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POLYMER DYNAMICS IN CHAOTIC FLOWSWITH A STRONG SHEAR COMPONENTK. S. Turitsyn *Landau Institute for Theoretial Physis119334, Mosow, RussiaTheoretial Division, LANL, Los Alamos, NM 87545, USAReeived January 31, 2007We onsider the dynamis of a polymer moleule injeted in the haoti �ow with a strong mean shear om-ponent. The polymer experienes aperiodi tumbling in suh �ows. We onsider the simpli�ed model of thehaoti veloity �eld given by the superposition of a steady shear �ow and a large-sale isotropi short-orrelatedrandom omponent. In the framework of this model, we present a detailed study of the statistial properties ofsingle-polymer dynamis. We obtain the stationary probability distribution funtion of the polymer orientation,�nd the distribution of time periods between onsequent events of tumbling, and �nd the tails of the polymersize distribution.PACS: 83.80.Rs, 83.50.Ax1. INTRODUCTIONHydrodynamis and rheology of dilute polymer so-lutions have reently attrated muh theoretial andexperimental attention. Adding a small amount ofpolymers to ordinary liquid leads to radial hangesof liquid properties. One of the most famous e�ets ofthis type is the phenomenon of drag redution. Theaddition of few parts per million of long-hain polymermoleules produes a dramati redution in the fri-tion drag. Although this e�et was �rst observed in1949 [1℄, there is still no rigorous theory explaining thephenomenon. A qualitative desription was proposedin [2, 3℄, but no quantitative theory is available. An-other spetaular phenomenon observed in dilute poly-mer solutions is the e�et of elasti turbulene, disov-ered reently in [4, 5℄. In this experiment, a haoti�uid motion was observed in the system with a smallReynolds number Re � 1. Obviously, suh behaviorannot be observed in Newtonian liquids, where the�ow is laminar. Therefore, the haoti �ow is gener-ated by elasti instabilities of the polymer solution.The dynamis of polymers and possible mehanismsexplaining the haoti state were studied in reent the-oretial works [6�8℄. It was proposed that elasti insta-*E-mail: tur�itp.a.ru

bilities our beause of the bak-reation of dissolvedpolymers on the �ow. It is therefore important to un-derstand the dynamis of single polymers in externalhaoti �ows. Theoretial investigation of this problemhas a long history. It was shown in the early 1970s [3, 9℄that a polymer moleule in a random �ow experienesa oil�streth transition. In relatively weak �ows, themoleule spends most of the time in the oiled state.But when the Lyapunov exponent of the �ow exeedsthe inverse polymer relaxation time, the moleules be-ome substantially elongated. With the developmentof novel optial methods, a number of high-quality ex-perimental observations fousing on resolving dynamisof individual polymers (DNA moleules) plaed in aninhomogeneous �ow have been reported [10�13℄. Thisallowed a diret observation of the oil�streth transi-tion [14℄.Another important ase orresponds to shear-like�ows. The dynamis of polymer moleules in suh �owshave been extensively studied beause of the impor-tane in appliations. For example, suh a �ow ourswhenever a polymer passes near the wall. Rheologi-al properties of dilute polymer solutions are usuallystudied in shear geometries [15℄. Diret observation ofthe polymer dynamis in a regular shear �ow showedthat the polymer experienes aperiodi tumblings [12℄.746



ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007 Polymer dynamis in haoti �ows : : :This behavior is a ombined e�et of the shear �owand thermal �utuations of a moleule. The statistialproperties of suh dynamis have been the subjet ofgreat attention both experimentally and theoretially[12; 13; 16�19℄.The next important problem is the behavior of poly-mer moleules in the �ows where both shear and haoti�ow omponents are important. Suh �ows our inmany experimental situations, suh as drag redutionor elasti turbulene. Just this situation ours whena haoti or turbulent �ow is generated on top of ashear-like veloity. The dynamis of polymers in suh�ows have muh in ommon with the dynamis of poly-mers plaed in statistially isotropi haoti �ows or,onversely, in regular shear �ows. However, there aresome details that are unique to the disussed situation.A general qualitative analysis of suh dynamis waspresented in [20℄. In that paper, the authors did notuse any spei� model of the turbulent �ow but formu-lated some general preditions onerning this problem.In the present paper, we justify most of these predi-tions ab initio in some partiular model �ow and alsopresent derivations of some general results that wereskipped in [20℄.In the shear-�ow geometry with a superimposedhaoti omponent, as in the ase of isotropi random�ows, the polymer experienes the oil�streth transi-tion. Below this transition, the polymer spends mostof the time in the oiled state, and the e�et of the�ow results in algebrai tails of the probability distri-bution funtion (PDF) of the polymer size [6℄. In thepresene of a strong shear omponent, these tails be-ome signi�antly broadened in omparison to isotropi�ows without mean shear. More generally, it is shownthat the Lyapunov exponent assoiated with the �owbeomes parametrially large in the presene of meanshear. The e�et of the Lyapunov exponent inreaseby a shear �ow is rather surprising, beause the sim-ple shear �ow annot lead to exponential growth of thepolymer size. Therefore, suh an inrease is a ombinede�et of shear and haoti omponents. This e�et isdisussed in detail in the last setion of this artile.Above the oil�streth transition, the polymerspends most of the time in a strongly elongated state.The thermal fores are then less important than the ef-fet of veloity gradient and the orientational dynamisdeouple from the evolution of the polymer size [20℄. Inthis ase, the equation desribing the polymer orienta-tion dynamis formally oinides with the equation de-rived in [21℄ for thermal �utuations of thin solid rodsin a shear �ow. The authors of [21℄ studied the station-ary PDFs of the orientational angles of the solid rod

diretion vetor. Although the statistial properties ofthermal fores an be very di�erent from the statistisof haoti veloity gradients, most of the properties re-lated to the stationary angular distribution remain thesame. An interesting e�et spei� to the haoti-�owproblem is the nonuniversal algebrai tail of the PDF ofthe o�-plane angle �. This e�et was brie�y mentionedin [20℄ and is explained in detail in the present paper.Another extension of [21℄ presented in this paper is re-lated to the statistis of tumbling time, i. e., the timebetween onsequent �ips of a polymer moleule. Ob-viously, this distribution annot be expressed throughthe stationary distribution funtions and requires ad-ditional analysis.The statistial properties of real turbulent �ows or�ows observed in elasti turbulene experiments arenot known in full detail. Furthermore, there exist nouniversal analytial tools for studying the problem inits full sale. To make any preditions regarding thepolymer dynamis in suh �ows, one has to make somesimpli�ations. In [20℄, the problem was studied undergeneral assumptions regarding the veloity statistis.This allowed the authors to obtain some mostly quali-tative preditions, whih are universal (i. e., valid for avery wide range of systems) but lak preision. In thisartile, we follow another way by studying a simpli�ed,but reasonable model of haoti �ow in detail. Theserigorous results derived ab initio are ertainly in a fullagreement with the general preditions in [20℄. Reentomputer simulations [17℄ also on�rm and extend theresults of the urrent paper.In this paper, the external �ow is modeled by thesuperposition of a onstant shear omponent and a ran-dom omponent orresponding to a haoti veloity�eld. We assume the random omponent to be rela-tively small. In the spirit of lassi works [22, 23℄, wemodel the haoti veloity part with a Gaussian delta-orrelated stohasti �eld. Although suh models are agreat simpli�ation of real �ows, reent developments[24℄ showed that they an be suessfully applied foranalysis of advetion in turbulent �ows. As long asstatistial properties of real �ows are unknown, our ap-proah is one of the possible ways of modeling singlepolymers in haoti �ows. In the framework of thisapproah, we are able to derive most of the results an-alytially. The results in the present paper an form abasis for future studies of more ompliated problems,suh as statistis of polymer onformation in haoti�ows.We list the main results in this paper. First, weobtain an exat expression for the probability distri-bution of the polymer orientation vetor. We show747



K. S. Turitsyn ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007that the body of the angular distribution funtion isloated in the region of small angles, whih orrespondto the polymer strethed in the shear diretion. How-ever, the tails of the PDF are algebrai, and hene the�utuations of the polymer diretion are anomalouslystrong. Seond, we study the statistis of time periodsbetween onsequent events of polymer tumbling. Weshow that this PDF has an exponential tail at largetumbling times, and two di�erent asymptoti regimesin the region of very small times. Finally, for polymersbelow the oil�streth transition, we obtain the asymp-toti form of the polymer size distribution funtion,whih is also algebrai. We also show that the meanshear omponent leads to a signi�ant broadening ofthe polymer size distribution in omparison to the purehaoti �ow. This e�et is surprising at �rst sight, be-ause the shear omponent itself does not lead to anexponential polymer growth, and annot therefore leadto algebrai tails of the polymer size distribution.The plan of this paper is as follows. We �rst detailthe model that is used to study the polymer dynamisand disuss its underlying assumptions and its validity.In the next setions, we �rst analyze the stationary an-gular distribution of strongly elongated polymers andthen obtain the probability distributions of the tum-bling time. In Se. 4, we analyze the size distributionof the polymer moleules below the oil�streth transi-tion. The main results in this paper are listed in Con-lusions.2. POLYMERS AND THE CHAOTIC-FLOWMODELA polymer moleule injeted in an external �ow in-terats with the �uid in two ways: it is adveted as awhole and the veloity gradient strethes and rotatesit in di�erent ways, thus a�eting its internal dynam-is. If we assume the shear �ow to be stationary andspatially homogeneous, the advetion of the polymeris not important. Furthermore, the inertial e�ets anbe negleted for typial polymers, and we an assumethat the monomers simply follow the Lagrangian tra-jetories of the veloity �eld. The e�et of the �ow anthen be desribed in terms of the dynami equationfor the polymer end-to-end vetor. We do not onsiderdi�erent onformations of a polymer here and insteaduse the simple dumb-bell model, where the end-to-endseparation vetor R satis�es the equation [25, 26℄�tRi = Rjrjvi � (R)Ri + �i; (1)where the relaxation rate  is a funtion of the absolutevalue R of R and the veloity gradient rjvi is taken at

the moleule enter of mass. The term �i is the thermalLangevin fore with the power �. Real veloity �eldsare large-sale: their orrelation length is muh largerthan the polymer length. Therefore, this �eld an beassumed smooth on the polymer size sale. This as-sumption justi�es the linear approximation for the ve-loity �eld used in Eq. (1). We disuss two di�erentsituations. When the Lyapunov exponent assoiatedwith the veloity �eld is larger than the polymer re-laxation rate, whih orresponds to the state above theoil�streth transition, the nonlinearity of the polymerbeomes important, preventing an unbounded polymerstrething. In this ase, the polymer length is muhlarger than in the oiled state, and thermal fores �ian be negleted in omparison to the veloity gradi-ent strething. The polymer diretion vetor n = R=Ran then be introdued. Its dynamis are governed bythe equation �tni = nj(Æik � nink)rjvk: (2)We see that the diretion evolution is ompletely deou-pled from the dynamis of the polymer size R. In thestate below the oil�streth transition, the dynamis ofthe polymer are purely linear. Thermal fores annotbe negleted in this regime, and hene the orientationvetor dynamis do not deouple from the evolution ofthe polymer size. We restrit our analysis in this ase tothe study of the polymer length distribution. For suf-�iently small polymer moleules, we an assume therelaxation (R) to be onstant, in whih ase Eq. (1)beomes linear and an be studied analytially in fulldetail.It is important to disuss how the haoti velo-ity omponent is modeled. The statistial propertiesof the veloity �eld observed in the elasti turbuleneexperiments are not well known from either the ex-perimental or the theoretial standpoint. The simplestmodel of the veloity �eld studied in this paper onsistsof a strong stationary shear omponent and of a weakshort-orrelated haoti omponent �ij . Under theseassumptions, the veloity gradient matrix has the fol-lowing statistial properties:rjvi = sÆixÆjy + �ij ; (3)h�ij (t)�kl(t0)i = DÆ(t�t0)(4ÆikÆjl�ÆilÆkj�ÆijÆkl); (4)where D is the �power� of the haoti omponent ands is the shear rate. We assume that the shear �ow gra-dients are in the xy plane. We also assume the shearomponent to be relatively strong, s � D. The exatform of orrelation funtion (4) assumes the isotropy of748
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Shemati piture of the polymer orientationgeometrythe veloity omponent, but this assumption is not im-portant, as we see in what follows, beause for strongshear omponent s � D, the polymer spends most ofthe time strethed in the x diretion. Its angular dy-namis are determined only by the y omponent of thehaoti veloity �eld.To simplify the equations desribing the polymer di-retion evolution, we parameterize the vetor n by theangles as shown in the Figure. Then Eq. (2) aquiresthe form �t� = �s sin2 �+ �� ; (5)�t� = �s sin� os� sin � os � + �� ; (6)where �� and �� are zero-mean random variables re-lated to the haoti omponents of the veloity gradi-ent. The statistis of both �� and �� an be obtainedfrom orrelation funtion (4):h��(t)��(t0)i = 4DÆ(t� t0); (7)h��(t)��(t0)i = 4Dos2 � Æ(t� t0): (8)3. POLYMER DIRECTION STATISTICS3.1. �-angle distributionIn this setion, we study the stationary distribu-tion of polymer orientation angles. Equation (2) gov-erning the dynamis of the polymer orientation vetorformally oinides with the equation desribing the dy-namis of thin rigid rods. Some of the results desribed

in this setion an be found in [21℄. Unlike polymermoleules, these thin rods have a �xed size and aredriven solely by thermal fores. But their dynamis aresimilar to the dynamis analyzed in this paper. In whatfollows, we �rst rederive the expression for the station-ary �-angle distribution and then present several newresults, whih have not been disussed in the literatureto our knowledge. We �rst analyze the nontrivial on-tribution to the �-angle distribution that omes fromthe stohasti dynamis and an be observed in realexperiments by inspeting the polymers in the stohas-ti region. This ontribution also has an algebrai tail,but its exponent is nonuniversal and depends on thestatistis of the random veloity �eld. For a Gaussiandelta-orrelated �eld, numerial analysis showed thatthis tail behaves as ��3 [17℄, and therefore its ontri-bution is subleading. Seond, we study the statistialproperties of the tumbling time. Obviously, the dis-tribution of suh quantities annot be alulated fromstationary angular distributions. But it an be eas-ily measured experimentally [5, 18℄ or studied numer-ially [16, 17℄. We obtain some rigorous results on-erning the tumbling time distribution, whih perfetlyon�rm the qualitative preditions in [20℄.As noted above, the angular dynamis of strethedpolymers are deoupled from the dynamis of the poly-mer length and an therefore be analyzed separately.There are two di�erent terms in the right-hand sideof Eq. (5) that ontribute to the polymer orientationdynamis. In the limit s � D, the �rst term is rel-atively large, but the e�et of the seond term an-not be negleted, as we see in what follows. For thevanishing haoti omponent (D ! 0), the determin-isti polymer dynamis an easily be analyzed: thereare two semistable equilibrium states �1;2 = 0; �, with�1;2 = 0, and the polymer diretion vetor n asymp-totially approahes one of these points depending onits initial orientation. But as the angle between thepolymer and the equilibrium diretions beomes suf-�iently small, the haoti omponents �k annot benegleted, and the polymer dynamis beome stohas-ti. After some time, the haoti omponent pushesthe polymer into an unstable region, and the regularveloity rapidly (on times of the order of s�1) trans-fers it to the opposite equilibrium diretion. Due tothe stohasti nature of the haoti veloity ompo-nent, random aperiodi tumbling of the polymer is tobe observed. This phenomenon was qualitatively ana-lyzed in [20℄ for the general veloity statistis. In thispaper, we fous on the situation where the haoti �owis short-orrelated, suh that its harateristi orrela-tion time �v is small ompared with the time sale �t749



K. S. Turitsyn ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007assoiated with the tumbling e�et, whih an be esti-mated as �t = (Ds2)�1=3 � s�1. This time sale sep-aration allows obtaining some expliit expressions forthe stationary and dynamial statistis of the polymerorientation evolution.In the ase where D � s, the polymer spends mostof the time in the stohasti regime, lose to the equilib-rium point, and hene its orientation angles are small,�; � � 1 (we analyze only one equilibrium point, be-ause of the symmetry n ! �n). In this ase, we anset � = 0 in orrelation funtion (8). The dynamis ofangle � beome deoupled from everything else, and wean write the orresponding Fokker �Plank equation��t � s�� sin2 �� 2D�2��P (t; �) = 0; (9)where P is the PDF of the � angle, i. e., the funtionthat represents the probability of �nding the polymerin a state with the inplane angle equal to the value of�. We use the usual normalization onditions for thePDF: �Z0 d�P = 1:An important question that must be disussed hereis the boundary onditions to be used for this equa-tion. The equation is invariant under the transforma-tions � ! � � �. It is therefore natural to use theperiodi boundary onditions P (t;��=2) = P (t; �=2).There then exists an asymptoti stationary solutionPst(�) of Eq. (9). Obviously, all angles di�ering byan integer multiple of � are idential to eah other inthis solution. Another possibility is to use nonperiodiboundary onditionsP(t;1) = P(t;�1) = 0with the normalization ondition1Z�1 d�P = 1:In this ase, the angles � and �+�k are not equivalentand the absolute value of the angle ontains the infor-mation about the total number of polymer rotations.The main disadvantage of working with these boundaryonditions is that there is no stationary solution of theFokker �Plank equation, beause the PDF is wideningand drifting onstantly. However, both approahes leadto the same physial results, the two di�erent PDFs be-ing related byP (t; �) =Xk P(t; �+ �k): (10)

In this setion, we work with the periodi bound-ary ondition. To �nd the stationary PDF Pst(�), werewrite the Fokker �Plank equation as��U�1(�)��U(�)Pst(�) = 0; (11)U(�) = exp h s4D�� s8D sin 2�i : (12)Simple integration yieldsPst(�) == !D �Z0 d' expn� s4D ['� sin' os('� 2�)℄o ; (13)where ! is the average rotation frequeny of the poly-mer, whih is determined from the normalization on-dition �Z0 Pst(�) d� = 1and is given by! = D exp (�s=8D)�2Iix(s=8D)I�ix(s=8D) ; (14)where Iix and I�ix are the modi�ed Bessel funtions.For s=D � 1, the PDF is loalized at small angles� � (D=s)1=3 � 1, and all expressions are signi�antlysimpli�ed: ! = (Ds2)1=34 � 31=6�(7=6)p� ; (15)Pst(�) = !D 1Z0 d' exp �� s8D'('�2�)2� s'324D� : (16)We see that the PDF is asymmetri in �, i. e.,P (��) < P (�), whih means that the polymer spendsmore time above the shear axis. Besides, the PDF hasalgebrai tails P (�) / ��2; (D=s)1=3 � � � 1, whihorrespond to very large �utuations of the angle:h�i = �Ds �1=3 p� 31=3�(1=6) ; (17)Pst(�) � 116 � 31=6�(7=6)p� � sD�2=3 1�2 ; (18)where �(z) is the gamma funtion and the lastasymptoti formula is valid in the intermediate re-gion (D=s)1=3 � j�j � 1. The asymptoti behavior750



ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007 Polymer dynamis in haoti �ows : : :Pst / ��2 orresponds to a nonzero probability �uxof the stationary solultion. Physially, this means thatthere is some preferred diretion of the polymer rota-tion, whih is a manifestation of the tumbling e�etdesribed above. The positive value of the average an-gle � shows that the polymer spends most of the timein the region � > 0, in agreement with the general anal-ysis presented at the beginning of this setion. It anbe seen that the polymer spends most of the time inthe region of small angles, and hene the only relevantveloity omponent is vz . Therefore, the assumptionof isotropi statistis of the haoti veloity omponentis not therefore signi�ant for the qualitative results inthis paper.3.2. Tumbling time statistisIn this setion, we alulate the PDF of the timeintervals between onsequent tumblings. Suh a PDFan be diretly measured experimentally. For this, itis natural to use the nonstationary PDF P(t; �). Wede�ne the tumbling proess by a polymer diretion �tra-jetory� starting at � = �=2 and reahing � = ��=2at time T . In this ase, the probability of �nding thepolymer inside this region is given byp(t) = �=2Z��=2 P(t; �) d�; (19)where the initial ondition is P(t; �) = Æ(�� �=2 + 0),and hene p(0) = 1. The normalization ondi-tion for this PDF is 1R�1 d�P(t; �) = 1. We substi-tute P(t; �) = U1=2(�)	(t; �), where U is de�ned inEq. (12). The evolution of 	 is determined by the one-dimensional Shrödinger equation in imaginary time:�t	 = �Ĥ	; (20)Ĥ = �2D�2� + s28D sin4 �� s sin� os�: (21)It is now possible to use the quantum mehanialanalogy. The Hamiltonian Ĥ formally desribes a par-tile in a periodi potential with period �. The generalsolution of this problem is given by	(t; �) =Xn Z dp	np(�)	�np ��2��� exp[�En(p)t℄; (22)where p is the partile quasimomentum and n is theBrillouin zone number. In this potential, the lassial

minima are separated by large barriers. For s � D,the tight-binding method an be used (see, e.g., [27℄).Then the approximate relationsEn(p) = �n � � os(�p); (23)	np(�) =Xk exp(i�kp) n(�� k�); (24)where  n and �n are the wave funtions and energies,hold for the spetrum formed near lassial minimawhen the tunneling proesses are negleted; � is an ex-ponentially small bandwidth. Therefore, at large times,the leading asymptoti form of p(t) is determined bythe ground state energy �0:p(t) / exp(��0t); t!1: (25)It is easy to verify that this energy is given by�0 = (Ds2)1=3, where  is a onstant of the order ofunity. Indeed, the lassial minimum is situated in theregion of small angles j�j � 1, and we an therefore usethe Taylor expansion of trigonometri funtions. Afterthe substitution � = (D=s)1=3�, we obtain the Hamil-tonian Ĥ = (Ds2)1=3 ��2�2� + �48 � �� : (26)The operator in square brakets ontains no dimen-sionless parameters, and therefore its eigenvalues areof the order of unity. The body of the PDF is alsoloated in the region of tumbling periods of the orderof T � (Ds2)�1=3. The left tail of the tumbling timePDF, T � (Ds2)�1=3, is determined by rare trajeto-ries, whih turn the polymer through angle � at smalltimes T . To �nd the optimal form of suh trajeto-ries, we use the funtional integral representation ofthe transition probability:p(T ) / Z D� exp �� 18D Z dt( _�+ s sin2 �)2� : (27)The integration is performed over trajetories with theboundary onditions �(0) = �=2, �(T ) = ��=2. Forsmall T � (Ds2)�1=3, the probability is determined bythe ation A on the optimal trajetory with exponentialauray, p(T ) / exp(�A).Variation of the e�etive ation leads to the follow-ing equation for the saddle-point trajetory:�� = s2 sin3 � os�: (28)751



K. S. Turitsyn ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007This mehanial problem an easily be solved, yieldingthe following relation between the tumbling time andthe e�etive partile energy:T = �=2Z��=2 d�p2E + s2 sin4 � == � 8E(2E + s2)�1=4K  12 �r E4E + 2s2 ! ; (29)whereK(x) is the ellipti integral of the �rst kind. Theation is then evaluated asA = ET4D + s24D Z d� sin4 �p2E + s2 sin4 � == ET4D + 3�s232Dp2E 3F2�12 ; 54 ; 74 ; 32 ; 2;� s22E� ; (30)where we omit the onstant term 2s R _� sin2 � dt == �s=8D beause it is anelled by the normalizationonstant. Beause of the additional time sale s�1,there are two di�erent asymptoti branhes of p(t). ForsT � 1, we have s � p2E and E = �2=2T 2. In thisase, A = �28DT : (31)In the other limit ase s�1 � T � (Ds2)�1=3, the en-ergy is given by E = 8K4(1=2)=s2T 4 and the ationis A = 2K4(1=2)3Ds2T 3 : (32)The intermediate asymptoti form in (32) is deter-mined by the dynamis in the region of small anglesand is therefore a funtion of the produt Ds2T 3. Thedynamis at these angles are determined mainly by theomponent vy, and hene this asymptoti form is uni-versal, in the sense that it is independent of the detailsof the haoti veloity statistis. On the ontrary, theasymptoti form (31) at small times does not dependon s at all, beause suh small times an be reahedonly due to very rare �utuations of the haoti veloity�eld. Therefore, this asymptoti form strongly dependson the assumption of an isotropi veloity statistis,and is not universal.3.3. �-angle distributionIt was shown in [20℄ that there are two ontribu-tions to the intermediate right tail of the �-angle dis-tribution, (D=s)1=3 � � � 1. The �rst omes from the

deterministi regions where � � 1 and the angular dy-namis are determined by the regular terms in Eqs. (5)and (6). The algebrai tail of the stationary PDF P (�)is then proportional to ��2 at � � 1. But there is alsoa nonuniversal algebrai part, whih omes from thestohasti region of � � (D=s)1=3 and is determined bystatistial properties of the random veloity �eld. Inthis setion, we analyze this part and obtain a relationbetween the saling exponent and the entropy funtionof the random veloity proess. In the region � � 1,Eq. (6) an be easily solved:�(t) = 1Z0 d� �� exp0��s2 tZt�� sin 2�(t0) dt01A ��(t� �): (33)As we have seen, the random proess �(t) is station-ary and independent of ��(t). This allows us to rewritethe expression for � as� = 1Z0 d�e�%(�)��(�); (34)%(�) = s2 �Z0 sin 2�(t) dt: (35)To obtain the PDF P (�), we �rst average over the noise��: P (�j%) = 1p2�A exp�� �22A� ; (36)A = 4D 1Z0 d� exp[�2%(�)℄; (37)where P (�j%) is the PDF of � for a �xed realization ofthe proess %(t). Beause of the positive average valueh _%i � (Ds2)1=3, the dynamis are relaxational and thebody of P (�) is loated in the region of small angles� � (D=s)1=3 � 1. The tails of the PDF are deter-mined by large deviations of negative %(t). Assumingthat the proess %(t) reahes its most negative value atan instant ��, suh that %(��) = �%� and %� � 1, wean estimate the value of A with exponential aurayas A � (D=s)1=3 exp(2%�).The harateristi orrelation time of %(t) is� = (Ds2)�1=3. Therefore, for large �� � �, we an752



ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007 Polymer dynamis in haoti �ows : : :apply the results of the theory of large deviations [28℄,whih predit the saling for the tails of the %� PDF asP (%�j��) = exp ����� S �%���� �� ; (38)where S(x) is the entropy funtion, whih is one ofthe most important harateristi of the haoti velo-ity. This funtion is nonuniversal and strongly dependson the statistial properties of veloity gradients. It isimpossible to �nd the exat expression for this fun-tion analytially even in the framework of our model.Numerial omputations of this entropy funtion werereently presented in [17℄.We an now �nd the most probable time �� by max-imizing the above probability with respet to ��. Thisleads to the expression �� = �%�=x�, where x� is foundfrom the equationS(x�) = x�S0(x�); (39)where S0 is the derivative of S(x) with respet to x.The entropy funtion is of the order of unity, and wean hene expet the same for x�. The asymptoti formof the %� PDF is therefore given byP (%�) / exp[�%�S0(x�)℄: (40)After averaging Eq. (36) over %�, we obtain the asymp-toti expression for the � PDF:P (�) / j�j�S0(x�); (D=s)1=3 � j�j � 1: (41)It follows that the tails are algebrai, as in the aseof the angle �, but the exponent is now nonuniversaland depends on the statistial properties of the velo-ity �eld. For the delta-orrelated Gaussian proess ��,this tail was found numerially in [17℄. It was shownthere that in the stohasti region j�j � 1, the �-anglePDF behaves as ��3:0. In our model, this ontributionis small ompared to the tail from the regular region��2, but it an be expeted that the situation may bedi�erent for some spei� veloity statistis.4. STATISTICS OF POLYMER ELONGATIONIn this setion, we study the polymer moleulesplaed in a relatively weak �ow, where the Lyapunovexponent of the �ow is smaller than the relaxation timeof the polymer. In this ase, the polymer spends mostof the time in the oiled phase, and we an assumeits relaxation fore to be linear. Thermal noise anbe negleted in this ase, in ontrast to the situation

above the oil�streth transition disussed in the previ-ous setions. We study only the size distribution of thepolymer for this situation. The tails of the polymer-size PDF an be examined similarly to the analysis inSe. 3.3.The formal solution of dynami equation (1) in thease of a linear relaxation fore is given byRi(t) = 1Z0 dt exp [�(t� t0)℄Wij(t; t0)�j(t0); (42)W = T exp24 tZt0 ~�(�) d�35 ; (43)where ~�ij = rjvi is the veloity gradient matrix. Toobtain the polymer elongation PDF, we �rst averageover the thermal Langevin fore �i(t):P (Rj~�) / exp��12RT I�1R� ; (44)I = � 1Z0 dt0W T (t0)W (t)e�2t; (45)where W (t) =W (t; 0) and P (Rj~�) stands for the PDFwith a �xed realization of the proess ~�(t). At largeenough times t � �, the eigenvalues of the matrixW TW beome widely separated and the absolute valueof the end-to-end vetorR is determined by the largesteigenvalue I1: P (Rj~�) / exp��R22I1� : (46)It an be easily shown (see, e.g., [29℄) that for largetimes, when the eigenvalues �i of the W TW matrixare widely separated (�1 � �2 � �3), the dynamisof the largest eigenvalue �1 = exp(2�) are desribed bythe equation _� = s2 os2 � sin 2�+ 6D + ��; (47)h��(t)��(t0)i = 2DÆ(t� t0); (48)where �� is obtained from the haoti veloity orrela-tion funtion (4). The eigenvalue I1 is then given bythe expressionI1 = � 1Z0 dt exp [2�(t)� 2t℄ : (49)15 ÆÝÒÔ, âûï. 3 (9) 753



K. S. Turitsyn ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007As in the previous setion, �(t) is an integral of thestationary random proess with the orrelation time ofthe order of � = (Ds2)�1=3, and large deviations of I1are determined by large deviations of �(t). Assumingthat integral (49) is determined by one saddle point��, we an estimate it as I1 / exp(2�� � 2��), where�� = �(��). The asymptoti behavior of the �� PDFfor a �xed value of �� is given byP (��j��) / exp ����� S� ������ �� ; (50)where S�(x) is an entropy funtion orresponding tothe proess �(�).Exatly as in the previous setion, we �nd the opti-mum value �� = ���=x. The oe�ient x satis�es theequation S�(x)� xS0�(x) + �S0�(x): (51)In the linear region below the oil�streth transition,we have � > 1. The tail of the PDF is algebrai, asin ase of the � angle, P (R) / R�1��, and the value of� an be determined for large values of � � 1. Largedeviations of R are determined by the region wherethermal Langevin fores an be negleted and Eq. (47)an be used.We are interested in the asymptoti behavior of thepolymer size momentsMq(t) = hRq(t)i / exp(Aqt):The value of � is then determined from the equationA� = 0. Integrating over the funtion ��, we anrewrite Mq asMq = exp �Dq2t� qt� Z d�Zq(�; t); (52)Zq = hexp[q�(t)℄Æ(� � �(t))i ; (53)where the angular brakets denote averaging over theproess �(t). The funtion Zq satis�es the equation�tZq = h2D�2� + s�� sin2 �+ qs2 sin 2�iZq : (54)The only di�erene from Fokker �Plank equation (9)is in the last term. We follow the same proedure as inSe. 2.2. Substituting Zq = U(�)	(t; �), we obtain theimaginary-time Shrödinger equation�t	 = �Ĥq	; (55)Ĥq = �2D�2� + s28D sin4 �+ (q � 1)s sin� os�: (56)This equation annot be expliitly solved in the aseq � 1, but the solution an be easily found for q � 1.

In this ase, the leading exponential asymptoti behav-ior at large times is given by Zq(t) / exp[��(q)t℄, where�(q) is the ground-state energy. For q � 1, the mainontribution to �(q) is equal to the value of the lassialminimum of the potential. After some simple algebra,we obtain�(q) � �3 � 2�5=3 �q4Ds2�1=3 ; 1� q � s=D; (57)�(q) � qs=2; q � s=D: (58)Finally, we haveA(q) = Dq2 � q � �(q); (59)and the ritial value � depends on the dimensionlessparameter =s:� = 8>><>>: 8132 3Ds2 ;  � s;D ;  � s: (60)The last expression oinides with the value of the ex-ponent for a purely isotropi haoti veloity, beausefor  � s, large polymer-size �utuations are deter-mined by rare �utuations of the haoti omponent,when the �ow has a strong elongation omponent withthe Lyapunov exponent � >  for a long time. Onthe other hand, the top line in (60) shows that in thease  � s, the shear omponent an signi�antlybroaden the tails of the polymer-size PDF omparedto the haoti �ow without mean shear. This fat isnontrivial beause the regular shear omponent itselfannot lead to an exponential polymer elongation, anda nontrivial exponent omes from the ombined e�etof the haoti and regular omponents.5. CONCLUSIONSWe have studied the statistial properties of a sin-gle polymer moleule dynamis in a haoti �ow withmean shear. In the framework of the veloity �owmodel onsisting of a stationary shear part and adelta-orrelated haoti part, and the dumb-bell modelof a polymer moleule, we obtained several analyti-ally rigorous results. First, for strongly elongatedpolymers, the stationary angular distribution was dis-ussed in detail. We obtained an expliit expressionfor the �-angle probability distribution. The asymp-toti behavior of this funtion formally oinides withthe results obtained for solid rods [21℄. Seond, weanalyzed the previously unreported ontribution to thealgebrai tail of the �-angle PDF. In ontrast to theuniversal tail oming from the regular region, whih754



ÆÝÒÔ, òîì 132, âûï. 3 (9), 2007 Polymer dynamis in haoti �ows : : :was analyzed in [20; 21℄, this tail is determined by thepolymer dynamis in the stohasti region. In on-trast to the �-angle PDF, this asymptoti form is notuniversal and depends on the statistial properties ofthe haoti veloity omponent. Next, we disussedthe probability distribution of the tumbling time, i.e.,the time between onsequent polymer �ips. We haveshown that the harateristi time is of the same orderas the inverse Lyapunov exponent assoiated with the�ow. However, the �utuations of the tumbling timeare rather strong. The asymptoti tail orrespondingto the large-time periods between �ips has a universalexponential form, while the tail orresponding to quik�ips has a far more ompliated struture, whih is ingeneral sensible to the veloity �eld statistis. We havealso disussed the size distribution of linear polymersplaed in a strong shear �ow with a haoti ompo-nent. We show that the existene of the strong shearomponent results in signi�antly broadening the sizedistribution ompared to the isotropi ase onsideredin [6℄. This e�et is rather nontrivial to our opinion,beause the shear omponent itself annot lead to anexponential elongation of the polymer and the distri-bution broadening is the ombined e�et of the haotiand regular veloity omponents. Finally, we mentionthat all the results in this paper were obtained underthe assumption of an isotropi and short-orrelatedhaoti veloity �ow. As was disussed throughout thepaper, the �rst assumption is irrelevant for most ofthe results, but the e�et of the �nite orrelation timerequires a more sophistiated analysis. Comparison ofour results with the more general results in [20℄ showsthat the delta-orrelated model re�ets most of thequalitative features of the problem. Furthermore, allrigorous results obtained in its framework are in agree-ment with general preditions in [20℄.The author thanks M. Chertkov, I. Kolokolov, andV. Lebedev for the numerous inspiring disussions.This work was supported by the RFBR (grant � 04-02-16520a), the Russian Siene Support Foundation,and an INTAS fellowship.REFERENCES1. B. A. Toms, in Proeedings of the International Cong-ress of Rheology, Holland, 1948, North-Holland, Ams-terdam (1949), p. II-135.2. J. L. Lumley, Ann. Rev. Fluid Meh. 1, 367 (1969);J. Polymer Si.: Maromoleular Rev. 7, 263 (1973).3. J. L. Lumley, Symp. Math. 9, 315 (1972).4. A. Groisman and V. Steinberg, Nature 405, 53 (2000);Phys. Rev. Lett. 86, 934 (2001).
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