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GLOBAL STRINGS IN EXTRA DIMENSIONS:THE FULL MAP OF SOLUTIONS, MATTER TRAPPING,AND THE HIERARCHY PROBLEMK. A. Bronnikov a, B. E. Meierovih b*aCenter for Gravitation and Fundamental Metrology, VNIIMS119361, Mosow, RussiaInstitute of Gravitation and Cosmology, PFUR117198, Mosow, RussiabKapitza Institute for Physial Problems117334, Mosow, RussiaReeived August 6, 2007We onsider (d0+2)-dimensional on�gurations with global strings in two extra dimensions and a �at metri ind0 dimensions, endowed with a warp fator e2 depending on the distane l from the string enter. All possibleregular solutions of the �eld equations are lassi�ed by the behavior of the warp fator and the extra-dimensionalirular radius r(l). Solutions with r ! 1 and r ! onst > 0 as l ! 1 are interpreted in terms of thikbrane-world models. Solutions with r ! 0 as l ! l > 0, i.e., those with a seond enter, are interpretedas either multi-brane systems (whih is appropriate for large enough distanes l between the enters) or asKaluza�Klein-type on�gurations with extra dimensions invisible due to their smallness. In the ase of theMexian-hat symmetry-breaking potential, we build the full map of regular solutions on the ("; �) parameterplane, where " ats as an e�etive osmologial onstant and � haraterizes the gravitational �eld strength.The trapping properties of andidate brane worlds for test salar �elds are disussed. Good trapping propertiesfor massive �elds are found for models with inreasing warp fators. Kaluza�Klein-type models are shown tohave nontrivial warp fator behaviors, leading to matter partile mass spetra that seem promising from thestandpoint of hierarhy problems.PACS: 04.50.+h, 11.27.+d1. INTRODUCTIONThe multidimensional gravity onept, traing bakto the pioneering papers by Kaluza and Klein [1℄, ini-tially assumed that the extra dimensions remain un-observable due to their extreme smallness. Anotherlass of multidimensional theories has been put for-ward in the 1980s, based on the idea that we live ona distinguished surfae (brane) embedded in a higher-dimensional manifold, alled the bulk [2℄. This ideahas reently beome very popular in attempts to �ndan approah to a number of fundamental physialproblems. The brane-world onept is broadly dis-ussed in onnetion with the reent developments*E-mail: meierovih�yahoo.om

in supersymmetri string/M-theories [3℄. The simpleRandall�Sundrum �rst model [4℄ ontinued numerousattempts [5℄ to �nd the origin of the enormous hierar-hy of energy/mass sales observed in nature, whih isa long-standing problem in partile physis. In astro-physis and osmology, there are attempts to explainthe dark matter and dark energy e�ets, to desribeblak holes and possible variation of fundamental on-stants, the CMB anisotropy, et.A great variety of brane-world models may be foundin the literature: branes in �ve or more dimensions,single or multiple branes, �at or urved branes, �at orurved bulk, ompat or non-ompat bulk (i.e., largeor in�nite extra dimensions), thin or thik branes, var-ious symmetries of both bulks and branes, di�erentkinds of matter forming the brane, et.293



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 133, âûï. 2, 2008In our view, the most natural physial idea lead-ing to the emergene of distinguished surfaes in thespae�time manifold is the idea of a phase transitionwith spontaneous symmetry breaking (SSB), whih hasalready led to great suess in many areas of physisand osmology. In other words, it is reasonable to re-gard the brane world as a result of a phase transitionat a very early stage of the Universe evolution. Theexisting marosopi theory of phase transitions withSSB allows onsidering the brane-world onept self-onsistently and avoiding the in�uene of model as-sumptions to the largest degree, even without a de-tailed knowledge of the nature of the physial vauum.A neessary onsequene of suh phase transitions isthe appearane of topologial defets.We reall that a deisive step toward osmologialappliations of the SSB onept was made in 1972 byKirzhnits [6℄. He assumed that as in the ase of solidsubstanes, a symmetry of a �eld system, existing atsu�iently high temperatures, ould be spontaneouslybroken as the temperature dereases. The �rst quanti-tative analysis of the osmologial onsequenes of SSBwas given in [7℄.The properties of global topologial defets are gen-erally desribed with the aid of a multiplet of salar�elds playing the role of an order parameter. If a de-fet is to be interpreted as the origin of a brane world,its struture is determined by the self-gravity of a salar�eld system and an be desribed by a set of Einsteinand salar equations.This approah to the brane-world onept has beenused by many authors for onstrution of thik branesin �ve (see, e.g., [8�14℄) and more (see, e.g., [15�18℄ andthe referenes therein) dimensions.In our previous papers [13, 14, 17, 18℄, we have an-alyzed the gravitational properties of andidate (thik)brane worlds with the d0-dimensional Minkowski met-ri and global topologial defets in d1 + 1 extra di-mensions. Our general formulation overed partiularases suh as a brane (domain wall) in �ve-dimensionalspae�time (one extra dimension), a global osmistring with winding number n = 1 (two extra di-mensions), and global monopoles (three or more ex-tra dimensions). We restrited ourselves to Minkowskibranes beause most of the existing problems are al-ready learly seen in these omparatively simple sys-tems; on the other hand, in the majority of physialsituations, the intrinsi urvature of the brane itselfis muh smaller than the urvature related to braneformation, and therefore the main qualitative featuresof Minkowski branes should survive in realisti urvedbranes.

Our treatment di�ered from many others (e.g., [15,16℄) in that we have onsidered all kinds of regular so-lutions of the orresponding �eld equations, inludingthose with inreasing warp fators, whose good trap-ping properties we have emphasized.We have shown, in partiular, that there are sevenlasses of regular solutions of the �eld equations de-sribing global strings and monopoles in extra dimen-sions; two of them exist for monopoles only, while theother �ve are found for both strings and monopoles.Some of these on�gurations have exponentially in-reasing warp fators (e2 in metri (1), see below) atlarge distanes from the ore. They are shown to traplinear test salar �elds of any mass and momentum.Others, ending with a �at metri, have a warp fatortending to a onstant value, determined by the shape ofthe symmetry-breaking potential. They are also shownto trap test salar �elds with masses restrited fromabove by a value depending on the partiular parame-ters of the topologial defet.Although the general lassi�ation in [17, 18℄ oversall possible regular on�gurations, the important ques-tion of the loation of di�erent solutions in the spae ofphysial parameters remained open. One of the goalsof this paper is to answer this question in the partiularase of a global string in two extra dimensions and aMexian-hat symmetry-breaking potential. The prob-lem then ontains two essential physial parameters: ",the dimensionless osmologial onstant, and �, har-aterizing the gravitational �eld strength. In the ("; �)plane, the border lines separating di�erent lasses ofregular solutions (those extending to in�nite irularradii r, those with a ylindrial geometry far from theenter, and those with two regular enters), are foundnumerially, and the asymptoti dependenes "(�) as�! 0 and �!1 are derived analytially.Another goal is to give a more omplete desriptionof the on�gurations of interest desribed by these solu-tions. We desribe the trapping properties of di�erentthik brane-world models for lassial partiles, salar�elds, and gravity. We also argue that one of the lassesof regular on�gurations, those with two enters, anlead to promising models with nontrivial partile massspetra. The point is that the warp fators of suh on-�gurations an have several minima at di�erent levels,where test partiles and �elds may be gravitationallytrapped with di�erent energies. In this ase, however,we should abandon the brane-world onept and ad-mit that the extra dimensions are invisible due to theirsmallness, i.e., interpret the solutions in the spirit ofKaluza�Klein theories.There is a growing number of publiations devoted294



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :to brane worlds with two extra dimensions (see [19℄and the referenes therein). In many ases, the re-sults are obtained numerially using simpli�ed modelswith speially hosen sets of parameters. In our maro-sopi approah, based on the theory of phase transi-tions with SSB, we try to redue the in�uene of modelassumptions to a minimum and to over the full rangeof possibilities. Our main result, the full map of regularsolutions for a system with the Mexian-hat symmetry-breaking potential V (�), should probably retain its ba-si qualitative features for other potentials with a sim-ilar arrangement of extremum points.The paper is organized as follows. In Se. 2, we out-line the problem setting, inluding the geometry, �eldequations, and boundary onditions providing spae�time regularity. In Se. 3, we desribe the simplest so-lutions with a onstant salar �eld, needed for ompar-ison in what follows. Setion 4 is entral in the paper:we give a general desription and lassi�ation of possi-ble regular solutions on the basis of our previous work[17, 18℄ and present a map showing the loation of dif-ferent solutions with the Mexian-hat potential in theparameter spae of the problem. In Ses. 5 and 6, wedesribe some further details of the solutions and an-alytially derive the asymptoti behavior of the urvesdrawn in the map. In Se. 7, we disuss the trappingproperties of thik branes desribed by the above solu-tions. The properties of on�gurations with two entersare outlined in Se. 8, and Se. 9 is a onlusion.2. PROBLEM SETTING2.1. Geometry and regularity onditionsOur main interest here is a 6D spae�time with aosmi string in the two extra dimensions. But webegin with a more general geometry: we onsider a(D = d0 + d1 + 1)-dimensional spae�time with thestruture M d0 � Ru � Sd1 and the metrids2 = e2(u)���dx�dx� �� �e2�(u)du2 + e2�(u)d
2� ; (1)where ��� = diag(1;�1; : : : ;�1)is the d0-dimensional Minkowski metri (d0 > 1), d
 isa linear element on the d1-dimensional unit sphere Sd1,and �, �, and  are funtions of the radial oordinateu with the de�nition domain Ru � R to be spei�edlater. We also use the notation r � e� , where r is thespherial (irular for d1 = 1) radius.

The Riemann tensor RABCD is diagonal with re-spet to pairs of indies and has the nonzero ompo-nents R���� = �e�2�02Æ���� ;Rabd = (e�2� � e�2��02)Æabd;Ru�u� = �Æ�� e���(e��0)0;Ruaub = �Æab e����(e����0)0;Ra�b� = �Æ�� Æab e�2�0�0; (2)where Æ���� = Æ�� Æ�� � Æ��Æ��and similarly for other indies. The indies �; �; : : :orrespond to d0-dimensional (physial) spae�time,a; b; : : : to the d1 angular oordinates on Sd1, andA;B; : : : to all D oordinates.A neessary ondition of regularity is the �nitenessof all algebrai invariants of the Riemann tensor. In ourase, it su�es to deal with the Kretshmann salarK = RABCDRCDAB ;beause it is a sum of squares of all nonzero RABCD.Hene, all omponents of Riemann tensor (2) are �nitein regular on�gurations.In the Gaussian gauge � = 0, with u = l being theproper distane along the radial diretion, the regular-ity onditions at r > 0 look very simple:�0; �00; 0; 00 must be �nite. (3)The regularity onditions at the enter r = 0 followfrom the �niteness of the Riemann tensor omponentRabd and oinide with the regular-enter onditionsin the usual stati, spherially symmetri metris. Interms of an arbitrary oordinate u, the regular-enteronditions are =  +O(r2); e���j�0j = 1 +O(r2)as r ! 0: (4)The last ondition insures the orret (= 2�)irumferene-to-radius ratio, or, equivalently, dr2 == dl2;  is a onstant that an be set equal to zero byresaling the oordinates x�.The string ase d1 = 1 has a spei� feature: thereis only one angular oordinate, and therefore Æabd � 0,whene Rabd � 0. However, a onial singularity (i.e.,an angular de�it, dr2 < dl2, or exess, dr2 > dl2) ispossible, whih is a pointwise, delta-like urvature peakover this zero level, as in the ase of an ordinary onetop. Its existene atually means that there is some295



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 133, âûï. 2, 2008pointlike objet with respet to the two extra dimen-sions, or a thin brane in the spae�time as a whole.In what follows we onsider entirely regular on�g-urations, exluding onial singularities among others.2.2. Topologial defets. Field equationsA global defet with a nonzero topologial hargean be onstruted with a multiplet of d1+1 real salar�elds �k , in the same way as, e.g., in [17℄. It omprisesa �hedgehog� on�guration in Ru � Sd1:�k = �(u)nk(xa);where nk is a unit vetor in the (d1 + 1)-dimensionalEulidean target spae of the salar �elds:nknk = 1:The total Lagrangian of the system is taken in theform L = R2{2 + 12gAB�A�k�B�k � V (�); (5)where R is the D-dimensional salar urvature, {2is the D-dimensional gravitational onstant, andV is a symmetry-breaking potential depending on�2(u) = �a�a.The ase where d1 = 0, with only one extra dimen-sion, is a �at domain wall. Regular thik Minkowskibranes supported by salar �elds with arbitrary poten-tials were analyzed in [13, 14℄.The ase where d1 = 1 is a global osmi stringwith the winding number n = 1, to be disussedhere in detail. In the ase d1 > 2, we have aglobal monopole in the extra spae-like dimensions (see,e.g., [15�18; 20; 21℄).We write the salar �eld equation and three ompo-nents of the Einstein equations for suh systems in theGaussian gauge � = 0, u = l (the prime denotes d=dl):�00 + (d00 + d1�02)�0 � d1e�2�� = �V�� ; (6)00 + d002 + d1�00 = � 2{2D � 2V; (7)�00 + d0�00 + d1�02 == (d1 � 1� k2�2)e�2� � 2{2D � 2V; (8)(d1�0 + d00)2 � d002 � d1�02 == {2(�02 � 2V ) + d1e�2�(d1 � 1� {2�2): (9)Any three of the above four equations are independent,and the fourth is their onsequene.

2.3. Boundary onditions and �ne-tuningrelationsThe metri an be rewritten in the formds2 = e2(l)���dx�dx� � dl2 � r2(l)d
2; (10)where r = e� is the spherial radius. Assuming thatthere is a regular enter (r = 0), we set l = 0 at theenter without loss of generality; we lassify the rele-vant on�gurations by the limit value of r(l) (in�nite,�nite, or zero) at the largest or in�nite values of l.In the general monopole ase, the regular-enterondition leads to the following boundary onditionsfor Eqs. (6)�(9) at l = 0:�(0) = 0(0) = r(0) = 0; r0(0) = 1: (11)System (6)�(9) does not ontain  but only its deriva-tives. For numerial integration, it is onvenient towork with Eqs. (6)�(8) solved for the seond-orderderivatives and regard (9) as their �rst integral.We thus have four boundary onditions (11) for the(e�etively) fourth-order set of equations. It mightseem that we must obtain a unique solution. But thisis not the ase beause l = 0, being a singular pointof the spherial oordinate system (not to be onfusedwith a spae�time urvature singularity), is also a sin-gular point of our set of equations. As a result, our setof equations admits an additional freedom of hoosing�0(0); or, instead, we may use the requirement of globalregularity to obtain a unique solution.2.3.1. In�nite extra dimensionsIf the solution is de�ned in the interval 0 � l <1,then the laking boundary ondition an be taken as�! onst as l!1, or�0(1) = 0: (12)In general, when the salar �eld starts from a maxi-mum of the potential and ends at a �nite value of �,the �ve boundary onditions in (11) and (12) uniquelydetermine a nontrivial solution of our �eld equations.Its existene determines a ertain area in the spae ofparameters of the problem without a priori �ne tun-ing. An asymptoti analysis at l ! 1 shows that inthis general ase, �(l) is a linearly inreasing funtionas l !1, and r0(1) � 0.r0(1) = 0 is the speial ase, where r tends to a �-nite onstant as l ! 1. The solution then terminatesat a slope of the potential rather than at its minimum.The supplementary ondition r0(1) = 0 seems to re-quire a �ne-tuning relation between the free parameters296



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :of the problem. But we see in what follows that it is notquite so. An analysis of solutions with � = �0 = onstshows that there is also an area in the parameter spaewhere ondition (12) is satis�ed automatially, and so-lutions with r0(l)! 0 as l!1 exist without any �netuning. 2.3.2. Two entersIt an happen that the integral urves of a solutionterminate at some �nite value l with r(l) = 0 and�(l) = 0, whih is one more enter. Of interest for usare on�gurations in whih this seond enter l = l isalso regular. Then the same four onditions (11) mustalso hold at l = l. Two of them an be satis�ed byhoosing the values of �0(0) and l. The other two anonly be satis�ed by a proper hoie of free (input) pa-rameters of the problem, e.g., those of the potential (ifany) and the osmologial onstant.In the speial ase of symmetry between the en-ters1), the input parameters are onneted by only one�ne-tuning relation. In this ase, the boundary ondi-tions at the seond enter are satis�ed automatially,and the existene of a regular solution is provided bythree onditions of smoothness at the middle (equator)point leq = l=2:�0(leq) = 0(leq) = r0(leq) = 0:Two of these three onditions determine the values ofl and �0(0), and the remaining one requires �ne tuningof the input parameters of the problem.The �ne tuning ould be avoided at the expense ofadmitting onial singularities (in the string ase) atthe two enters. For symmetri solutions, the threesmoothness onditions at the equator an be satis�edby hoosing �0(0), r0(0), and l. In the general ase of1) Equations (6)�(9) are invariant under translations l! l+ l0and under re�etions l0 + l ! l0 � l, � ! ��. This invarianeleads to the existene of regular solutions with two enters, whihare symmetri with respet to the middle point [17℄. Further-more, a solution with two regular enters de�ned in the interval(0; l) an be symmetrially extended to the next interval (l; 2l)and further on, thus leading to a periodi solution for l 2 R[22℄. The metri remains regular everywhere, but the points ofontats (0;�l;�2l; : : : ) are geometrially ambiguous: eah ofthem belongs to two adjaent manifolds simultaneously. If onestill believes in the reality of suh systems, one an note that thespetrum of a low-energy partile in a perfetly periodi poten-tial has a ondutivity zone, allowing free propagation and thusmaking the extra dimension observable in priniple. However, ifthe ondutivity zone is very narrow, then even small perturba-tions should lead to loalization of a partile. This interestingnew possibility is worth a speial onsideration.

nonsymmetri enters, the four onditions of the se-ond enter an be satis�ed by appropriately hoosing�0(0), r0(0), r0(l), and l.2.4. String equationsIn the string ase d1 = 1, to be onsidered here indetail, the �eld equations beome�00 + (d00 + �02)�0 � e�2�� = �V�� ; (13)00 + d002 + �00 = �2{2d0 V; (14)�00 + d0�00 + �02 = �({2�2)e�2� � 2{2d0 V; (15)2d00�0 + d0(d0 � 1)02 == {2(�02 � 2V )� {2�2e�2�: (16)For numerial examples, we use the so-alledMexian-hat potentialV = 14�0�4 ""+�1� �2�2�2# : (17)The parameter " plays the role of a osmologial on-stant added to the onventional Mexian-hat potential(the �hat� is thus moved up or down). To pass to di-mensionless quantities, we put �0�2 = 1, and henelengths are measured in units of 1=p�0�, whih inmany ases has the meaning of the string ore radius2).The potential then takes the formV = 14�2["+ (1� f2)2℄; f := �� : (18)The remaining free parameters that ontrol the systembehavior are d0; "; and � := {2�2: (19)We use d0 = 4 in omputations. The parameter �haraterizes the gravitational �eld strength.To further desribe di�erent regular solutions of our�eld equations, we begin with the simplest solutionswhere � = �� = onst. They are not string solutionsbut are helpful for omparison.2) From the very beginning, we put  = ~ = 1, and there-fore all quantities are measured in appropriate powers of length[`℄. Then some relevant dimensionalities are [V ℄ = [`�D℄,[�2℄ = [�2℄ = [{�2℄ = [`2�D℄.297



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 133, âûï. 2, 20083. SOLUTIONS WITH � = onstIf � = �� = onst, we are atually dealing with va-uum �eld equations for metri (10) with the osmolog-ial onstant � = {2V (��). Salar �eld equation (13)then redues to��r2 = �V�(��); V� := dVd� : (20)This leads to two kinds of solutions: one exists in thease where V�(��) = 0 and �� = 0, and the other or-responds to V�(��) 6= 0 (i.e., � is �frozen� on a slopeof the potential), and we should put r = onst in thisase.For potential (17), Eq. (20) givesf�(r�2 � 1 + f2� ) = 0; (21)and hene either f� = ��� = 0or f2� = 1� 1r2 :3.1. Solutions with � � 0The trivial regular solutions with the order param-eter � = 0 desribe on�gurations with a higher sym-metry, whih an beome spontaneously broken into astruture with a topologial defet.In this ase, the metri satis�es the equations00 + 0(d00 + �0) = �8�=d0;�00 + �0(d00 + �0) = �8�=d0;(d0 � 1)02 + 20�0 = �8�=d0: (22)Eliminating �0, we obtain the equation for 00 + 12(d0 + 1)02 + 4�d0 = 0: (23)Its solutions are di�erent for positive and negative �.For � > 0, we have (requiring (0) = 0(0) = 0, aregular enter at l = 0)exp [(d0 + 1)℄ = os2(�1l); �1 =r2�d0 + 1d0 : (24)For r = e� , the last equation in (22) then givesr2 = r20 exp [�(d0 � 1)℄ sin2(�1l); r0 = onst; (25)where, hoosing r0 = 1=�1, we an satisfy the regular-ity ondition r0(0) = 1. We thus have a on�guration

with a regular enter but with a singularity e ! 0 andr !1 as l! �=2�1.For potential (17), this ase orresponds to " > �1.For � < 0, orresponding to " < �1, we have3)e = h2=(d0+1)(�2l); �2 =r�2�d0 + 1d0 ; (26)r = r0 sh(�2l)[h(�2l)℄(d0�1)=(d0+1) (27)instead of (24) and (25); again, hoosing r0 = 1=�2, wean satisfy the regularity ondition r0(0) = 1.Therefore, the on�guration with unbroken symme-try is ompletely regular and extends from the regularenter l = 0 to l = 1, where the warp fator e2 andthe radius r are in�nitely inreasing funtions.3.2. Solution with � = �� = onst 6= 0In this ase, Eq. (20) leads to a onstant radiusr = r�, and Eq. (15) gives the relation�2�r2� = �V (��)d0 ; (28)whene it follows thatV (��) = �={2 < 0:For , we use (16) to obtaind2002 = �2�; exp(d0) = exp��p�2� l� : (29)The oordinate range is l 2 R. In partiular, for po-tential (17), it follows from (21) and (15) thatr = 1p1� f2� = onst; (30)" = �2d0(1� f2� )f2� � (1� f2� )2 < 0; (31)� = {2V (��) = �12{2�2d0f2� (1� f2� )℄: (32)The on�gurations with � = onst 6= 0 and r = onstare regular but evidently annot be interpreted in termsof a brane world. They only provide the asymptoti be-havior of the �tube� solutions presented below.3) For d0 = 4, these formulas redue to those found earlierin [23℄.298



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :4. REGULAR STRING SOLUTIONS.CLASSIFICATION AND MAP IN THE (�; ")PLANEThe possible types of regular solutions of our �eldequations were lassi�ed in Refs. [17, 18℄. The tablebelow represents this lassi�ation for the string ased1 = 1. Compared to [17℄, this Table does not inludethe solutions existing only for d1 > 1; but additionallyinludes the solutions (labelled A0 and B0) from Se. 3.In what follows, we deal with potential (18). Forthis potential, Fig. 1 presents the loation of di�er-ent regular string solutions in the plane of parameters(�; "). The map shows solutions with the � �eld hav-ing a onstant sign. Those with alternate signs of �are disussed in Se. 6. There are no regular stringsolutions at " > 0:In Fig. 1, the urve (1 ) is the upper boundaryof the area of lass-A1 solutions with r ! 1 asl ! 1. The points on this urve and in the wholearea �1 > " � "�(�) orrespond to lass-B2 solutions.Fine-tuned solutions with two symmetri regular en-ters (see Fig. 7 below) are loated along the urve (2 ).The lass of �ne-tuned solutions with a horizon (B1) isrepresented by the urve (3 ).We brie�y desribe the lasses of solutions presented
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Fig. 1. Loation of solutions in the plane of parame-ters (�; "). Curve (1 ), "�(�) is the upper boundary ofthe area of lass-A1 solutions with r ! 1 as l !1.This urve itself and the whole area �1 > " � "�(�)orrespond to lass-B2 solutions with r(1) = onst.Fine-tuned solutions with two symmetri regular en-ters (lass C) are loated along urve (2 ), "1(�). Thelass B1 of �ne-tuned solutions with a horizon is rep-resented by the urve (3 ), "h(�)

in the map, postponing the derivation of some impor-tant details of the urves to the subsequent setions.A: Con�gurations with in�nite rFrom the Table, we an note a lose similarity be-tween the vauum solutions A0 (where � � 0) and A1.In fat, the gravitational �eld in both ases is mainlygoverned by the (negative) osmologial onstant. Inthe limit ase j"j � 1, " < 0, the role of the symmetry-breaking potential V (�) is negligible. Then, as followsfrom (14), 0 is always positive, the warp fator e2 in-reases, and gravity is attrative towards l = 0. Thesesolutions with r !1 at large l exist without any �netuning.As j"j dereases, the potential V (�) beomes moreand more important, and at " approahing some "�(�),the derivative r0 ! 0, suh that lass-A1 solutions passover to asymptotially ylindrial �ne-tuned lass-B2solutions.The main features of lass-A1 solutions at large lare as follows.1) The salar �eld �(l) tends to a minimum of V (�).2) The quantities 0(l) and �0(l) tend to the same�nite positive onstant, and hene e(l) � r(l) inreaseexponentially.An example of lass-A1 solution, found numerially,is presented in Fig. 2.As regards the A2 lass, this is an exeptional so-lution orresponding to the ondition V (0) = 0, hene" = �1. In this ase [18℄, a regular integral urve start-ing at l = 0 with � = 0 �nishes again with � ! 0as l ! 1. The large-l behavior of r and of the warpfator e2 in the resulting regular solutions isr � l; ed0 � l:B: Asymptotially ylindrial on�gurationsFor these �tube� solutions, it is easy to verifythat Eqs. (29)�(31) hold at large l and, in partiular,f ! f� = onst with 0 < f2� < 1.The vauum solution B0, with r � r�, atually in-terpolates between the ylindrial asymptotis of B1(e ! 0, a double horizon) and B2 (e !1 at l !1,i.e., gravitational attration towards the enter l = 0).Equation (31) does not ontain { and allows �nd-ing the range of the input parameter " for whih �tube�solutions are possible. The dependene "(f�) is shownin Fig. 3. By Eq. (31)," > "min = �1� (d0 � 1)22d0 � 1 : (33)299



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 133, âûï. 2, 2008Classi�ation of regular (d0 + 2)-dimensional solutions for arbitrary V (�) by the types of asymptoti behavior at thelargest or in�nite l. The olumns labeled by r, �, and  show their �nal values. Attration or repulsion is understoodwith respet to the enter. The symbol � denotes a minimum of V (�)Notation l range r � V (�)  Asymptoti typeA0 R+ 1 � 0 V (0) < 0 1 AdS, attrationA1 R+ 1 � V (�) < 0 1 AdS, attrationA2 R+ 1 0 0 1 power-law, attrationB0 R � r� � �� 6= 0 V� < 0 �1 horizon at one endB1 R+ r� �� 6= 0 V� < 0 �1 horizon, repulsionB2 R+ r� �� 6= 0 V� < 0 1 attrating tubeC (0; l) 0 0 V (0) > 0 onst seond enterFor d0 = 4, "min = �16=7 = �2:2857 : : :It also follows from (31) and Fig. 3 that in the range�1 > " > "min, there are two branhes of the inversefuntion f�("). In the range 0 � " > �1, there is onlyone branh. Other limit values are expressed in termsof f� by Eqs. (29)�(32), and0 ! {�pd0f2� (1� f2� ): (34)Class-B2 on�gurations oupy a whole area in the("; �) parameter plane, whereas B1 solutions require�ne tuning and are loated on the urve 3 in the map(see Fig. 1).C: Con�gurations with two entersAs was argued above, lass-C solutions an besymmetri and asymmetri with respet to re�etionsl ! l� l. Symmetri solutions require one �ne-tuningrelation, whih orresponds to partiular urves in the("; �) plane. The urve desribing solutions with a on-stant sign of � is presented in Fig. 1 (urve (2 )). Othersymmetri on�gurations are disussed below. Asym-metri solutions an only appear at disrete points inthe parameter plane, and we do not mention them anymore.5. �TUBE� SOLUTIONS: LOCATION IN THEPARAMETER PLANEThe upper boundary "�(�) of lass-A solutions,found numerially point by point for d0 = 4, is pre-sented in Fig. 4 by the urve (1 ) and the irles. Any

point in the area " < "�(�), 0 < � < 1 orrespondsto a lass-A solution with f monotonially inreasingfrom zero at the enter to unity. The funtion "�(�) de-reases from zero at � = 0 to a minimum with " = "minin aordane with Eq. (33) and then inreases tendingto �1 as �!1.In the range 0 > " > �1, the �tube� (�ne-tuned)solutions only exist preisely on the line "�(�), whihomprises a border between A and C lasses of solu-tions.In the range �1 > " > "�(�), there are ylindri-al solutions without �ne tuning. This area is loatedbetween the zones of A and C lasses of solutions.In the limits of weak and strong gravitational �elds(small and large �, respetively), numerial analysis ofthe �eld equations is hindered, and we have derivedthe funtion "�(�) analytially. The urve (2 ) in Fig. 4orresponds to �� 1 and the urve (3 ) to �� 1.5.1. Strong gravity: �� 1As follows from the numerial analysis, the salar�eld in �tube� solutions is small in this ase, and thepotential an be expanded in a series:V (�) � V0 + 12V 000 �2; dVd� � V 000 �:The problem is ompletely determined by the two on-stants V0 = V (0)and V 000 = �d2Vd�2 ��=0 :We introdue a new parameter � and a new funtion  :� = 4{2V0;  = {�: (35)300
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K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 133, âûï. 2, 2008�0(1) =  0(1) = 0:Salar �eld equation (39) is homogeneous with respetto  and looks linear; however, the system as a whole isnonlinear, and we have a nonlinear eigenvalue problem.The parameter d0 being �xed, there is only one dimen-sionless parameter �, whose ground-state eigenvalue isexpeted to be of the order of unity. In aordanewith (36) for �� 1, the parameter " is then very loseto �1, and f0 in (31) is � ��1 � 1. It follows from (39)that r � e� ! 1 at large l. Nontrivial solutions existfor disrete values of �, one of whih, orresponding toa monotonially inreasing  (l), is found numerially:� = �7:433 : : : ; d0 = 4:The asymptoti dependene "�(�) for �� 1" = �1 + �=� (40)is presented in Fig. 4 by the urve (3 ).5.2. Weak gravity: �� 1The ase � � 1 is more ompliated. A numerialomputation shows (and it is veri�ed analytially) thatj"j is exponentially small as � ! 0. From (31), we seethat 1� f20 � � "2d0 � 1;and the limit value of irular radius (30),r� �s2d0j"j ;is very large ompared with the �ore� radius � 1. Theequations simplify di�erently in the two ases wherer � r� and r � 1. The solutions must oinide in theintermediate region 1� r � r�.For �� 1, it is onvenient to rewrite the �eld equa-tions in terms of r = e� :00 = �0�d00 � r0r �� �2d0 �"+ (1� f2)2� ; (41)r00 = (d0 � 1)d02 02 r � �2 f2r � �2 f 02r �� �4 �"+ (1� f2)2� r; (42)f 00 = �f 0�d00 � r0r �+ fr2 � f(1� f2): (43)For r � r�, we see that 0 � � � 1, and the termwith 02 in (42) an be negleted. In the viinity of the

enter, in the terms � �, we an set r = l and omit ".Then Eq. (42) redues tor00 = ��f20l � �2d0 (1� f20 )2l; �� 1; l � r�;where f0 is the solution of Eq. (43) with 0 = 0, r = l,and the boundary onditions f(0) = 0, f(1) = 1.With r0(0) = 1, integration yieldsr0 = 1 + �24�f20 ln l + 2 lZ0 dl f0f 00 ln l �� 12d0 lZ0 dl(1� f20 )2l35 :The integrals rapidly onverge for l � 1, and in theintermediate region 1� l � r� we haver02 = 1 + 2��� ln r + 2J2 � J12d0� ;�� 1; 1� r � r�; (44)where the integrals J1 and J2 are found numerially:J1 = 1Z0 l dl (1� f20 )2 = 1;J2 = 1Z0 dl f0f 00 ln l � 0:2: (45)In the region r � 1, Eq. (42) redues tor00 = ���1r + "2d0 r� ; �� 1; 1� r: (46)Taking into aount that r0 = 0 at r = r�, we �nd12r02 = ��ln r� � ln r + "4d0 r2� � "4d0 r2� ;�� 1; 1� r: (47)In the intermediate region 1� r � r� we haver02 = 2��12 ln 2d0j"j � ln r � 12� ;�� 1; 1� r � r�: (48)We have taken into aount thatr� =s2d0j"j :302



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :Comparing (44) with (48), we �nd the �ne-tuningrelation between " and � for asymptotially ylindrion�gurations in the weak-gravity limit:" = �2d0 exp�� 1� � 4J2 � 1� J1d0� �� �0:33 d0 exp�� 1� + 1d0� ; (49)" � �1:7e�1=�; d0 = 4; �� 1:This asymptoti dependene, "�(�) for � � 1, is pre-sented in Fig. 4 by the urve (2 ).5.3. Solutions in the range �1 > " > "�(�)In the range �1 > " > "�(�), there exist lass-B2solutions (r ! r� < 1 as l ! 1) without any �ne-tuning relation between the parameters " and �. Theasymptoti values of the salar �eld (f�) and the radius(r�) at large l are independent of �:f2� = d0 � 1�p(d0 � 1)2 + ("+ 1)(2d0 � 1)2d0 � 1 ;r2� = 2d0 � 1d0 +p(d0 � 1)2 + ("+ 1)(2d0 � 1) :An example of suh a solution is shown in Fig. 5 for� = 2 and " = �1:1. The salar �eld f(l) is shown inFig. 5a, 0(l) and �0(l) are shown in Fig. 5b, and r(l)is displayed in Fig. 5.5.4. Solutions with a horizonWe onsider lass-B1 on�gurations with a horizon,with (l) linearly dereasing as l!1. Their loation,found numerially, is shown in Fig. 1 by the urve (3 )," = "h(�), orresponding to a ertain �ne-tuning rela-tion. An example of suh a regular solution, with theparameters � = 2 and " = �0:233846, is presented inFig. 6.The near-horizon metri has the asymptoti formds2 = C2e�2hl���dx�dx� � dl2 � r2�d
2;h = 0(1): (50)The substitution e�hl = � (onverting l =1 to a �niteoordinate value, � = 0) brings metri (50) to the formds2 = C2�2���dx�dx� � d�2k2�2 � r2�d
2;�! 0: (51)
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6. SOLUTIONS WITH TWO REGULARCENTERS: LOCATION IN THEPARAMETER PLANESymmetri lass-C solutions with two regular en-ters are loated on the (";�) plane in the region0 > " > �1 to the right of the �ne-tuning urve (1 ),"�(�), in Fig. 4 or, whih is the same, to the right ofthe urve (1 ) in the full map, Fig. 1. The solutionsare �ne-tuned, i.e., loated along ertain lines "N (�) inthis region, where N is the number of half-waves andN � 1 is the number of knots (zeros) of the salar �eldf = �=�. The point is that f , just as the radius r, iszero at both enters, but f an hange its sign. There-fore, there are several families of regular solutions withdi�erent numbers N of half-waves, eah family orre-sponding to a line "N (�) in the parameter plane. Theurve (2 ) in Fig. 1 depits "1(�).6.1. Solutions without knots of the salar �eldIn solutions where f has a onstant sign, all threefuntions f(l), r(l), and (l) reah their extremum val-ues at the equator l = leq . Settingf 0(leq) = r0(leq) = 0(leq) = 0 (52)in the �rst integral in (16), we �nd a relation betweenf(leq) =: feq and r(leq) =: req :r2eq = 2f2eqj"j � (1� f2eq)2 : (53)It is onvenient to use (53) together with (52) as bound-ary onditions and perform numerial integration fromthe equator to one of the enters. Then the three ondi-tions f(l) = 0, r(l) = 0, and r0(l) = 1 determine thevalues of feq and l and a �ne-tuning relation " = "1(�).An example of a on�guration with two regular en-ters is presented in Fig. 7 for � = 2; the �ne-tunedvalue of " is "1(2) = �0:3326 : : : , it belongs to the line" = "1(�).The urve " = "1(�) in Fig. 1 has been obtainednumerially. For small and large values of �, this �ne-tuning relation an be derived analytially.6.1.1. "1(�) for weak gravity, �� 1This derivation repeats the one for Eq. (49). Themain di�erene is that we now obtain the value of r(l)at the equator from (53) asreq = r(leq) =p2=j"j; j"j � 1; (54)304
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6.1.2. "1(�) for strong gravity, �� 1Numerial integration shows that for � � 1, thesalar �eld f remains small in the whole interval be-tween the enters, while  = {�f is of the order ofunity. Introduing � in (36) as before and taking intoaount that f � 1, we again �nd Eqs. (37)�(39). It isonvenient to integrate these equations from the equa-tor to the enter and to use boundary onditions in theform�0(leq) =  0(leq) = 0(leq) = 0;  (leq) =  eq ;�(leq) = 12 ln 2 2eq2 2eq � �: (56)The three parameters  eq , l � leq , and � are to bedetermined from the onditions (l) = 0; r(l) = 0; r0(l) = 1:Numerial integration results in � = 1:9 : : :For lass-C solutions, the desired �ne-tuning rela-tion in the strong-gravity limit is" = �1 + 1:9=�: (57)6.2. Odd and even salar �eldsIn the above solutions, the salar �eld f(l) withoutknots is an even funtion.Beause f(l) may hange its sign between the en-ters, there are two possibilities. If the number of knotsof f(l) is even, then f(l) is an even funtion, reahingan extremum at the equator, and f 0(leq) = 0. On theother hand, f(l) with an odd number of knots is an oddfuntion: f(leq) = 0, and f 0(l) is then an even funtionhaving an extremum at l = leq .Numerial integration of Eqs. (13)�(15) in the aseof an even number of knots an be performed with thesame boundary onditions (56) as without knots. Theresults are displayed in Figs. 8�10.Figure 8 shows a few solutions for the salar �eldf(l) with two knots and the orresponding funtionsr(l).Figure 9 shows the funtion (l) in the whole rangeof l and in a lose viinity of the equator for visuallarity to demonstrate a minimum at the equator. Wereall that  enters the equations only via 0 and 00,and therefore, without loss of generality, we have set(leq) = 0 in Fig. 9b. The larger is �, the deeper isthe loal minimum of  at the equator. Altogether, thegravitational potential has three minima: one at theequator and two others near the regular enters.5 ÆÝÒÔ, âûï. 2 305
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K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 133, âûï. 2, 2008e�2(l)���S�t �2 ���S�x�2����S�l �2 �� 1r2(l) ��S�� �2 �m20 = 0:The metri is homogeneous with respet to all oordi-nates exept l, and the ation an be written asS = Et� px+ Sl(l) +M�; (59)where E is the partile energy, p is the partile momen-tum along the oordinates xi, i = 1; d0 � 1, � is the an-gular oordinate in the extra dimensions (we note thatd
2 = d�2 for d1 = 1) and M is its onjugate angu-lar momentum. The remaining unknown funtion Sl(l)satis�es the equationdSldl = �sp2e�2(l) � M2r2(l) �m20;where p2 = E2 � p2:Zeros of the square root determine the turning pointsof lassial motion.We onsider a partile with M = 0, i.e., movingin the bulk along the oordinate l (stritly to or froma brane if the brane is loated at �xed l). Classialmotion is allowed where the square root is real. Theturning points lt are determined by the equationp2e�2(lt) �m20 = 0:If there is a minimum of (l) at some l = l0, alassial partile withp2 = m20e2(l0)annot move along the l diretion and is trapped pre-isely at the minimum of . Partiles with slightlylarger p2 an move between two turning points in theviinity of l0. If it is a global minimum of , partileswith any p2 � m20e2(l0)are trapped.It an also be veri�ed that partiles with the samevalue of p2 butM 6= 0 (moving in the � diretion) havea still narrower range of motion along l.In partiular, near the equator of a on�gurationwith two enters and three half-waves of � (see Fig. 9),the turning points of �nite lassial motion exist for(leq) <  < m, where m is the maximum of (l).Setting m2eq = m20e2(leq);

we see that a lassial partile is trapped near the equa-tor if its energy is restrited bym2eq < p2 < m2eq expf2[m � (leq)℄g:It moves along the Minkowski oordinates as a free par-tile of mass meq .7.2. Salar �eldsWe onsider a test salar �eld � with the LagrangianL� suh that 2L� = �A���A��m20��� (60)in the bakground of our string on�gurations withmetri (10). Here, the asterisk as a supersript denotesomplex onjugation and m0 is the initial �eld mass.The � �eld satis�es the Klein�Gordon equation�A �pggAB�B��+pgm20� = 0; (61)where g = j det(gAB)j = exp(2d0 + 2�):Taking the symmetry of the problem into aount, wean take a single mode of �, assuming�(xA) = X(l)e�ip�x� ein�; (62)where p� = (E;p) is the (d0 = 4)-momentum alongthe brane and n is an integer. Then X(l) satis�es theequationX 00 + (d00 + �0)X 0 ++ (p2e�2 � n2e�2� �m2�)X = 0; (63)where p2 = p�p� = E2 � p2is the e�etive mass squared, observed on the brane.As a trapping riterion for a mode X , it is reason-able to require the �niteness of the �-�eld energy E�per unit area of the brane,E� = Z T tt [�℄pg d� dl = 2� Z T tt [�℄pg dl <1; (64)whereT tt [�℄ = 12 �� �e�2(E2 + p2) +X 02 + (n2e�2� +m20)X2� (65)is the temporal omponent of the �-�eld stress�energytensor. We notie that the validity of Eq. (64) automat-ially guarantees �niteness of the norm R pg���dl d�308



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :of the � �eld onsidered as a quantum-mehanial wavefuntion.The �niteness of E� in the bakground of di�erentregular on�gurations with in�nite extra dimensionsdesribed above depends on the behavior of solutionsof Eq. (63) at small and large l.We begin with onsidering the �-�eld behavior neara regular enter l = 0, whih is ommon to all lasses ofregular on�gurations. At small l, we have e� � r � land  ! 0. Hene, Eq. (63) takes the approximateform lX 00 +X 0 + l(p2 �m20)X = 0; n = 0; (66)lX 00 +X 0 � (n2=l)X = 0; n 6= 0: (67)Equation (66) is solved by zeroth-order ylindrial fun-tions if p2 6= m20 and in elementary funtions if p2 = m2;Eq. (67) is an Euler equation. At small l, the solutionsbehave as X � C1 + C2 ln l; n = 0;X � C3ln + C4l�n; n 6= 0; (68)with integration onstants Ci. To make the integralin (64) onverge as l ! 0, we must hoose C2 = 0 andC4 = 0, i.e., only one of the two linearly independentsolutions in eah ase.We now onsider the asymptoti form of solutionsof Eq. (63) as l!1 for di�erent bakground on�gu-rations.A1: at large l,  � � � hl, h = onst > 0. InEq. (63), the terms with p2 and m2 are negligible, andthe solution has the asymptoti formX � C+e�a+l + C�e�a�l;2a� = (D � 1)h�q(D � 1)2h2 + 4m20; (69)where C� are integration onstants and D = d0 + 2is the total spae�time dimension. It is easy to ver-ify that riterion (64) holds for solution with C+ 6= 0,C� = 0. Hene, salar �elds with any nonzero massan be trapped on suh branes.A2: at large l, ed0 � e� � l. Again, the termswith p2 and m2 are negligible, and Eq. (63) transformsto X 00 + 2X 0=l�m20X = 0;whose solution isX � C+em0l + C�e�m0ll ; (70)and evidently the solution with C+ = 0 satis�es rite-rion (64).

B1: at large l, r � e� ! r�,  � �hl, h > 0, andthe approximate form of Eq. (63) isX 00 � d0hX 0 + p2e2hlX = 0: (71)For p 6= 0, it is solved in ylindrial funtions, the gen-eral solution beingX = ed0hl=2Zd0=2� jpjh ehl� �� e(d0�1)hl=2 sin� jpjh ehl +��; (72)where � is a onstant phase. It is easy to verify thatE� diverges as R ehl dl. Therefore, massive modes withany p2 > 0 are not trapped by B1 on�gurations.B2: at large l, r ! r� and  � hl, h > 0. Thesituation is almost the same as in ase A1; the solutionof Eq. (63) has asymptoti form (69) with the replae-ments D � 1 7! d0; m20 7! m20 + n2=r2�:Again, only the solution with C� = 0 provides onver-gene of E�.Thus, the on�gurations of lasses A1, A2, and B2an trap massive salar modes; at both large and smalll, only one of the two linearly independent solutions ofEq. (63) is seleted, and therefore we have a boundary-value problem with a disrete spetrum of p2 for anygiven values of m0, n and the bakground parameters.7.3. The Shrödinger equationIt is helpful to reformulate the boundary-valueproblem for salar �eld modes in terms of theShrödinger equation. For this, we make the followingsubstitutions in (63):dl = edx; X(l) = y(x)pf(x) ; (73)where f(x) = exp((d0 � 1) + �):The new variable x is atually an analogue of the well-known �tortoise oordinate� in the analysis of spheri-ally symmetri metris, suh that the metri takes theform ds2 = e2����dx�dx� � dx2�� e2� d�2: (74)Then Eq. (63) transforms to the Shrödinger formyxx + [p2 � Veff (x)℄y = 0 (75)309



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 133, âûï. 2, 2008with the e�etive potentialVeff = �m20 + n2e�2��e2 + fxx2f � f2x4f2 ; (76)where the subsript x denotes d=dx. We reall that theeigenvalue p2 is the e�etive mass squared, observed inMinkowski spae.Near the enter (without loss of generality,x � l ! 0), we haveVeff � n2x2+m20+14�1+2(d0�1)xx+�xx�x=0: (77)For n 6= 0, it is therefore a potential well, whereasVeff ! onst for n = 0.At large l for di�erent bakgrounds, we have:A1: x! x+ <1; x+ � x � e�hl; h > 0,Veff (x) � e2hl�m20 + h24 (d20 + 2d0)�; (78)A2: x � l(d0�1)=d0 !1,Veff (x) � m20e2 � l2=d0 � x2=(d0�1); (79)B1: x � ehl !1, h > 0,Veff (x) � e�2hl�m20 + n2r2� + h24 (d20 � 1)� � 1x2 ; (80)B2: x! x� <1, x� � x � e�hl, h > 0,Veff (x) � e2hl�m20 + n2r2� + h24 (d20 � 1)�: (81)We see that in ases A1, A2, and B2, the potentialinreases to in�nity at large l, whih leads to disretespetra of p2. For B1 on�gurations (with a horizon atl =1), in the standard quantum mehanis, we wouldexpet a ontinuous spetrum of states; in our ase,with the appropriate boundary onditions, as we sawabove, there are no admissible states with p2 > 0.7.4. Massless modes in on�gurations within�nite extra dimensionsFor a possible massless mode,p2 = m20 = n2 = 0;Eq. (63) is easily solved asX 0 = C1e�d0�� dl;X = C1 Z e�d0�� + C2; C1;2 = onst; (82)

and X is found by quadrature.One of the solutions is X = onst. It is easy toverify that with this solution, whih is well-behaved ata regular enter, the energy E� in Eq. (64) diverges atlarge l in the bakgrounds A1, A2, and B2, but on-verges in the bakground B1.For the other solution with C1 6= 0, on the on-trary, E� onverges at large l in the bakgrounds A1,A2, and B2 and diverges in B1. This solution, however,is singular at the enter and leads to a divergene in E�there.Thus, B1 on�gurations with horizons, being unableto trap massive salar �elds, are the only ones that antrap a massless salar.8. CONFIGURATIONS WITH TWO CENTERSAND THE HIERARCHY PROBLEMIn on�gurations with two symmetri regular en-ters and two knots of the salar �eld, there are threeminima of the �gravitational potential�  (see Fig. 9).The minimum at the equator is higher than the othertwo loated near the enters. A similar (and evenmore ompliated) struture may be expeted for on-�gurations with a larger number of salar-�eld knots.The minima of  are able to trap lassial partiles.As regards quantum partiles (at least spinless), ef-fetive potential (76) not neessarily has a minimumpreisely where  has a minimum, and an additionaldetailed study is neessary. Nevertheless, semilassi-ally at least, quantum and lassial partiles must betrapped in lose positions, and the main di�erene be-tween them is that quantum partiles an tunnel froma higher minimum of Veff to a lower one.We now suppose that a partile desribed by a er-tain mode of the � �eld (for simpliity, with n = 0) istrapped at some position li. Mode equation (63) anthen be rewritten as(pgX 0)0 +pgXe�2p2 = pgm20X: (83)We integrate this equation over the extra dimensionfrom one enter to the other. We haveZ (pgX 0)0 dl = 0beause pg = red0is zero at both enters. For a partile trapped at some�xed position l = li, we obtain310



ÆÝÒÔ, òîì 133, âûï. 2, 2008 Global strings in extra dimensions : : :p2 = m2i = m20 Z pgX dlZ pge�2X dl � m20e2(li): (84)To interpret this result, we note that the entire pi-ture looks quite di�erent depending on the size of theextra dimensions, haraterized by the distane l be-tween the enters. This size, in turn, varies with thevalue of � = {2�2: it is lose to unity (i.e., the lengthunit, whih is also arbitrary) for large � and tends toin�nity as � ! 0. For (omparatively) weak gravityof the string, � ! 0, when l is very large, all minimaof (l) form individual branes loated in the bulk farfrom one another. In this ase, an observer loated onone of the branes sees only partiles orresponding tomodes trapped on this brane; tunneling from one braneto another is then seen as the appearane or disappear-ane of observable partiles. The entire piture may beused for treating the interation hierarhy problem inthe spirit of Randall�Sundrum �rst model [4℄.In the opposite ase � ! 1 (if the unit length(�0�)�1=2 is also su�iently small), l an be a lengthinvisible for modern instruments, e.g., l � 10�17 m.We then arrive at a piture lose to the original Kaluza�Klein onept; partiles with the same primary massm0, being trapped at di�erent minima of the e�etivepotential, are seen as partiles with di�erent masses,and the tunneling proess from a higher minimum to alower one is observed as a deay of a partile of a largermass to that of a smaller mass, with energy release insome form. This may be a natural explanation of theexisting families of partiles with di�erent masses butsimilar other properties. A more detailed study of thispossibility is desirable but is beyond the sope of thepresent paper. 9. CONCLUSIONOur phenomenologial approah based on themarosopi theory of phase transitions with sponta-neous symmetry breaking allows studying the generalphysial properties of topologial defets in the frame-work of the brane-world onept. In partiular, in thispaper, we have studied the gravitational properties ofglobal strings loated in extra dimensions. We havegiven a general desription and lassi�ation of possi-ble regular solutions and presented a map showing theloation of di�erent solutions in the spae of physialparameters.Among the variety of regular solutions, there areones having brane features, inluding solutions with
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