация электронов проводимости равна концентрации атомов. После того, как все атомы захватят по электрону, дальнейший рост проводимости может быть связан лишь со значительно более медленным изменением степени диссоциации,

а величина проводимости может быть рассчитана в рамках одной из плазменных моделей [4].

5. ЗАКЛЮЧЕНИЕ

Исследовано влияние давления на ширину электронной запрещенной зоны и проводимость сильно сжатых водорода, кислорода и азота, в которых наблюдается переход в состояние с металлической проводимостью при экстремально высоких давлениях порядка 100 ГПа и температурах порядка 2000-3000 К, а также цезия и рубидия, в которых переход диэлектрик-металл происходит в районе критической точки. Показано, что во всех этих жидкостях при умеренно высоких давлениях и температурах электроны после ионизации захватываются атомами или молекулами с образованием отрицательных ионов. При больших плотностях образуется зона проводимости по состояниям отрицательных ионов. Определен спектр отрицательных ионов водорода, кислорода и цезия в сильно сжатом состоянии и рассчитана ширина запрещенной зоны в этих веществах, неплохо согласующаяся с результатами, полученными для водорода и кислорода в однократных ударно-волновых экспериментах.

Авторы выражают благодарность Е. М. Апфельбауму и В. Ф. Шмидту за полезные обсуждения. Работа выполнена при финансовой поддержке РФФИ (грант № 06-08-00994).

ЛИТЕРАТУРА

- 1. В. Е. Фортов, В. Ю. Терновой, М. В. Жерноклетов и др., ЖЭТФ 124, 288 (2003).
- W. J. Nellis, J. Phys.: Condens. Matter 16, S923 (2004).
- 3. W. J. Nellis, Rep. Progr. Phys. 69, 1479 (2006).
- V. E. Fortov, I. T. Iakubov, and A. G. Khrapak, *Physics of Strongly Coupled Plasma*, Clarendon Press, Oxford (2006).
- 5. N. W. Ashkroft, Phys. Rev. Lett. 21, 1748 (1968).
- E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).
- K. A. Johnson and N. W. Ashkroft, Nature 403, 632 (2000).
- S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

- V. Y. Ternovoi, A. S. Filimonov, V. E. Fortov et al., Physica B 265, 6 (1999).
- W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B 59, 3434 (1999).
- **11**. В. Е. Фортов, В. Ю. Терновой, С. В. Квитов и др., Письма в ЖЭТФ **69**, 874 (1999).
- W. J. Nellis, A. C. Mitchell, P. C. McCandless et al., Phys. Rev. Lett. 68, 2937 (1992).
- 13. M. Bastea, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 86, 3108 (2001).
- 14. R. Chau, A. C. Mitchell, L. W. Minich, and W. J. Nellis, Phys. Rev. Lett. 90, 245501 (2003).
- 15. V. A. Alekseev and I. T. Iakubov, Phys. Rep. 96, 1 (1983).
- F. Hensel, E. Marceca, and W. C. Pilgrim, J. Phys.: Condens. Matter 10, 11395 (1998).
- 17. K. F. Herzfeld, Phys. Rev. 29, 701 (1927).
- 18. K. F. Herzfeld, J. Chem. Phys. 44, 429 (1966).
- 19. M. Ross, J. Chem. Phys. 56, 4651 (1972).
- 20. А. А. Радциг, Б. М. Смирнов, Справочник по атомной и молекулярной физике, Атомиздат, Москва (1980).
- B. M. Smirnov, *Physics of Atoms and Ions*, Springer, New York (2003).
- 22. А. Г. Храпак, И. Т. Якубов, Электроны в плотных газах и плазме, Наука, Москва (1981).

- 23. W. F. Schmidt, Liquid State Electronics of Insulating Liquids, CRC Press, New York (1997).
- 24. А. А. Ликальтер, УФН 162, 119 (1992).
- **25**. А. А. Ликальтер, ЖЭТФ **113**, 1094 (1998).
- 26. A. A. Likalter, Physica A 337, 1 (2004).
- 27. N. F. Mott and E. A. Davis, *Electronic Properties of Non-Crystalline Materials*, Clarendon Press, Oxford (1979).
- 28. A. F. Ioffe and A. R. Regel, Progr. Semicond. 4, 237 (1960).
- 29. A. A. Levchenko and L. P. Mezhov-Deglin, J. Low Temp. Phys. 89, 457 (1992).
- 30. A. V. Berezhnov, A. G. Khrapak, E. Illenberger, and W. F. Schmidt, TBT 41, 492 (2000).
- 31. A. G. Khrapak and K. Yoshino, XOT 127, 18 (2005).
- 32. L. E. Lyons, J. Chem. Soc. 5001 (1957).
- 33. M. Pope and C. E. Swenberg, *Electronic Processes in Organic Crystals and Polymers*, Oxford University Press, Oxford (1999).
- 34. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика, Наука, Москва (1989).
- 35. K. Inoue, H. Kanzaki, and S. Suga, Sol. St. Comm. 30, 627 (1979).
- 36. W. D. Johnson and D. G. Onn, J. Phys. C 11, 3631 (1978).