МАГНИТОЗАВИСЯЩИЙ СВЕРХПРОВОДЯЩИЙ ТРАНСПОРТ В ОКСИДНЫХ ГЕТЕРОСТРУКТУРАХ С АНТИФЕРРОМАГНИТНОЙ ПРОСЛОЙКОЙ

Ю. В. Кислинский^а, К. И. Константинян^а^{*}, Г. А. Овсянников^{а,b},

Ф. В. Комиссинский а,b,c, И. В. Борисенко^а, А. В. Шадрин^а

^а Институт радиотехники и электроники Российской академии наук 125009, Москва, Россия

> ^b Chalmers University of Technology SE-41296, Goeteborg, Sweden

^c Technische Universität Darmstadt D-64287, Darmstadt, Germany

Поступила в редакцию 30 августа 2007 г.

Экспериментально показано, что сверхпроводящий ток в гибридных сверхпроводниковых гетероструктурах Nb/Au/Ca_{1-x}Sr_xCuO₂/YBa₂Cu₃O_{7- δ} с антиферромагнитной прослойкой имеет джозефсоновскую природу, причем отклонение от синусоидальной зависимости сверхпроводящего тока от разности фаз сверхпроводящих электродов составляет примерно 20 % второй гармоники. Обнаружено, что гетероструктуры обладают существенно большей чувствительностью к внешнему магнитному полю, чем обычные переходы Джозефсона. Экспериментальная форма зависимости критического тока гетероструктур от магнитного поля отличается от обычной фраунгоферовой наличием осцилляций со значительно меньшим периодом по магнитному полю.

PACS: 74.45.+c, 74.50.+r, 75.70.Cn

1. ВВЕДЕНИЕ

Многослойные гибридные сверхпроводниковые структуры с прослойкой из чередующихся слоев ферромагнетиков (F), нормальных металлов (N) и изоляторов (I) вызывают в последнее время повышенный интерес [1–4]. Возможность управлять протеканием тока в таких структурах возникает из-за вращения направления намагниченности в F-слоях под действием слабого магнитного поля. Аналогичные процессы могут протекать в прослойке из антиферромагнетика (AF), который может рассматриваться как набор ферромагнитных слоев атомарной толщины, имеющих противоположно направленную намагниченность [5, 6]. Как было теоретически показано [5], в S–AF–S-структуре (S — сверхпроводник) с прослойкой из антиферромагнетика А-типа существует критический ток I_c , который зависит от внешнего магнитного поля H, вызывающего изменение параметров AF-прослойки:

$$I_c(H) \approx I_c^0 \left(\frac{2}{\pi\beta M_S}\right)^{1/2} \left|\cos\left(\beta M_S - \frac{\pi}{4}\right)\right|, \qquad (1)$$

где $\beta \gg 1$ характеризует электронную структуру AF-прослойки, $0 < M_S < 1$ — параметр антиферромагнитной упорядоченности, зависящий от пространственных компонент локальной намагниченности F-слоев и внешнего магнитного поля H, I_c^0 критический ток в отсутствие внешнего поля, величина которого совпадает со значением I_c в эквивалентной S–N–S-структуре [5]. В работе [5] также показано, что затухание сверхпроводящего параметра порядка в AF-прослойке определяется ее металлической проводимостью и в чистом пределе равно $\xi_{AF} = hv_F/kT$, где v_F — скорость Ферми в прослой-

^{*}E-mail: karen@hitech.cplire.ru

ке, *T* — температура, *h* и *k* — постоянные соответственно Планка и Больцмана.

Из соотношения (1) следует, что период зависимости $I_c(H)$ для S–AF–S-структуры существенно отличается от периода фраунгоферовой зависимости, типичной для джозефсоновского перехода с однородным барьерным слоем [7]:

$$I_{c}(H) = I_{c}^{0} \left| \frac{\sin(\pi \Phi/\Phi_{0})}{\pi \Phi/\Phi_{0}} \right|, \qquad (2)$$

где $\Phi = \mu_0 H A$ — магнитный поток, проникающий в джозефсоновский переход, μ_0 — магнитная постоянная, $A = Ld_e$ — площадь поперечного сечения джозефсоновского перехода, $d_e = \lambda_{L1} + \lambda_{L2} + t -$ эффективная глубина проникновения магнитного поля в джозефсоновский переход, λ_{Li} — лондоновские глубины проникновения магнитного поля в электроды, образующие этот переход (i = 1, 2), t - толщинабарьера между электродами, L — геометрический размер джозефсоновского перехода. Нули зависимости $I_c(H)$ в формуле (2) соответствуют вхождению в джозефсоновский переход целого числа квантов магнитного потока $\Phi_0 = h/2e = 2.07 \cdot 10^{-15}$ Вб, где е — заряд электрона. В то же время, исходя из формулы (1), нули $I_c(H)$ соответствуют условию $\beta M_S = \pi/4 + \pi n \ (n = 1, 2, ...)$. При этом в случае $\beta \gg 1$ осцилляции $I_c(H)$ (1) могут наблюдаться при малых магнитных полях [5].

Фраунгоферова зависимость $I_c(H)$ наблюдалась в большинстве джозефсоновских переходов, для которых выполняется условие сосредоточенности $L < 4\lambda_J$, где λ_J — джозефсоновская глубина проникновения магнитного поля, зависящая от плотности сверхпроводящего тока j_c :

$$\lambda_J = \left(\frac{h}{4\pi e\mu_0 d_e j_c}\right)^{1/2}.$$
 (3)

Для распределенных джозефсоновских переходов $(L > 4\lambda_J)$ обычно наблюдается отклонение $I_c(H)$ от фраунгоферовой формы [7].

Первые экспериментальные данные по протеканию джозефсоновского тока в S–AF–S-структуре были получены в переходах на основе Nb с прослойкой из сплава FeMn [8]. С увеличением H наблюдалась немонотонная зависимость $I_c(H)$, близкая к фраунгоферовой (2). Определенная по нулям $I_c(H)$ лондоновская глубина проникновения в сверхпроводящие электроды $\lambda_L = 40$ нм близка к табличному значению для Nb ($\lambda_L = 47$ нм). Амплитуды вторичных максимумов $I_c(H)$ примерно в два раза превышали ожидаемые фраунгоферовые, что могло быть вызвано не только изменением намагниченности AF-прослойки, как следует из формулы (1), но и неоднородным распределением плотности сверхпроводящего тока и локальной намагниченности слоев из-за поликристаллической структуры AF-прослойки. Было экспериментально показано, что длина когерентности ξ_{AF} определяется температурой Нееля (100–300 K), а не физической температурой (порядка 4 K).

В данной работе представлены результаты экспериментального изучения магнитополевых характеристик гибридных гетероструктур $Nb/Au/Ca_{1-x}Sr_{x}CuO_{2}/YBa_{2}Cu_{3}O_{7-\delta}$ на основе эпитаксиальных пленок из оксидного сверхпроводника YBa₂Cu₃O_{7-δ} (YBCO) с *d*-волновой симметрией параметра порядка (D-сверхпроводник) и ниобия (Nb) — обычного металлического сверхпроводника, Au — пленка золота, используемая для уменьшения диффузии кислорода из YBCO, а прослойка $Ca_{1-x}Sr_xCuO_2$ (CSCO) при низких температурах является квазидвумерным гейзенберговским антиферромагнетиком с температурой Нееля 100 К [9, 10. Аномальный эффект близости и джозефсоновская природа критического тока в таких оксидных D-AF-S-гетероструктурах, а также предварительные данные по микроволновым и магнитополевым зависимостям были представлены в работах [11, 12].

Заметим, что *d*-волновая симметрия параметра порядка в YBCO может вносить изменения в зависимость $I_c(H)$ [13], а интерпретация результатов измерений $I_c(H)$ существенно усложняется анизотропией лондоновской глубины проникновения и изменением уровня допирования приконтактных слоев сверхпроводника, определяющих величину λ_{Li} [14–16]. Однако и в этом случае экспериментально наблюдалось [14] хорошее соответствие $I_c(H)$ с фраунгоферовской зависимостью (2) с учетом неоднородности туннельной прослойки в гибридных переходах на основе пленок YBa₂Cu₃O_{7- δ}.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Эпитаксиальные гетероструктуры CSCO/YBCO напылялись на подложки из NdGaO₃ с помощью лазерной абляции при температуре T = 800 °C. После охлаждения без разрыва вакуума наносилась пленка Au. Использовались два состава CSCO с x = 0.15 и x = 0.5. Толщина AF-прослойки варьировалась в пределах $d_S = 20{-}50$ нм. Слой Nb и дополнительный слой Au наносились магнетронным распылением. Топология структуры формировалась

Рис. 1. а) Поперечное сечение структуры с AF-прослойкой. Толщины слоев: YBaCuO — 200 нм, CaSrCuO — 20–50 нм, Au — 10–20 нм, Nb — 200 нм, б) фотография структуры сверху. Светлый тон — сверхпроводящие электроды логопериодической антенны и боковой отвод, обеспечивающий измерения по 4-точечной схеме

методами фотолитографии, плазмо-химического и ионно-лучевого травлений [11–13]. Поперечное сечение структуры представлено на рис. 1*a*, а форма структуры представляла собой квадрат с линейными размерами L = 10-50 мкм, включенный в логопериодическую антенну, применяемую для измерений в электромагнитном поле длин волн миллиметрового диапазона (рис. 16). Для измерения электрофизических характеристик структуры использовались два контакта к верхнему электроду из Nb и два — к ҮВСО-пленке (рис. 1а). В этом случае при $T < T_c$ $(T_c -$ критическая температура YBCO-пленки) измерения сопротивления прослойки CSCO и границы раздела Au/CSCO проводились по 4-точечной схеме. При этом, согласно предварительным измерениям, сопротивлениями пленок Au, Nb и CSCO и границы раздела CSCO/YBCO можно пренебречь [11, 12]. В результате полученные структуры с AF-прослойкой можно рассматривать как S–N–I_b–AF-D-переходы, где роль барьера I_b выполняет граница Au/CSCO. Для сравнения по аналогичной методике изготавливались и исследовались гибридные гетероструктуры Nb/Au/YBCO без АГ-прослойки. Измерения структур обоих типов проводились в одинаковых условиях. Для изучения магнитополевых зависимостей в малых полях использовался дополнительный экран из аморфного пермаллоя.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Форма вольт-амперных характеристик (ВАХ) гетероструктур (см. вставку к рис. 2) в области малых

Рис.2. Зависимости критического тока $I_c(\alpha)$ (кружки) и первой ступени Шапиро $I_1(\alpha)$ (треугольники) от нормированной амплитуды $\alpha \approx I_{RF}/I_c(0)$ внешнего воздействия излучения миллиметрового диапазона частотой 56 ГГц. Штриховыми кривыми показана теоретическая зависимость $I_1(\alpha)$, полученная из резистивной модели джозефсоновского перехода. Сплошной линией приведены зависимости, рассчитанные с учетом второй гармоники ток-фазовой зависимости q = 0.2. На вставке показаны ВАХ гетероструктуры Nb/Au/CSCO/YBCO: автономная (штриховая линия) и под воздействием электромагнитного излучения (сплошная линия)

напряжений ($V \leq 1$ мВ) была близка к гиперболической, типичной для джозефсоновских переходов. В области напряжений $V \geq 5$ мВ при температурах $T_c > T > T'_c$ (T'_c — критическая температура пленки ниобия) наблюдалась аномалия проводимо-

сти с максимумом, соответствующим V = 0, вызванная, скорее всего, связанными андреевскими состояниями малой энергии [11, 12]. При $T < T'_c$ на зависимости дифференциального сопротивления гетероструктур от напряжения $R_d(V)$ наблюдались особенности, вызванные сверхпроводящей щелью в ниобии. Зависимости критического тока всей структуры от температуры $I_c(T)$ в целом следуют температурной зависимости сверхпроводящего параметра $\Delta_{\rm Nb}$ в пленке Nb аналогично структурам без АЕ-прослойки [13]. Отсутствие квадратичного нарастания критического тока с уменьшением температуры и слабая зависимость характерного напряжения структуры $V_c = I_c R_N (I_c - критический ток,$ R_N — нормальное сопротивление структуры) от толщины CSCO-прослойки (см. таблицу) указывают на то, что в нашем случае толщина прослойки мала, и соотношение $\xi_{AF} \ll d_S$, обусловливающее экспоненциальную зависимость критического тока, не выполняется [17]. Поскольку во всех исследованных структурах с AF-прослойкой толщина d_S составляет десятки нанометров, глубина проникновения сверхпроводящего параметра порядка в CSCO значительно превышает наблюдавшуюся в работе [8] для поликристаллической прослойки из FeMn.

При воздействии монохроматического излучения длин волн миллиметрового диапазона на BAX гетероструктур возникают ступеньки Шапиро, вызванные синхронизацией собственного излучения внешним сигналом (см. вставку к рис. 2). Осцилляционные зависимости критического тока и первой ступени Шапиро от нормированной амплитуды внешнего воздействия $\alpha = I_{RF}/I_c$ (рис. 2) подтверждают джозефсоновскую природу сверхпроводящего тока. Наблюдается удовлетворительное соответствие критической частоты $f_c = 2eV_c/h = 50$ ГГц, определенной из максимального значения первой ступени Шапиро по резистивной модели (штриховая кривая на рис. 2), с величиной $f_c = 70 \Gamma \Gamma_{\rm I}$, полученной из измеренного на постоянном токе значения $I_c R_N = 145$ мкВ, что указывает на однородность протекания тока в структуре и отсутствие проколов. Лучшее соответствие максимального значения первой ступени Шапиро и расчетов наблюдается при учете второй гармоники $\sin 2\varphi$ в зависимости сверхпроводящего тока структуры $I_S(\varphi) = I_{c1} \sin \varphi + I_{c2} \sin 2 \varphi$. Согласно расчету в рамках модифицированной резистивной модели [13], учитывающей наличие I_{c2} (сплошная линия на рис. 2), отношение амплитуды второй гармоники к амплитуде первой для структуры, представленной на рис. 2, составляет значение $q = I_{c2}/I_{c1} = 0.2$.

917

На рис. 3a представлена зависимость $I_c(H)$ для структуры размером L = 10 мкм с АF-прослойкой из пленки CSCO толщиной $d_s = 50$ нм и x = 0.5. Штриховой линией обозначена зависимость, построенная по формуле (2) на основе экспериментальных данных, нормированных на критический ток I_c^0 (T = 4.2 K) и первый нуль магнитополевой зависимости H₁. Видно, что положение второго минимума H_2 экспериментальной зависимости значительно отличается от фраунгоферовой (2). Сплошной линией представлена зависимость (1) с экспериментальными параметрами I_c^0, H_1 при показателе степени при коэффициенте $(2/\pi\beta M_S)$ в формуле (1) равном -0.75, а не -0.5, как в теории [5]. Отклонение экспериментальных точек от сплошной линии на рис. За при малых Н обусловлено ограниченностью применимости формулы (1) при *M_S* близких к нулю [5]. Для сравнения на рис. Зб показана зависимость $I_c(H)$ для гетероструктуры без АF-прослойки. Видно, что в этом случае отклонение экспериментальной $I_c(H)$ от фраунгоферовой зависимости наблюдается при более высоких значениях внешнего магнитного поля $H > H_2$. Оцененное из измеренной величины H_1 значение $d_e = \Phi_0/\mu_0 H_1 L = 0.5$ мкм дает величину $\lambda_{L1} = 0.38$ мкм, превышающую табличное значение для оптимально допированного YBCO $\lambda_{L1} = 0.15$ мкм [18], вероятно, из-за размагничивающего фактора геометрии структуры. Отметим, что данные, представленные на рис. 3, были получены при воздействии магнитного поля, направленного перпендикулярно плоскости гетероструктуры [19]. Мы не наблюдали существенного различия в форме зависимостей $I_c(H)$, экспериментально измеренных для двух различных направлений магнитного поля, перпендикулярно плоскости гетероструктуры и вдоль ҮВСО-электрода, а размагничивающий фактор образца приводил лишь к изменению масштаба по Н для этих направлений.

Из сравнения данных на рис. За и Зб следует, что, несмотря на вдвое меньший размер L для структуры с AF-прослойкой, величина H_1 оказывается значительно меньше, чем поле первого минимума для структуры без прослойки. На структурах с x = 0.5для L > 20 мкм это различие увеличивалось (см. данные в таблице) и составляло величину порядка 20 раз, определенную по нескольким образцам. Принимая во внимание, что измерения проводились в одинаковых экспериментальных условиях и на образцах с идентичной геометрией, уменьшение более, чем на порядок величины внешнего магнитного поля H_1 , необходимого для получения первого минимума $I_c(H)$ в структурах с CSCO-прослойкой

№ п/п	d_S , нм	x	<i>L</i> , мкм	I_c , мкА	R_N , Ом	V_c , мкВ	$\mu_0 \Delta H$, мкТл	λ_J , MKM
274-10	50	0.5	10	2.5	60	150	54	196
274-20	50	0.5	20	10	20	200	9	196
274-30	50	0.5	30	18	9.8	176	5	219
274-40	50	0.5	40	51	4.2	214	6	174
274-50	50	0.5	50	70	2.9	203	3	185
269-20	50	0.15	20	280	0.38	106	12	37
273-10	20	0.5	10	335	0.8	268	38	18
273-20	20	0.5	20	890	0.15	134	49	21
N2-20	0	_	20	20	3.6	72	139	162
N2-30	0	_	30	60	0.93	56	118	140
N2-50	0	_	50	198	0.44	87	56	129

Рис.3. *а*) Магнитополевая зависимость критического тока $I_c(H)$ гетероструктуры размером L = 10 мкм с AF-прослойкой. Сплошная линия — зависимость, полученная из формулы (1), штриховая — фраунгоферова зависимость (2), *б*) $I_c(H)$ для структуры размером L = 20 мкм без AF-прослойки (Nb/Au/YBCO). Штриховая линия — фраунгоферова зависимость (2), сплошная линия — численный расчет [14]

по сравнению со структурами без прослойки можно связать с наличием AF-слоя. Заметим, что для структур с x = 0.15 также наблюдалось уменьшение H_1 (и, как следствие, среднего периода ΔH осцилляций I_c), но в меньшей степени, чем при x = 0.5 (см. данные таблицы).

Такое значительное уменьшение величины H_1 не объясняется увеличением лондоновской глубины проникновения λ_{L1} YBCO из-за уменьшения уровня допирования кислородом YBCO-пленки, приграничной к барьерному слою Au/CSCO (не более 30 % для критической температуры YBCO равной 40 К) [11]. Судя по уширенным вторичным максимумам, периодичность формы $I_c(H)$ структур с AF-прослойкой (рис. 3*a*) ближе к формуле (1) с $H_1 \approx (H_2 - H_1)/2$, в то время как у фраунгоферовой зависимости, следующей из формулы (2), $H_1 \approx (H_2 - H_1)$. Отметим, что $I_c(H)$ структуры без AF-прослойки хоропю описывается моделью [13], учитывающей наличие S/D-наноконтактов к (001) и (110) плоскости D-сверхпроводника в барьерном слое (сплошная линия рис. 3*б*). Согласно работе [5] немонотонная зави-

Рис. 4. Магнитополевая зависимость $I_c(H)$ структуры размером L = 50 мкм с АF-прослойкой (темные кружки), сплошная линия — зависимость, следующая из формулы (1). Для сравнения приведен фрагмент $I_c(H)$ для структуры без AF-слоя такого же размера (светлые кружки)

симость $I_c(H)$ с периодичностью, отличной от кванта магнитного потока в S–AF–S-переходах, вызвана слабым изменением наклона магнитных моментов в ферромагнитных слоях под действием внешнего магнитного поля и, соответственно, параметра M_S в формуле (1). Минимумы $I_c(H)$ наблюдаются при существенно меньших значениях внешнего магнитного поля, чем значение $H_1 = \Phi_0/\mu_0 d_e L$, соответствующее проникновению кванта магнитного потока Φ_0 в структуру.

При увеличении размеров (L > 20 мкм) зависимости $I_c(H)$ видоизменяются: имеется максимум критического тока при малых H, а потом осцилляционное убывание $I_c(H)$ с периодичностью порядка 1 мкТл (см. рис. 4). При L = 50 мкм форма зависимости $I_c(H)$ скорее соответствует случаю распределенного джозефсоновского перехода, хотя условие распределенности $(L > 4\lambda_J)$ не выполняется. Периодичность такой осцилляционной «тонкой структуры» $I_c(H)$ с достаточно хорошей точностью описывается формулой (1), показанной сплошной линией на рис. 4.

Для структур без АF-прослойки усредненное значение периода поля ΔH осцилляций $I_c(H)$ уменьшалось пропорционально 1/L (рис. 5), в тоже время для структур с AF-прослойкой определить точный ход зависимости ΔH от L не удается из-за сложной формы зависимости $I_c(H)$ при L > 20 мкм. Подчеркнем, что значительное уменьшение величины ΔH наблюдалось на всех исследованных нами структу-

Рис.5. Зависимость средней ширины пиков $\mu_0 \Delta H$ от размера гетероструктур: светлые символы — без АF-прослойки, темные — с AF-прослойкой. Кружки — поле перпендикулярно подложке (в качестве ошибки измерения указано среднее квадратичное отклонение), ромбы — поле параллельно плоскости подложки по оси антенны. Сплошная линия — аппроксимация вида $\Delta H \propto 1/L$

рах с AF-прослойкой, с небольшими отклонениями в зависимости от уровня допирования *x* прослойки (см. таблицу).

Высокая чувствительность гетероструктур с АF-прослойкой к внешнему магнитному полю может быть применена для решения прикладных задач. Так, важной характеристикой датчиков магнитного поля на СКВИДах является коэффициент преобразования магнитного поля в напряжение на структуре $\partial V/\partial(\mu_0 H)$. Используя семейство ВАХ при воздействии магнитного поля и зависимость $I_c(H)$ для структуры с L = 10 мкм получаем значение $\partial V/\partial(\mu_0 H)$ равное 2.5 В/Тл при T = 4.2 К. Эта величина близка к наблюдавшейся при той же температуре $\partial V/\partial(\mu_0 H) = 2$ В/Тл для СКВИДов на бикристаллической подложке с площадью петли 200 мкм² без дополнительного концентратора магнитного потока [20].

4. ЗАКЛЮЧЕНИЕ

В гибридных оксидных сверхпроводниковых структурах с антиферромагнитной прослойкой экспериментально измерен сверхпроводящий ток, имеющий джозефсоновскую природу. Обнаружено отклонение ток-фазовой зависимости сверхпроводящего тока от синусоидальной формы вследствие наличия 20-процентного вклада второй гармоники (пропорциональной $\sin 2\varphi$). В отличие от известных джозефсоновских структур, в нашем случае наблюдается модуляция критического тока, вызванная влиянием внешнего магнитного поля на намагниченность антиферромагнитной прослойки. В результате, почти на порядок увеличивается чувствительность структуры к воздействию внешнего магнитного поля.

Авторы благодарны Д. Винклеру, В. В. Демидову, А. В. Зайцеву и И. И. Соловьеву за полезное обсуждение полученных результатов. Работа выполнена при частичной финансовой поддержке ОФН РАН, Министерства образования и науки РФ, Европейского союза (проект NMP3-CT-2006-033191), Европейского научного фонда ESF (программы AQDJJ и THIOX), МНТЦ 3743, а также в рамках шведской программы KVA.

ЛИТЕРАТУРА

- F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
- 2. А. V. Zaitsev, Письма в ЖЭТФ 83, 277 (2006).
- Т. Ю. Карминская, М. Ю. Куприянов, Письма в ЖЭТФ 86, 65 (2007).
- 4. B. Crouzy, S. Tollis, and D. A. Ivanov, E-print archives, cond-mat/07061638.
- L. P. Gorkov and V. Z Kresin, Phys. Rep. 400, 149 (2004).
- B. M. Andersen, I. V. Bobkova, P. J. Hirschfeld, and Yu. S. Barash, Phys. Rev. Lett. 96, 117005 (2006).

- 7. А. Бароне, Дж. Патерно, Эффект Джозефсона. Физика и применения, Мир, Москва (1984).
- C. Bell, E. J. Tarte, G. Burnell et al., Phys. Rev. B 68, 144517 (2003).
- 9. Г. А. Овсянников, С. А. Денисюк, И. К. Бдикин, ФТТ 47, 417 (2005).
- 10. Г. А. Овсянников, В. В. Демидов, Ю. В. Кислинский, Ф. В. Комиссинский, Материалы X симпозиума Нанофизика и Наноэлектроника, Нижний Новгород (2006), т. 2, с. 277.
- **11**. Г. А. Овсянников, И. В. Борисенко, Ф. В. Комиссинский и др., Письма в ЖЭТФ **84**, 320 (2006).
- P. Komissinskiy, G. A. Ovsyannikov, I. V. Borisenko et al., Phys. Rev. Lett. 99, 017004 (2007).
- A. G. Sun, A. Truscott, A. S. Katz et al., Phys. Rev. B 54, 6734 (1996).
- Ю. В. Кислинский, Ф. В. Комиссинский, К. И. Константинян и др., ЖЭТФ 128, 575 (2005).
- H. Akoh, C. Camerlingo, and S. Takada, Appl. Phys. Lett. 56, 1487 (1990).
- J. Yoshida, T. Hashimoto, S. Inoue et al., Jpn. J. Appl. Phys. **31**, 1771 (1992).
- 17. K. A. Delin and A. W. Kleinsasser, Supercond. Sci. Technol. 9, 227 (1996).
- **18**. М. Р. Трунин, УФН **175**, 1017 (2005).
- 19. I. Rosenstein and J. T. Chen, Phys. Rev. Lett. 35, 303 (1975).
- 20. Z. G. Ivanov, P. A. Nilsson, D. Winkler et al., Appl. Phys. Lett. 59, 3030 (1991).