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EFFECT OF PRESSURE ANISOTROPYON MAGNETOROTATIONAL INSTABILITYA. B. Mikhailovskii a, J. G. Lominadze b*, A. P. Churikov ,N. N. Erokhin a, N. S. Erokhin d, V. S. Tsypin eaInstitute of Nulear Fusion, Russian Researh Centre Kurhatov Institute123182, Mosow, RussiabGeorgian National Astrophysial Observatory0160, Tbilisi, GeorgiaSyzran Branh of Samara Tehnial University446001, Syzran, Samara Region, RussiadSpae Researh Institute, Russian Aademy of Sienes117810, Mosow, RussiaeBrazilian Center for Physis ResearhBR-22290180, Rio de Janeiro, BrazilReeived April 11, 2007It is shown that two new instabilities of hybrid type an our in a rotating magnetized plasma with anisotropipressure, i. e., the rotational �rehose instability and the rotational mirror instability. In the ase of �k > �?,where �k and �? are the ratios of the parallel and perpendiular plasma pressure to the magneti �eld pressure,the pressure anisotropy tends to suppress both new instabilities; in the ase �? > �k, it leads to their strength-ening. In the last ase, the perturbations onsidered an be unstable even if the Velikhov instability riterion isnot satis�ed.PACS: 52.35.Bj, 94.30.q1. INTRODUCTIONThe magnetorotational instability (MRI) [1℄ seemsto be important for the physis of aretion disks [2℄.It is neessary to onsider instabilities there beause,aording to [3℄, the visosity in the disks should beanomalous, i. e., aused by turbulene, whih should inturn be a result of an instability.In aordane with reent ideas, the aretion disksan ontain ollisionless plasma. The pressure of suha plasma an be anisotropi. Aording to [4�8℄, thisan lead to a family of pressure-anisotropy-driven in-stabilities (a detailed bibliography of these instabilitiesan be found in review [9℄). Therefore, it seems rea-sonable to develop a theory of the MRI in a plasmawith anisotropi pressure, thereby generalizing the re-*E-mail: j.lominadze�astro-ge.org

sults in [4�8℄ to the ase of rotating plasma. This is thegoal of the present paper.The pressure-anisotropy-driven instabilities dis-ussed in [4�8℄ an be studied using both the kinetisand the Chew�Goldberger�Low (CGL) approah[10℄ (the so-alled CGL approximation). The CGLapproah has been reviewed in [11℄. We expose resultsfound in both these approahes.In Se. 2, based on the kineti approah in [12℄,we derive a dispersion relation desribing the MRI ina ollisionless plasma with anisotropi pressure. Wenote that steps in the same diretion have been madein [13; 14℄. In Se. 3, the dispersion relation for MRIis derived using the CGL approah. In Se. 4, permit-tivity of a rotating plasma with anisotropi pressure isdisussed. The goal of Se. 5 is to present the theoryof pressure-anisotropy-driven instabilities in a nonro-429



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 133, âûï. 2, 2008tating plasma. We arrive at the two known versions ofthe �rehose instability, one of whih is related to theAlfvén osillation branh and the seond to the magne-toaousti branhes, and to the known mirror instabil-ity, whih is related to the magnetoaousti osillationbranhes. The main goal of the paper, i. e., the study ofthe MRI in the ase of anisotropi pressure, is realizedin Ses. 6 and 7. We predit two new instabilities ofhybrid type: rotational �rehose Se. 6 and rotationalmirror (Se. 7). Disussions are given in Se. 8.2. KINETIC DISPERSION RELATIONFor the desription of plasma dynamis, we startfrom the equation of motion in the form [12; 15℄�dVdt = �r � p� 14� �12rB2 � (B�r)B� ; (2.1)where d=dt = �=�t + V �r, and �, V, p, and B arerespetively the total mass density, veloity, pressuretensor, and the total magneti �eld, given by� = �0 + Æ�; V = V0 + ÆV;p = Ip0 + Æp; and B = B0 + ÆB;I is the unit tensor and Æ denotes the perturbed parts.We onsider ylindrial geometry haraterized bythe oordinates (R; �; z). The equilibrium magneti�eld B0 is assumed to be direted along the z axis,B0 = (0; 0; B0). Plasma rotates in the azimuthal dire-tion � with an angular frequeny 
, and hene the equi-librium plasma veloityV0 is given byV0 = (0; R
; 0).The perturbed veloity ÆV and the perturbed mag-neti �eld ÆB are represented asÆV =(ÆVR; ÆV�; ÆVz) ; ÆB = (ÆBR; ÆB�; ÆBz) :We assume that the perturbations are independent ofthe azimuthal oordinate �. Then dependene of eahperturbed value F (r; t) an be taken in the formF = F (R) exp (�i!t+ ikRR+ ikzz) ; (2.2)where ! is the wave frequeny, and kR and kz are theperpendiular and parallel projetions of the wave ve-tor.Aording to Refs. [12; 15℄,r � p =rp?+pk�p?B2 �12r?B2+[r�B℄�B�++ BB (B �r) � 1B �pk � p?�� ; (2.3)

where p? = p?0 + Æp? and pk = pk0 + Æpk are the per-pendiular and parallel pressures. The projetions ofEqs. (2.1) are given by� i!ÆVR��ANA + k2zv2A!2 �� 2
ÆV� �� iv2AB0 k2kz ÆBR = 0; (2.4)� i!ÆV���ANA + k2v2A!2 �+ ikR Æp?�0 ++ ÆVR �22
 + iv2AB0 kzÆB� = 0; (2.5)where k2 = k2R + k2z and vA is the Alfvén veloity,v2A = B204��0 : (2.6)The parameter � is introdued by�2 = 2
R d(R2
)dR : (2.7)We set �ANA = 1� k2zv2A!2 �1 + �? � �k2 � ; (2.8)where (�?; �k) = 8�(p0?; p0k)=B20 : (2.9)2.1. Kineti approahThe perturbed perpendiular pressure Æp? is ex-pressed in terms of the perturbed distribution funtionÆf as [9, 12℄ Æp? = M Z v2?2 Æf dv; (2.10)where v? are the perpendiular partile veloities, vis the veloity spae volume, and M is the ion mass.Aording to [9℄, the funtion Æf is given byÆf = Mv2?2T? �1� T?Tk + !! � kzvk T?Tk � f0 ÆBzB0 ; (2.11)where T? and Tk are the equilibrium perpendiularand parallel temperatures. For Æf given by (2.11),Eq. (2.10) for Æp? takes the formÆp? = 2p?0�1�T?Tk �1+ ip�!jkzj vTkW � !jkz j vTk����� ÆBzB0 ; (2.12)430



ÆÝÒÔ, òîì 133, âûï. 2, 2008 E�et of pressure anisotropy on magnetorotational instabilitywhere vTk = p2Tk=M is the ion parallel thermal ve-loity andW (x) = exp(�x2)0�1 + ip� xZ0 exp(t2)dt1A (2.13)is the plasma dispersion funtion [16℄. Aordingto [16℄, the funtionW (x) has the following asymptotiforms: W (x) = ip�x ; x� 1; (2.14)W (x) = 1; x� 1: (2.15)It then follows from Eq. (2.12) thatÆp? = 2p?0 ��8>><>>: 1; ! � jkz j vTk;1� T?Tk �1 + ip�!jkz j vTk� ; ! � jkz j vTk: (2.16)Using (2.12), we rewrite Eq. (2.5) as� i!ÆV���ANM + k2v2A!2 �++ ÆVR �22
 + iv2AB0 k2kz ÆB� = 0; (2.17)where�ANM = �AN(kin)M � 1� k2v2A!2 �1 + ANM � ; (2.18)ANM = 1 + k2z2k2 (�? � �jj) + k2Rk2 �? ���1� T?Tjj �1 + ip�!jkzjvT jjW � !jkzjvT jj��� : (2.19)To desribe the behavior of the perturbed magneti�eld, we use the freezing ondition�B�t �r� [V �B℄ = 0: (2.20)Then we �nd �i!ÆBR � ikzB0ÆVR = 0; (2.21)�i!ÆB� � d
d lnRÆBR � ikzB0ÆV� = 0: (2.22)

In addition, using the Maxwell equation r �B =0, wearrive at ÆBz = �kRÆBR=kz: (2.23)By means of Eqs. (2.20)�(2.22), we express(ÆVR; ÆV�) in terms of (ÆBR; ÆB�). Equations (2.4)and (2.17) then beome�ANA ÆB� � 2i
! ÆBR = 0; (2.24)2i
! ÆB� +��ANM � 1!2 d
2d lnR� ÆBR = 0: (2.25)Using Eqs. (2.24) and (2.25), we obtain the dispersionrelation ����� �11 �12�21 �22 ����� = 0; (2.26)where �11 = �ANA ; (2.27)�12 = ��21 = �2i
=!; (2.28)�22 = �ANM � 1!2 d
2d lnR: (2.29)Dispersion relation (2.26) an be represented in theform�ADkin � �2!2 ++ k2zv2A�1 + �? � �k2 � d
2d lnR = 0; (2.30)where Dkin = !4�kin; (2.31)�kin = �1� k2zv2A!2 �1 + �? � �k2 ���� �1 + k2v2A!2 ��� ANM ��� 4
2!2 : (2.32)The quantity � desribing the Velikhov e�et [1℄ isgiven by � = ��1 + d
2=d lnRk2v2A � : (2.33)431



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 133, âûï. 2, 20083. DISPERSION RELATION DERIVED BYMEANS OF THE CGL APPROACH3.1. The essene of the CGL approahThere is a problem to express the perturbed plasmapressure in terms of the perturbed magneti �eld. Inthe sope of the one-�uid magnetohydrodynami ap-proah, this problem is solved using the adiabatiityondition (f. [12℄) ddt � p��� = 0; (3.1)where � is the adiabati exponent.But there is no mehanism to equalize the perpen-diular and parallel pressures, p? and pk, in a olli-sionless plasma. The authors of Ref. [10℄ therefore sug-gested using two onditions (see also [11℄)ddt � p?nB� = 0; (3.2)ddt �pkB2n3 � = 0; (3.3)where n is a plasma number density, instead of a sin-gle adiabati ondition (3.1). These onditions are theessene of the CGL approah.Aording to [10, 11℄, Eqs. (3.2) and (3.3) are sim-ilar to the one-�uid magnetohydrodynami equation(3.1) desribing the behavior of a plasma in a strongmagneti �eld. At the same time, Eqs. (3.2) and (3.3)are heuristi, and therefore the validity of the resultsobtained by means of the CGL approah should be ver-i�ed for any partiular problem using the kineti ap-proah.Aording to [10, 11℄, Eqs. (3.2) and (3.3) an beinterpreted as follows. The quantities p? and B re-main unhanged when plasma is ompressed in the di-retion of the magneti �eld. The quantities pk and nare found to be related by an adiabati law with � = 3in aordane with an energy inrease for the longitudi-nal degree of freedom. When the plasma is ompressedin the diretion perpendiular to the magneti �eld, pkremains unhanged. It follows from the freezing on-dition that B / n. Consequently, Eq. (3.2) an beinterpreted as an adiabatiity relation with � = 2 indi-ating that the energy of two perpendiular degrees offreedom is inreased.Equations (3.2) and (3.3) an be representedas [10; 11℄dp?dt + 2p?r �V � p?B2B � (B �r)V = 0; (3.4)

dpkdt + pkr �V + 2pkB2 B � (B �r)V = 0: (3.5)3.2. Calulation of the perturbed pressureUsing Eq. (3.4) and the ontinuity equation, we�nd [5℄ Æp? = p?0�Ænn0 + ÆBzB0 � ; (3.6)where Æn is the perturbed plasma number density. To�nd Æn, we use the perturbed ontinuity and parallelmotion equations of the form [5℄��tÆn� n0B0 ��tÆBz + n0 ��z ÆVz = 0; (3.7)��tÆVz + 1Mn0B0 ��z �Æpk � pk0 � p?0B0 ÆBz� = 0:(3.8)To alulate this value we use the parallel adiabationdition in (3.5), whih yields [5℄Æpk = pk0�3Ænn0 � 2ÆBzB0 � : (3.9)We then �nd!�Æn� n0B0 ÆBz�� n0kzÆVz = 0; (3.10)!ÆVz � kRMn0 �Æpk � pk0 � p?0B0 ÆBz� = 0: (3.11)It follows from Eqs. (3.10), (3.11), and (3.6) thatÆn = n0�CGLS �1� k2zTkM!2 �3� T?Tk �� ÆBzB0 ; (3.12)ÆVz = kzT?M!�CGLS ÆBzB0 ; (3.13)Æpk = pk0�CGLS �1� 6k2zT?M!2 � ÆBzB0 ; (3.14)Æp? = p?0�6� T?Tk � ÆBzB0 ; (3.15)where �CGLS = 1� 3k2zTkM!2 : (3.16)432



ÆÝÒÔ, òîì 133, âûï. 2, 2008 E�et of pressure anisotropy on magnetorotational instability3.3. Dispersion relationAs a result, we have dispersion relation (2.26) with�11, �12, and �21 given by (2.27) and (2.28), and thefollowing modi�ation of Eq. (2.29) for �22:�22 = �CGLM � 1!2 d
2d lnR: (3.17)Here (f. (2.32))�CGLM = �CGLS ��̂CGLM � k2Rv2A!2 �?�����?2 �2 k2zk2Rv4A!4 ; (3.18)where �̂CGLM = 1� k2v2A!2 �1 + �? � �k2 � : (3.19)The CGL dispersion relation onsidered an be rep-resented in the form�ADCGL + �CGLS �����2!2+k2zk2v4A (�+1)�1+�?��k2 �� = 0; (3.20)where DCGL is given by [5℄DCGL = !4�CGL (3.21)with�CGL = �CGLS �1� k2v2A!2 �1 + �? � �k2 ��� k2zv2A!2 �?����?2 �2 k2zk2Rv4A!4 : (3.22)We also note that as !2 ! 0, the funtion DCGLgiven by (3.21) redues toDCGL!2!0 = k2zv2A �3k2�v2k �1 + �? � �k2 �++ 32k2R�v2k ��? + �k�� �?2 k2R�v2?� ; (3.23)where �v2k = Tk=M .4. PERMITTIVITY OF ROTATING PLASMAWITH ANISOTROPIC PRESSUREAording to Ref. [12℄, dispersion relation (2.26) anbe represented in the form����� "11 � 2k2z=!2 "12"21 "22 � 2k2=!2 ����� = 0; (4.1)

where "ik (i; k = 1; 2) are the omponents of the per-mittivity tensor related to the oe�ients �ik by"ik == 2v2A  �11 + k2zv2A=!2 �12�21 �22 + k2v2A=!2 ! : (4.2)It was explained in Ref. [12℄ that the permittivitytensor has the struture"ik = "(0)ik + "(r)ik ; (4.3)where "(0)ik and "(r)ik are the �nonrotational� and �rota-tional� parts of "ik. The rotational part is an invariantindependent of detailed plasma properties. It is givenby"(r)ik = 2v2A  0 �2i
=!2i
=! � �1=!2� d
2=d lnR ! : (4.4)In ontrast to this, the tensor "(0)ik essentially dependson plasma properties. In the kineti desription, it isgiven by"(0)ik = "(0)kinik =  "AN11 00 "(0)kin22 ! ; (4.5)where, in aordane with (2.8), "AN11 is equal to"AN11 = 2v2A ��AN + k2zv2A!2 � == 2v2A �1� k2zv2A2!2 ��? � �k�� ; (4.6)and, in aordane with (2.18),"(0)kin22 = 2v2A �1 + ANM k2v2A!2 � : (4.7)In aordane with the above explanations, theCGL approah leads to the same expression for "(0)11as the kineti approah, i. e.,"(0)11 = "(0)kin11 : (4.8)In ontrast to this, we have"(0)CGL22 6= "(0)kin22 (4.9)in the sope of this approah. Turning to Eqs. (3.18)and (3.19), we �nd"(0)CGL22 = 2v2A ����CGLS �1�k2v2A!2 �1+�?��k2 ��k2Rv2A!2 �?��� ��?2 �2 k2zk2Rv4A!4 ) : (4.10)13 ÆÝÒÔ, âûï. 2 433



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 133, âûï. 2, 20085. PRESSURE-ANISOTROPY-DRIVENINSTABILITIES IN NONROTATINGPLASMA5.1. Basi equationsIn the absene of plasma rotation, i. e., at 
 = 0,Eq. (4.1) splits into two dispersion relations:�ANA � v2A2 �"11 � 2k2z!2 � = 0; (5.1)�ANM � v2A2 �"22 � 2k2!2 � = 0 (5.2)respetively desribing the Alfvén osillation branhesand the magnetoaousti branhes. As we have noted,the value of �ANA is the same in the kineti and theCGL approahes. It is given by Eq. (2.8). In ontrastto this, the value of �ANM in the kineti approah di�ersfrom that in the CGL approah:�AN(kin)M = 1� k2v2A!2 �1 + ANM � ; (5.3)�AN(CGL)M == 1� k2v2A!2 �1 + k2z2k2 ��? � �k�+ k2Rk2 �?�CGLS � : (5.4)Physially, the identity of �ANA in the kineti and CGLapproahes means that the properties of perturbationspredited by both these approahes are the same. Inontrast to this, the di�erene between �AN(kin)M and�AN(CGL)M results in di�erent regularities for magne-toaousti perturbations.5.2. Alfvén �rehose instabilityIn expliit form, Eq. (5.1) beomes!2 = k2zv2A�1 + �? � �k2 � : (5.5)It follows that this equation desribes an instability for�k > �? + 2: (5.6)Then !2 = �2; (5.7)where  is the growth rate of perturbations satisfyingthe ondition 2 = k2zv2A2 ��k � �? � 2� : (5.8)Relations (5.6) and (5.8) desribe the Alfvén �rehoseinstability.

5.3. Magnetoaousti osillation branhes5.3.1. Dispersion relationsThe kineti approah yields the following dispersionrelation for magnetoaousti osillation branhes [4℄:1� k2v2A!2 �1 + k2z2k2 ��? � �k�++ k2Rk2 �? �1� T?Tk �1 + ip�!jkzj vTkW��� = 0: (5.9)In the CGL approah, in ontrast to (5.9), we �ndDCGL = 0; (5.10)where the funtion DCGL is given by Eqs. (3.21) and(3.22). In expliit form, Eq. (5.10) beomes�1� 3k2zTkM!2 ��1� k2v2A!2 �1 + k2z2k2 ��? � �k�++ k2Rk2 �?�����?2 �2 k2zk2Rv4A!4 = 0: (5.11)5.3.2. Magnetoaousti �rehose instabilitypredited by the kineti approahUsing Eq. (5.9) and the asymptoti form (2.14) for! � jkz j vTk, we arrive at the dispersion relation1� k2v2A!2 �1 + k2z2k2 ��? � �k�+ k2Rk2 �?� = 0: (5.12)Perturbations with kz � kR desribed by this disper-sion relation are unstable for ondition (5.6). Theirgrowth rate is given by Eq. (5.7). This is the magne-toaousti �rehose instability predited by the kinetiapproah.5.3.3. Magnetoaousti �rehose instabilitypredited by the CGL approahDispersion relation (5.11) an be represented in theform [5℄!4 � !2k2zv2A�1 + k2Rk2 �? + 32 k2zk2�k�++ 32k2zk2Rv4A �1 + �? � �k2 � �2?6�k k2Rk2 ++ 32 k2Rk2 ��? + �k�� = 0: (5.13)It hene follows that for kz � kR, the perturbationsare unstable for ondition (5.6) and their growth rateis given by (5.8). These perturbations orrespond tothe magnetoaousti �rehose instability.434



ÆÝÒÔ, òîì 133, âûï. 2, 2008 E�et of pressure anisotropy on magnetorotational instability5.3.4. Kineti �rehose and mirror instabilitiesWith the asymptoti form (2.15), it follows fromEq. (5.9) that1� k2v2A!2 �1 + k2z2k2 ��? � �k�++ k2Rk2 �? �1� T?Tk �1 + ip�!jkz j vTkW��� = 0; (5.14)and hene [4℄! = � ip��? jkzj3k2R TkT? vTk�V S ; (5.15)where�V S = k2k2z ++ �?2 �1� TkT?�+ k2Rk2 �?�1� T?Tk � (5.16)and the supersript �V S� refers to the authors ofRef. [4℄. We see that perturbations onsidered are un-stable for the ondition�V S < 0: (5.17)Aording to Eq. (5.5), perturbations with kz � kRare unstable for ondition (5.6) with the growth rate � Im! [4℄ given by = vTkp� jkzj3k2R�? ��k � �? � 2� : (5.18)Relations (5.6) and (5.18) haraterize the kineti �re-hose instability.In the opposite limit ase, kR � kz , instability on-dition (5.17) redues to [4℄�? > �k: (5.19)The growth rate is then given by [4℄ = vTkp� k2Rjkz j�? ��? � �k� : (5.20)Equations (5.19) and (5.20) haraterize the kinetimirror instability.5.3.5. Mirror instability predited by the CGLapproahAording to Eq. (5.14), near the stability bound-ary, the perturbations with kR � kz are desribed bythe dispersion relation [5℄!2 = 32k2Rv2A�k 1 + �? � �2?=6�k1 + �? : (5.21)

Then we �nd that the perturbations are unstable for [5℄�? > 6�k�? (1 + �?) : (5.22)Their growth rate is given by2 = 32k2Rv2A�2?=6� (1 + �?)�k1 + �? : (5.23)Relations (5.21) and (5.23) haraterize the mirror in-stability predited by the CGL approah. Comparing(5.21) and (5.22) with (5.18) and (5.19), we see thatthe preditions of the kineti and CGL approahes re-garding the mirror instability are essentially di�erent.6. ROTATIONAL FIREHOSE INSTABILITY6.1. General expressions for growth rate nearthe stability boundaryStarting with Eq. (2.26) as kR ! 0, both the ki-neti and the CGL approahes result in the dispersionrelation�1� k2zv2A!2 �1 + �? � �k2 ���� �1 + k2zv2A!2 ��+ �k � �?2 ��� 4
2!2 = 0: (6.1)Aording to (6.1), the plasma rotation leads to thetwo following e�ets. First, it mixes the Alfvén �rehosemode with the magnetoaousti one (see the term with4
2 in (6.1)). Seond, it modi�es both these modes bythe Velikhov e�et (see the term with �).To eluidate the results of these e�ets, we onsiderEq. (6.1) near the stability boundary. We then have!2�2 + �2k2zv2A + �? � �k� == �k2zv2A�1 + �? � �k2 ���+ �k � �?2 � : (6.2)The growth rate is given by2 = k2zv2A �� �1 + ��? � �k� =2� ��+ ��k � �?� =2�2 + �2=k2zv2A + �? � �k : (6.3)In the ase of isotropi pressure, �? = �k, this re-lation beomes [13℄2 = k2zv2A�=�1; (6.4)435 13*



A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov et al. ÆÝÒÔ, òîì 133, âûï. 2, 2008where �1 = 2 + �2=k2v2A: (6.5)Then the modes onsidered are unstable only due tothe Velikhov e�et.We introdue the rotational Mah number MR asM2R = 
2=k2v2A: (6.6)For large MR � 1 and �?; �k � 1 with �? 6= �k,Eq. (6.3) takes the form2 = k2zv2A2 �� �� �d
2=d lnR� =k2v2A + ��k � �?� =2��2=k2zv2A + �? � �k �� ��? � �k� : (6.7)In the limit ase of very strong rotation,M2R � ���k � �?�� ; (6.8)it follows from Eq. (6.7) that2 = k4zv2Ak2 ��d
2=d lnR��2 ��? � �k� : (6.9)6.2. The ase where the Velikhov instabilityriterion is satis�edWe analyze the above formulas in the ase when theVelikhov instability riterion� > 0 (6.10)is satis�ed. Then the MRI is suppressed for�k > �?: (6.11)In the opposite ase �? > �k; (6.12)it is enhaned, with the growth rate given by = k2zvAjkj p�d
2=d lnR� q�? � �k: (6.13)6.3. The ase where the Velikhov instabilityriterion is not satis�edAording to Eq. (6.7), the perturbations onsid-ered an be unstable even if the Velikhov instabilityriterion is not satis�ed,� < 0: (6.14)This ase inludes the situation whered
2=d lnR > 0: (6.15)In this ase, for example, it follows from (6.13) that theperturbations are unstable for ondition (6.11).

7. ROTATIONAL MIRROR INSTABILITYWe now onsider the perturbations with kR � kznear their stability boundary. Then, in ontrast tothe rotational �rehose instability, the mixing betweenthe Alfvén and magnetoaousti osillation branhes isunimportant, and therefore we have the dispersion re-lation "22 � k2Rv2A=!2 = 0: (7.1)Using the kineti expression for "22 and taking! � jkzj vTk, we arrive at the following generalizationof dispersion relation (5.18):! = i jkzj vTkp� �1� TkT? + ��? TkT?� : (7.2)In the ase of isotropi pressure (Tk = T?), this os-illation branh is unstable only due to the Velikhove�et [12℄: ! = i jkzj vTkp� ��? : (7.3)This orresponds to the kineti MRI. We see that theMRI is suppressed for� < ��k � �?�T?=Tk: (7.4)Suh a suppression an our for ondition (6.11). Inthe opposite ase, i. e., for ondition (6.12), the MRIinstability is enhaned and the perturbations an beunstable even if the Velikhov instability riterion is notsatis�ed, i. e., for ondition (6.14). In the opposite ase,i. e., for ondition (6.12), the MRI is enhaned.8. DISCUSSIONSThe main result in the present paper onsists inpointing out two new instabilities in rotating plasmawith anisotropi pressure of the hybrid type: rotational�rehose instability and rotational mirror instability.They are desribed by the respetive dispersion rela-tions (6.3) and (7.2). In both these ases, the pressureanisotropy of the type �k > �? (see Eq. (6.11)) is sta-bilizing, while that of type �? > �k (see Eq. (6.12)) isdestabilizing. In other words, the anisotropy leading to436
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