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We study the teleportation protocol of an unknown macroscopic qubit by means of a quantum channel com-
posed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such
as a beam splitter and photon number resolving detectors. A method based on conditional measurement is
used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-
photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we
investigate the quantum teleportation protocol from a macroscopic object to a microscopic state.

PACS: 42.50.Dv, 03.67.Hk, 03.65.Ta

1. INTRODUCTION

Quantum teleportation, first proposed by Bennett
et al. [1], is a technique for moving an unknown state
around in the presence of a quantum communication
channel linking the sender to the recipient. Several
experiments were implemented to demonstrate quan-
tum teleportation [2,3]. In the teleportation experi-
ment in [2], entanglement of photons with different po-
larizations was used. In the teleportation experiment
in [3], the quantum channel was a two-mode squeezed
state. Presently, there is growing interest in the use
of Schrodinger-cat states [4] for quantum information
processing. Entangled coherent states were proposed
to teleport a qubit encoded in a Schrodinger-cat state
in [5]. It was shown in [6] how quantum information
processing can be implemented using even and odd co-
herent superposition states. Quantum information pro-
cessing based on entangled coherent states is described
in [7]. There is a sole drawback of the application of
entangled coherent states to quantum computation: it
is extremely difficult to prepare them in practice [8].

In this paper, we study a quantum teleportation
protocol with the help of an entangled state constructed
from displaced vacuum and single-photon states [9-11].
The conditional mechanism of generation of both the
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macroscopic qubit and the entangled state composed
of the displaced vacuum and single-photon states is
used [12-14]. We show that such a macroscopic qubit
reveals both microscopic and macroscopic properties.
A scheme of quantum teleportation from a macroscopic
object to a microscopic one is studied. The problem
of the use of displaced states in quantum information
processing is fresh and enables an additional degree of
freedom. The photon state is determined by its num-
ber, while the phase is completely random. The dis-
placed state is obtained from a number state by adding
a nonzero value to the field amplitude. By displacing
in phase space, a field amplitude is added to this state,
and the photon number has a contribution from the co-
herent component of the field. The displaced state be-
comes phase dependent, which allows using new pairs of
quasi-orthogonal entangled states (which may be used
in other quantum protocols). The study of the quan-
tum teleportation through the entangled states com-
posed of the displaced state may be considered an ex-
tension of the previously proposed protocol based on
entangled coherent states [5], which can be performed
only in the presence of highly efficient and precise pho-
tocounting. Highly efficient photodetectors that pre-
cisely distinguish between m and m + 1 must be used
in [5]. Our proposal reduces the requirements on the
parameters of registering devices.
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2. GENERATION OF AN ENTANGLED
CHANNEL FROM DISPLACED VACUUM
AND SINGLE-PHOTON STATES

We start with the problem of generation of an en-
tangled state composed of the displaced vacuum and
single-photon states. Parametric down conversion in
a nonlinear crystal is used for the production of the
desired state. A high-energy pump photon may split
into two lower-energy photons that are normally emit-
ted into symmetrically oriented directions. The modes
into which the photons are emitted are called the signal
and idler modes. Starting from the input vacuum field
in the signal and idler modes, spontaneous parametric
down conversion occurs. To generate a single-photon
added state, a seed coherent state must be ejected,
e.g., into the signal mode. We use the simple model
where the pump mode is classical and interacts with
two modes at frequencies w; and wy;. Two nonlinear
x? crystals are placed in the modes of two power-
ful fields. Ancilla coherent states |a);|a); are used as
shown in Fig. 1. Dynamical description of the system
of coupled converters involves four modes with the cor-
responding annihilation operators a;, a2, az, and ay
described by the Hamiltonian

(1)

in the interaction picture [15, 16]. The coupling coeffi-
cient x in (1) is connected with the nonlinear second-
order susceptibility tensor Y(® and also involves a
classical pump. The coupling constants of two con-
verters are assumed to be identical to each other,
X1 = X2 = X. The input wave function to Hamilto-
nian (1) is |[P;n) = |a)1]0)a]|a)3|0)4. If the parametric

A = ihy (a{a; — ayéy + afal - a3a4)

Fig. 1. Experimental arrangement of the system of cou-
pled converters. Two parametric converters with type-I
phase matching are inserted in the routes of powerful
fields. An additional coherent state with the amplitude
|V/2 @) is injected into the system through the beam
splitter (BS) with the Hadamard unitary operation
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gain of the system of the coupled converters (g < 1,
where g = xt) is sufficiently low, the final output state
is described by

_Ht
|YouT) = exp <—17> |Vrn) ~
~ (1 +g (a{a; — Gy +alal — a3a4)) x

x[@)1]0)2[a)3|0)4 = [@)1[0)2]@)3[0)4+g+/ 1+]a*
X (|, D)1]@)3[10)24 + [)1]a, 1)5(01)24) . (2)

We now use a beam splitter to superimpose the
following modes. Input—output relations at a lossless
beam splitter can be characterized by the SU(2) Lie
algebra [25]. A beam splitter can be considered a
four-port device with the input—output relations in the
Heisenberg picture given by

d; out CALE in
T R al
= ,  (3a

where 7" and R are the transmittance and reflectivity
of the beam splitter. A very simple way to describe the
action of a beam splitter is to fix the phase relations
by using two 7/2 phase shifters inserted into both the
input and output modes such that the beam splitter is
described by the Hadamard transformation

<1 = -t =
a2 out a2 in
1 |1 1 al
=— - i (3b)
V2 [ 1 -1 a |,

It is worth mentioning that the standard Hadamard
gate in quantum computation is a single-qubit gate,
while we use unitary matrix (3b) as a two-qubit oper-
ation. For a single incident particle, the action of the
beam splitter with matrix (3b) is described by the stan-
dard Hadamard transformation (H|0) — (|0)+]1))/v/2,
H|1) — (|0) — |1))/+/2). The general case of the beam
splitter with matrix (3b) involves both incoming modes
occupied by photons.

We combine modes 2 and 4 on the beam splitter
with matrix (3b), which gives

Hou|Tour) = |a)1]0)s]a)s]0)s +
+ 9V 14202 W) 13]10)04 — g[W_)13[01)0s, (4)

where we introduce the macroscopic entangled states
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|‘I’i>13= (‘Oé>‘0(, > ‘Oé, >|a>)137 (5)
V21 £ /(1 +]al?))
where af? SN
6! a
a) =exp | ——— — |l 6a
R G ORI
is the coherent state and
at
jo1) = W
(alaat|a)
exp(~[af2/2) &
= ) (6b
ay/T+aP g i o
is the one-photon added coherent state [17,18]. De-

pending on the measurement outcome of two photo-
detectors placed behind the beam splitters in modes 2
and 4, the output can be divided into two groups if
detector Dy fires or if Dy does. Each outcome of
the measurement projects the state f]g4|\I'OUT) on ei-
ther |¥,);3 or |¥_)13 depending on which detector
clicked. The states |¥1) are orthogonal to each other:
(P_|T4) = 0. Tt is worth noting that some methods
to conditionally generate a one-photon added coherent
state in the pumping modes were studied in [19]. We
deal with conditional generation of the entangled state
composed of the coherent and single-photon added co-
herent states in the signal and idler modes in the
scheme in Fig. 1, not affecting transformation processes
in the pumping modes as is the case in most experimen-
tal situations [20].

We note some properties of the |¥ 1) states [15, 16].
The concurrence, as a measure of the amount of en-
tanglement, of the state |¥_) is equal to one indepen-
dently of the value of the parameter «, while the con-
currence of the state |, ) is C(|¥,)) = 1/1 + 2|al?,
which is less than one if |a| > 0 and rapidly decreases
as « increases. If the size a of the state |¥) ap-
proaches infinity (o — o0), the concurrence tends to
zero (C(|®1)) — 0). Because the state |T_) has the
maximum possible amount of entanglement, it can be
presented in terms of orthogonal states, namely, dis-
placed vacuum and single-photon states [9-11]

(‘07 a>|17 Oé> - ‘17 a>|01 Oé>)13
\/5 )
where the components of the state are given by

D(a)[0) = |a),

|¥)1s = (7)

0,) = (8a)
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where ﬁ(oz) = exp(aal — a*a) is the unitary displace-
ment operator [20].

A remark on the notation used is in order. The dis-
placed single-photon |1, @) state should not be confused
with the single-photon added coherent state |a,1).
There is a difference between them because either an-
nihilation or creation operators do not commute with
the unitary displacement operator ([a, D(a)] # 0). In
the limit case as @ — 0, the states |1,a) and |, 1)
approach the one-photon state [1). Coherent and one-
photon added coherent states are not orthogonal to
each other ({(a|a,1) = a*/y/1+ |a|?) and their scalar
product approaches unity as a — oo. On the con-
trary, the state |1,a) is always orthogonal to the co-
herent state with the same amplitude «, irrespective
of the value of a ({a|1,a) = 0). Therefore, we can in-
terpret the displaced vacuum and single-photon states
as basis states (logical zero and logical one) for a log-
ical qubit in the framework of quantum information.
Below, we let |0,a) = |a) denote a coherent state by
analogy with |1, a). Then the well-known Schrédinger-
cat state [7,8] can be rewritten in our notation as
la) + | —a) =10, @) + |0, —a) up to normalization fac-
tor. Such a representation of the Schrédinger-cat state
reflects the difference of the mechanisms of generating
the states. The Schrodinger-cat state is generated due
to a nonlinear phase shift of one of the superposition
components [8], while the single-photon state is created
owing to single-photon addition and displacement. We
sometimes call the states |1, @) and |0, a) a macroscopic
single-photon state and a macroscopic vacuum, respec-
tively.

3. CREATION OF THE MACROSCOPIC
QUBIT AND ITS PROPERTIES

We consider generation of an unknown macroscopic
qubit composed of the displaced vacuum and single-
photon states. The superposition state

I7) (9)

where A and B are arbitrary amplitudes (with
|A]? + |B|*> = 1), can be generated through a pho-
ton-number conditional measurement. We take a beam
splitter with unitary matrix (3a) and combine the
single-photon added coherent state with an amplitude
a1 (mode 1) with the ancilla coherent state with an
amplitude as (mode 2) through a beam splitter. The
mixing result is given by

— A|0,0) + B|L,a),
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U(lar, 1)1]asz)s) = !

T\/l + ‘OélT — OéQR*|2 |a1T —asR*, 1>1‘041R + OéQT*>2+

(

In the case where a; R + axT* < 1, we can neglect
higher-order photon-number states in the |a; R+ a2T*)
and |a;R + a2T*,1) states and replace them with

V1+|al?

finite superpositions up to cgi)m) + cgi)|1> + cgi)|2>,
where cgj) are the respective amplitudes (i = 0,1 and
j = 0,1,2) of the coherent and single-photon added co-
herent states. When the state |0), is registered in the
second output mode of the beam splitter, this detection
projects the first mode into a single-photon added co-
herent state with the amplitude a; T'—ao R* [13]. State
(8) is conditionally generated if either the state |1) or
the state |2) is registered in the second mode, which
can be performed by using a photon-number resolving
detectors [21].

We note some properties of the superposition of dis-
placed vacuum and single-photon states (9). We con-
sider readout of qubit (9) in the framework of quantum
information processing and assume that somebody gave
us either the |0, @) or the |1, @) state, which we do not
know exactly. Our task is to determine which state we
were given. We prepare a second input channel in the
beam splitter in a coherent state with the amplitude aq,
|0, 1 )2, and impose the restriction aR + a1 T* = 0 on
the input conditions. Then, combining the input states
|0, )1 and |0, aq)2, we have the output |0, a/T*)1]0)2,
while combining the input states |1,a); and |0, a1)2,
we have

UaR+a1T*:O (|1 Oé>1|0, 041>2) =

« (0%
=TI1, — — ) [1)2. (11
), 02+ RI0, ) (D2 (1)

If an ideal detector following the beam splitter in the
second output mode registers a single-photon impact,
this definitely means that we obtained the |1, a); state.
If the detector does not click, we can tell nothing defi-
nite about the state that was sent. But we can decrease
the influence of the T|1,a/T*);]0)> term in (11) by
choosing a beam splitter with the transmittance 7' as
low as possible (|7] < 1) such that Tliinoo aT* = —a.

If we take the transmittance 7' very small, then it is
possible to claim that the state |1, «); was given in the
case we registered nothing. The probability to mistake
the |0, a); state for the |1,a); state is |T]> < 1.

The same argument is applicable to state (9). If a
single photon hits a photodetector in the second mode,
we definitely know that the |1, a); state was measured;
if we do not register anything, we know it was the
|0, o)1 state with fidelity

F = [AP/(|AP + |B]P|T?) ~ 1 - [BP*|T|*/|A]*.

+R\/1 + \ole + QQT*P |a1T - QQR*>1‘Q1R + CMQT*, ].>2

) )
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The fidelity approaches 1 as |T| — 0, which con-
firms the possibility to almost definitely distinguish the
states |0, )1 and |1,a); from each other.

We consider the interference properties of qubit (9).
We calculate the Wigner function of superposition (8)
with A = 1/y/2 and B = —exp(ip,)/v2. The Wigner
function of such a state is evaluated as

4
Wiam) @9) = = (@ = 72)(& = 0 - cosa) +

+ (y - ya)(y ~Ya — sin 9%)) X

X exp (_2 ((x_xa)2+(y_ya)2)) ; (123)
where  cos g = o/ |al? +yal?> and
$in o = Yo /V/|Zal? + [Ual?. The Wigner function of

the statistical mixture described by the density matrix
p = (/0,a){0,af +[1,a)(1,a[)/2 is given by

W,(x,y) = % ((—2a)® + (y = ya)®) x

X exp (_2 ((l‘ - xoz)Q + (y - yoz)Z)) : (12b)

The Wigner functions of the balanced superposition
and statistical mixture are plotted in Fig. 2. The
Wigner function of the statistical mixture has two
peaks, while one of the peaks is destroyed in the case
of the balanced superposition due to the interference
effect inherent to superposition (9).

For example, the marginal distribution, as a func-
tion of x, can be obtained by integrating the Wigner
function over y. We consider the case of a balanced
superposition. The corresponding quadrature distribu-
tion |¥(z)|? of the pure state is given by

1T (2))? = 2\/3 X

X ((x — 20)(r — 2o — cOS ) + 0.25) X

x exp (—2(z — 24)%) . (13)

The corresponding dependences of the quadrature dis-
tributions |¥(x)|? are plotted in Fig. 3 for both super-
position state (13) and the statistical mixture. The
plots clearly show the difference in behavior of pure
macroscopic qubit (9) and the statistical mixture. The
quadrature components of the pure state and of the
statistical mixture can be measured in experiments to
observe the difference.
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4. GENERATION OF AN ENTANGLED
CHANNEL WITH DIFFERENT
AMPLITUDES

In Sec. 2, we discussed a method of conditional gen-
eration of the entangled state composed of displaced
vacuum and single photon states (Eq. (7)) with equal
amplitudes. We now consider conditional generation
of entangled state (7) with different amplitudes. The
method used in Sec. 2 is not applicable to the gener-
ation of entangled state (7) with distinct amplitudes.
We assume that the modes of the beam splitter are
prepared in a coherent state with the amplitude v/2
(|v/2a)1) (mode 1) and in a state of a single-mode qubit
consisting of the vacuum and single photon

<0> |1>> - (14

Experimental generation of an arbitrary superposition
of the vacuum and single-photon states has been ac-
complished using parametric down conversion with the
input signal mode prepared in a coherent state [22],
employing the quantum scissor scheme [23], or condi-
tioning on homodyne measurements on one part of a
nonlocal single photon in two spatial modes [24].

V2

_a*

o

V2 4+ |al?

T)2

The result of the unitary transformation with ma-

trix (3b) is
1) )

<1,a>1a)2 +

Y (T
2+ [af? a
1

V2 4+ |af?
«
+ SLTETaF o, 1)a) - (15)

*

UH (\/Eah

where Up is the evolution operator corresponding to
the Hadamard unitary transformation. We restrict
our attention to the events in which no photons are
recorded in the second output channel (Eq. (15)). Then
the first output channel of the beam splitter is condi-
tionally prepared in the state |1, a) because one-photon
added coherent state (6(b)), unlike the coherent one,
does not contain the vacuum state. The conditionally
prepared displaced single-photon state |1, «) can serve
as a basis for generation of the entangled state with
different amplitudes. To show this, we combine |1, a),
with the ancilla coherent state |0, a1)2 on a beam split-
ter with arbitrary 7' and R parameters,
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U (|1,a)1]0,01),) =
=T|1,aT — a1 R*)1]0,aR 4+ a1 T™)2 +
+R|0,0éT—OélR*>1|1,0éR+OélT*>2. (16)
Choosing |T| = |R| = 1/v/2, we obtain a maximally en-
tangled state. Imposing the condition aR + o T* = 0,
we prepare a maximally entangled state consisting of
macroscopic and microscopic objects

1

@) 7

(1. v2a)0) +j0.v2a)))  (17)

ifT=R=-R*=1/V2 and T* = —1/V/2.

5. TELEPORTATION

We consider a teleportation scheme as an example
of the use of the entangled state like (17). A typical
setup of the teleportation problem is as follows. Alice
wishes to teleport unknown state (9) in mode 1 to re-
mote colleague Bob by prior sharing state (16). Modes
1 and 2 are at Alice’s hands, while mode 3 is at Bob’s
side. The initial state of the joint system is given by

0125 = [7)1|¥)23. (18)
We consider the case where all three amplitudes of the

state |{2)123 are not equal to each other. We apply the
Up operation to state (18) and finally obtain

Un|Q)123 = %\1,(01 +as)/V2)1 %
x |0, (a1 — a2)/V2)s (A]0,a3)s + Bl1,as)s) —
— 510, (a1 +02)/VENIL (1 — a2)/VE)s x

x (A]0,as)s — B|1,a3)3) + x

G-

x[0, (a14a2)/v2)1]0, (a1 —as)/V2

75 (1201 + 0)/VE) 0. (1 = 02)/V2) =

- 10, (041+042)/\/§>1\27(01—02)/\/§>2) 0,a3)3. (19)

~

2|1, a3)s+

_|_

Alice must now perform a photon-number measure-
ment by placing detectors behind the beam splitter and
then send her results to Bob, to do the corresponding
unitary operations. To simplify Alice and Bob’s aim,
we take a; = ay and az =0 (|n,a = 0) = |n)). Then
formula (19) becomes
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Fig.2. Wigner function of the superposition state |¥) = (|0, ) — exp(iga)|1,@))/v/2 (a) and statistical mixture described
by the density operator p = (|0, a)(0, a| + |1, @)(1, o]} /2 (D) for a = 0.5 and Qn = 7/4

UH|Q>123 = 1‘17 \/§a>1 |0)2 (A]0)s + B|1)3) — Off-shelf photon counters have efficiencies around 65 %
2 and can only differentiate between zero and more pho-

_ 1‘07 V2a)1|1)s (4]0)s — B|1)3) + tons. However, Takeuchi et al. [21] developed an

2 avalanched photodetector that can discern 0, 1, and

+ im, V2a)1|0)2]1)s + 2 photons with 90% efficiency. We use such detectors

V2 assuming that they are ideal. Then, in the case of regis-

+ % (‘27 VZa)i|0)s — |0, \/ﬁa)1|2)2) 0);. (20)  tration of a single photon in Alice’s second mode, state

510
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Fig.3. Quadrature distribution [®(2)|? of the super-

position state and statistical mixture for a« = 2 and

Qo = 0. Curves 1 and 2 respectively correspond to the

superposition state and the statistical mixture. Two

separated peaks of the statistical mixture transform to
one peak of pure superposition

(20) collapses into an unknown state A|0); — B|1)3, but
on Bob’s side. Alice sends one bit of classical informa-
tion informing him about the result of her measurement
and, finally, Bob needs to shift a phase of a single pho-
ton by w. If Alice registers nothing, she must consider
outcomes of her first mode, in other words, she must
be able to distinguish the states |0, a), |1, a), and |2, a)
from each other. This can be done if she combines the
states with the ancilla coherent state |0, ;) with the
amplitude a; on a beam splitter with arbitrary trans-
mittance and reflectivity (3a). The results of mixing of
the states |0, a), |0, 1) and |1, a), |0,a1) (Eq. (11)) are
presented above. Superimposing |2,a); and [0, 1)1/,
on a beam splitter, we obtain

UaRtai =0 (12,0)1|0,01)1) =

=722, Tﬁ>1 0V +V2TR

«
1,—) [y
’T*>1|>1+

«

0,—) 12)1r (21
), 120 (@)

if aR+a1T* =0. AsT — 0 (R — 1), the pho-
ton-number resolving detector registering a single pho-
ton projects output state (20) on (A|0)3 + B|1)3) on
Bob’s side. Alice has only to inform Bob about this

and Bob has nothing to do. Thus, we described a type

+ R?

of quantum information delivered from a macroscopic
state to a microscopic one. The success probability
of the teleportation protocol is 0.5 and is independent
of the amplitudes of participating states. Therefore,
quantum teleportation through a coherent entangled
channel requires photon detection being able to dis-

511

tinguish odd-photon-number states from even ones [7],
which is impossible in practice with the current level of
technology.

In conclusion, we have investigated the possibility
to apply displaced states to quantum information. We
showed different methods of conditional generation of
both macroscopic qubits and entangled states con-
structed from the displaced states. All the methods are
based on the use of linear optical elements including
phonon-number-resolving photodetectors. We showed
the possibility to teleport an unknown macroscopic
qubit to a microscopic state if participants share a
quantum channel of special form. It is plausible that
the proposed scheme of quantum teleportation based
on displaced states can be realized in practice. We
address the displaced states as macroscopic objects
because they are characterized by some parameter «
that can take large values. But the measurements
performed to distinguish the coherent state from the
displaced single photon are nevertheless intrinsically
microscopic, in that we must be able to distinguish
between vacuum and one-photon impact, which are
microscopically distinct. In this sense, the claim that
the states are macroscopic may be disputed. To claim
about macroscopic states, one should show that the
states are distinguishable for photon-number measure-
ments with a limited resolving power [26]. This may
become the subject of the future investigation.

This work was supported by the IT R&D program
of MIC/IITA (2005-Y-001-04, Development of next
generation security technology).
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