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Pseudogap phenomena are observed for the normal underdoped phase of different high-T. cuprates. Among
others, the BixSroCaCu20s_5 (Bi2212) compound is one of the most studied experimentally. To describe the
pseudogap regime in Bi2212, we use a novel generalized ab initio LDA4+DMFT+Xy hybrid scheme. This
scheme is based on the strategy of one of the most powerful computational tools for real correlated materials:
the local density approximation (LDA) + dynamical mean-field theory (DMFT). Conventional LDA+DMFT
equations are here supplied with an additional (momentum-dependent) self-energy Xi in the spirit of our re-
cently proposed DMFT+3y approach accounting for pseudogap fluctuations. In the present model, Xk describes
nonlocal correlations induced by short-range collective Heisenberg-like antiferromagnetic spin fluctuations. The
effective single-impurity problem of the DMFT is solved by the numerical renormalization group (NRG) method.
Material-specific model parameters for the effective 2:2 — y? orbital of Cu-3d shell of the Bi2212 compound, e.g.,
the values of intra- and interlayer hopping integrals between different Cu sites, the local Coulomb interaction
U, and the pseudogap potential A were obtained within the LDA and LDA+DMFT schemes. Here, we report
the theoretical LDA+DMFT+Xk quasiparticle band dispersion and damping, Fermi surface renormalization,
momentum anisotropy of (quasi) static scattering, densities of states, spectral densities, and angular-resolved
photoemission (ARPES) spectra accounting for pseudogap and bilayer splitting effects for normal (slightly)
underdoped Bi2212 (§ = 0.15). We show that LDA+DMFT+Xy successfully describes strong (pseudogap)
scattering close to Brillouin zone boundaries. Our calculated LDA+DMFT+Xy Fermi surfaces and ARPES
spectra in the presence of pseudogap fluctuations are almost insensitive to the bilayer splitting strength. How-
ever, our LDA-calculated value of bilayer splitting is found to be rather small to describe the experimentally
observed peak—dip—hump structure. The results obtained are in good semiquantitative agreement with various
recent ARPES experiments.
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PACS: 71.10.Fd, 71.10.Hf, 71.27.+a, 71.30.-+h, 74.72.-h

1. INTRODUCTION

The pseudogap state is the major anomaly of the
normal state of copper oxides, commonly believed to
be most relevant for the understanding of the physical
nature of high-T, superconductivity [1].

During the last decade, experimental techniques
of angular-resolved photoemission  spectroscopy
(ARPES) have made an impressive progress. A
state-of-the-art high-T, test compound for ARPES
is the BisSryCaCusOg_s (Bi2212) system. A great
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amount of experimental ARPES data is therefore
available for Bi2212 (see [2] for reviews). Several
major experimental characteristics are derived from
ARPES data, e.g., the Fermi surfaces (FS), quasi-
particle band dispersions and damping, and even
self-energy lineshapes [2]. A number of interesting
physical anomalies were discovered in the normal
underdoped phase of Bi2212: pseudogap formation,
shadow bands, and bilayer splitting of the FS [2].
These phenomena abound in theories and there is still
no definite point of view about their physical origin.
It is believed that all of them are quite relevant to
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the physics of high-temperature superconductors. The
problem is greatly complicated by strong electronic
correlations ever present in these compounds, making
the standard band theory and Fermi-liquid approaches
doubtful.

In this work, we show that accounting for the
short-range antiferromagnetic fluctuations resulting
in pseudogap formation together with bilayer split-
ting effects suffices, in principle, to describe the
above-mentioned experiments. For this, we use a
novel hybrid ab initio LDA+DMFT+3Y, computa-
tional scheme [3-5]. On one hand, this scheme in-
herits all the advantages of LDA+DMFT [6-10], i.e.,
the merger of the first-principle one-electron density
functional theory within the local density approxima-
tion (DFT/LDA) [11,12] and the dynamical mean-field
theory (DMFT) for strongly correlated electrons [13—
17]. On the other hand, our scheme allows account-
ing for nonlocal correlation effects by introducing a
momentum-dependent external self-energy preserving
the conventional DMFT equations [3-5]. To solve the
effective single-impurity problem of the DMFT, we
here use the reliable numerical renormalization group
(NRG) approach [18, 19].

This combined scheme is particularly suitable for
describing electronic properties of real high-T, mate-
rials at finite doping in the normal state. First, all
material-specific model parameters for the physically
relevant effective 22 — y? orbital of the Cu-3d shell are
obtained from LDA computations. Second, undoped
cuprates are antiferromagnetic Mott insulators with
U > W (where U is the value of the local Coulomb in-
teraction and W is the bandwidth of the noninteracting
band), and therefore correlation effects are very impor-
tant. Thus, at finite doping (up to the optimal doping),
cuprates are typical strongly correlated metals. In our
computational scheme, these strong electronic correla-
tions are taken into account at the DMFT stage. To
adapt LDA4+DMFT to study the “antiferromagnetic”
scenario of pseudogap formation in cuprates [1,20-22],
a k-dependent self-energy Yy describing nonlocal corre-
lations induced by (quasi) static short-ranged collective
Heisenberg-like antiferromagnetic (AFM) spin fluctua-
tions is included [21, 22].

Recently, we applied the DMFT+Xy approach
to investigate the formation of a pseudogap for the
strongly correlated metallic regime of the single-band
Hubbard model on a square lattice [3-5]. At present,
there are several independent methods aimed at de-
scribing nonlocal effects beyond the standard DMFT.
Similar results about pseudogap formation in the two-
dimensional Hubbard model were already obtained
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within the two-particle self-consistent approach [23],
cluster DMFT extensions, such as the dynamical clus-
ter approximation (DCA) [24,25] and cellular DMFT
(CDMFT) [23,26-28], CPT [29-31], and via the model
of two interacting Hubbard sites self-consistently em-
bedded in a bath [32]. The EDMFT has been used
to demonstrate pseudogap formation in the DOS due
to dynamic Coulomb correlations [33]. Important
progress was also made with weak-coupling approaches
to the Hubbard model [34] and the functional renor-
malization group [35, 36]. In several papers, pseudogap
formation was described in the framework of the t-J
model [37]. A more general scheme for the inclusion
of nonlocal corrections was also formulated within the
so-called GW extension to DMFT [38,39]. A dynami-
cal vertex approximation was proposed in [40] to study
the Mott—Hubbard transition in the presence of non-
local antiferromagnetic correlations. A Chain-DMFT
extension was used to investigate the breakup of the
Fermi surface near the Mott transition for the quasi-
one-dimensional Hubbard model [41].

This paper is organized as follows. In Sec. 2, we
present a short introduction to the ab initio self-con-
sistent generalized combined LDA+DMFT+3Y scheme
to account for short-range AFM correlations. Section 3
contains the Bi2212 material-specific information: the
LDA calculated band structure and details on some
model parameter calculations. The results and a dis-
cussion of LDA+DMFT+3Yy computations for Bi2212
are presented in Secs. 4 and 5.

2. COMPUTATIONAL METHOD

1. Introducing a length scale into the DMFT:
DMFT-+3, approach

To introduce a spatial length scale into the con-
ventional DMFT method [13-17], we recently proposed
the generalized DMFT+Xy approach [3-5]. The main
assumption of our approach is that the lattice and
the Matsubara “time” Fourier transform of the single-
particle Green’s function can be written as

1
iwtp—e(k) =3 (w)— Y (w)’

G(w, k) =

= (1)
where ¥(w) is the local self-energy of DMFT and Yy (w)
is some momentum-dependent part. Interference ef-
fects between these parts are neglected. An advantage
of our generalized DMFT+Xy approach is the addi-
tive form of the self-energy in Eq. (1) [3-5]. It allows
keeping the set of self-consistent equations of the stan-
dard DMFT [13-17]. But there are two distinctions.
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First, at each DMFT iteration, we recalculate the
corresponding k-dependent self-energy Sy (u, w, [E(w)])
within some (approximate) scheme, taking interactions
with collective modes or order parameter fluctuations
into account. Second, the local Green’s function of the
effective impurity problem is defined as

1
—Z(w) =Tk (w)’

1
Giilw) = N ; iwtp—e(k) @)
at each step of the standard DMFT procedure.

Eventually, we obtain the sought Green’s function
in form (1), where ¥(w) and ¥y (w) are those appearing
at the end of our iteration procedure.

To calculate Yy (w) for an electron moving in the
random field of pseudogap fluctuations (assumed to
be (quasi) static and Gaussian, which is valid at high
enough temperatures [21, 22]) with dominant scatter-
ing momentum transfers of the order of the character-
istic vector Q = (7 /a,w/a) (where a is the lattice spac-
ing) of AFM fluctuations (“hot spot” model [1]), we use
the recursion procedure proposed in Refs. [21, 22, 42]:

Yk(w) = Zp=1 (w, k), (3)
where
Yo(w, k) =

s(n)
iwtp—3(w)—en (k) +inv,k—3, 41 (w0, k)

2

(4)

The quantity A characterizes the pseudogap energy
scale and k = £~! is the inverse correlation length of
short-range SDW fluctuations, e, (k) = e(k + Q), and
vn = v ql+|vi, gl for odd n, while £, (k) = (k) and
vp, = |vf| + v | for even n, with v*¥(p) determined by
the usual momentum derivatives of the “bare” disper-
sion ¢(k), while s(n) represents a combinatorial factor
determining the number of Feynman diagrams [21, 22].

For the (Heisenberg) spin structure of the interac-
tion with spin fluctuations in a “nearly antiferromag-
netic Fermi-liquid” (the spin—fermion (SF) model in
Ref. [21]), spin-conserving scattering processes obey
commensurate combinatorics, while spin—flip scatter-
ing is described by diagrams of incommensurate type
(the “charged” random field in Ref. [21]). In this model,
the combinatorial factor s(n) becomes [21]

n+2

for odd n,

for even n.

w3

Obviously, with this procedure, we introduce an
important length scale ¢ not present in the conven-
tional DMFT. Physically, this scale mimics the effect
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of short-range (SDW) fluctuations within the fermionic
“bath” surrounding the effective Anderson impurity of
the DMFT. We expect such a length-scale dependence
to lead to a kind of competition between local and non-
local physics.

Although we prefer to regard both parameters A
and ¢ as phenomenological (to be determined by fit-
ting experiments) [4], they can in principle be calcu-
lated from the microscopic model under consideration.
For example, using the two-particle self-consistent ap-
proach in Refs. [23,43] with the approximations intro-
duced in Refs. [21, 22], we derived the following micro-
scopic expression for A [4] within the standard Hub-
bard model:

o 7o (Ritniy)
A=

(6)

where we consider only scattering by antiferromagnetic
spin fluctuations. The different local quantities — the
total density n, the local densities n;+ and n;|, and the
double occupancy (n;+n;;) — can easily be calculated
within the standard DMFT [16]. A detailed derivation
of (6) is given in Appendix B in Ref. [4]. The cor-
responding microscopic expressions for the correlation
length ¢ = k! can also be derived within the two-
particle self-consistent approach [23,43]. However, we
expect these results for £ to be less reliable, because this
approach is valid only for relatively small (or medium)
values of U/t, as well as in the purely two-dimensional
case, neglecting quasi-two-dimensional effects, which
are obviously important for cuprates. Actually, our cal-
culation experience shows that all the results obtained
below are rather weakly dependent on the values of ¢
from the experimentally relevant [1] interval (5-10)a.

((nip = niy)?),

2. Bilayer splitting effects: the
LDA-+-DMFT-+X,; formulation

To perform ab initio calculations for the Bi2212 sys-
tem, we use the LDA+DMFT strategy proposed in
Refs. [6-10]. The required bare band dispersion for
the effective physically relevant Cu-3d 2> — y? orbital
in the tight-binding representation is given by

e(k) = —2t(cos kya+ cos kya)—4t' cos kya cos kya—

— 2t"(cos 2k, a + cos 2kya) —

(7)

where ¢, t', ", and t""" are hopping integrals within first
four coordination spheres. The tight-binding equation
for the interlayer dispersion is taken in the form

— 2t""(cos kya cos 2kya + cos 2kya cos kya),

ti(k) = (8)

t
Il(cos kya — cos kya)?



MITP, Tom 131, BRI 5, 2007

Pseudogap behavior in Bi;CaySrCusOsg ...

given in Ref. [44] with the bilayer splitting equal to 2t .

Because accounting for bilayer splitting (BS) effects
in Bi2212 requires an essentially two-band model, we
introduce the bare Hamiltonian in reciprocal space as
the following matrix with respect to (bonding and an-
tibonding) band indices:

(9)

~1
> <m ~H(k) - (S(w) + Zk(w))i> ., (10)
where we assume self-energies to be diagonal. In what
follows, we keep the DMFT part of the problem just a
single-band task. This can be achieved by taking the
diagonal element of (10)

o1 G (w. k)
G = ¥ L TRy P

(11)

where G(w, k) is given by (1). This local Green’s func-
tion G(w) (which includes additive self-energy contri-
butions) now determines our effective single-Anderson-
impurity problem. We note that because we work with
the single-band problem, there is no need for double-
counting correction between LDA and DMFT [8].

3. LDA BAND STRUCTURE OF Bi2212 AND
EFFECTIVE MODEL PARAMETERS

The Bi2212 compound has a tetragonal bcc crys-
tal lattice with the symmetry space group I4/mmm
[45-47]. The main structural motif for this compound
is two CuQOs layers displaced close to each other in
the unit cell. Using the crystal structure data in
Ref. [45], we performed LDA calculations of the elec-
tronic band structure within the linearized muffin-tin
orbital (LMTO) basis set [48]. The obtained band
structure is in agreement with the one in Ref. [45].

In Fig. 1, the one-electron LDA band dispersion
along BZ symmetry lines for Bi2212 is shown. Gray
lines correspond to the all-band Hamiltonian. To ex-
tract the physically interesting partially filled 2% — 3?2
orbital of Cu-3d shell Wannier functions, the projecting
method [49] in the LMTO framework [50] was applied.
The corresponding dispersion of the effective 22 — y?
orbital is displayed in Fig. 1 as the black line.
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Fig.1.

Bi2212 band dispersions calculated within
DFT+LDA (dashed lines) and the effective 22 — 32
band of the Cu-3d shell obtained by projection on Wan-
nier functions (solid lines). The Fermi level corresponds
to zero

Calculated energetic model parameters for Bi2212 (eV).

The first four Cu-Cu inplain hopping integrals ¢, ¢', ",

""", the interplain hopping value ¢, the local Coulomb
interaction U, and the pseudogap potential A

tl t” tlll tL U

0.03

—0.627 | 0.133 | 0.061 | —0.015 1.51]0.21

To set up the LDA+DMFT+ Xy lattice problem (2),
we must calculate the transfer integrals ¢, ¢/, ¢, t"", and
t for tight-binding expressions (7) and (8). On the ba-
sis of the Wannier function projecting method [49], we
computed the corresponding hopping integrals with its
LMTO realization [50]. The obtained values for intra-
and interlayer hybridization between x> — y2 orbital of
different Cu-sites are listed in the Table. The values of
t, t', t", and t"" we present are somewhat larger than
those extracted from the ARPES experiment [51]. On
the other hand, our value of ¢; is much smaller than
the experimental one t7"” = 0.083 eV [51]. At the same
time, our calculated value of ¢; is in good agreement
with other band structure results reported in [52]. Tak-
ing the large difference between ¢, and ¢|"" into ac-
count, we further provide LDA+DMFT+Xy results for
both these values.

The value of the local Coulomb interaction U for
the 22 — y? orbital was obtained via the constrained
LDA method [53]. To screen this #? — y? orbital, we
used the rest of the Cu-3d shell of our selected site, the
neighboring inplane Cu sites, and Cu sites from the
closest CuQOs layer. The value found is U = 1.51 eV
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(see the Table).

The pseudogap potential A (see Eq. (6))
was obtained as described in Ref. [4] using
LDA+DMFT(NRG) to calculate the set of occu-
pancies entering (6) (instead of DMFT(QMC) used in
Ref. [4]). For given values of hopping integrals and the
U value with the hole doping level 6 = 0.15, our A
equals 0.21 eV. The value of the correlation length ¢ is
always taken to be equal to 5 lattice constants, which
is a typical experimental value [1]. Temperature enters
through the NRG part of our scheme and is always
taken to be about 255 K. This completes the set of
necessary model parameters to start LDA+DMFT X
computations for Bi2212 (see Sec. 2).

4. RESULTS AND DISCUSSION
1. Bi2212 LDA-+-DMFT-+3X; densities of states

The density of states (DOS) is calculated as

1

N(w) Im G(w), (12)

where é(w) is defined by Eq. (11) analytically con-
tinued to real frequencies. In Fig. 2, we display the
LDA+DMFT and LDA+DMFT+%, DOS for the ef-
fective 22 — 92 orbital of Cu-3d. It is clearly seen that
pseudogap fluctuations lead to formation of the pseudo-
gap in the DOS within 0.2 eV from the Fermi level. In

DOS, evV™!
T T T T T
0.50F A T T T ]
0.5 F N oask 1-
4, 0-40 ]
0.4+ 20.35 % \ Pseudo gap ] A
0.30 /Bilay ]
[ spliting ~ 1
0.3l 0.25 i
0.20 L L
\-04-02 0 02 04
0.2k N Energy, eV |

—

0.1
0 / ! ! ! ! ! >~
—2 -1 0 1 2 3 4
Energy, eV
Fig. 2. The LDA+DMFT (dashed lines) and
LDA+DMFT+%x  (solid lines)  densities of
states for Bi2212 for the LDA-calculated value

t1 = 0.03 eV (dark curve) and the experimental value
t9"” = 0.083 eV (light curve) (Coulomb interaction
U = 1.51 eV, filling n = 0.85, pseudogap potential
A = 0.21 eV, correlation length ¢ = 5a). The inset
shows a magnified region around the Fermi level
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our model, this pseudogap is not tied to the Fermi level
and it is not very pronounced for parameter values used
here for Bi2212. It is also easy to find that for all our
DOS curves, the BS effects are most pronounced on the
top of the van Hove singularity, which is approximately
—0.2 eV below the Fermi level (see the inset in Fig. 2
for details). Namely, we calculate the DOS for the LDA
value of BS 0.03 eV (light curve) and the experimen-
tal BS value 0.083 eV (dark curve). For the latter, the
BS effects are obviously stronger. Dashed curves corre-
spond to LDA+DMFT results for two different values
of bilayer splitting. For the LDA+DMFT+Xy, DOS
(solid curves), it is observed that BS effects become
less pronounced (but can still be seen in the case of
t"" = 0.083 €V). This is caused by a decrease in the
lifetime due to pseudogap fluctuations. Also, the van
Hove singularity becomes slightly narrower here due
to self-energy effects. We note that the shape of the
pseudogap in the DOS is almost independent of the BS
effects.

2. Bi2212 LDA+DMFT+X,; quasiparticle

dispersions and damping

In the case of finite temperature and interaction
values, we define quasiparticle dispersions via the posi-
tions of maxima of the corresponding spectral functions

Alw, k) = —%Imé(w.,k), (13)
where G(w, k) is defined by the summand in (11) an-
alytically continued to real frequencies, with self-ener-
gies and the chemical potential p calculated self-con-
sistently as described in Sec. 2.1.

In Figs. 3 and 4, we present the LDA+DMFT
and LDA+DMFT+3Yy quasiparticle band dispersions
(crosses) for the Bi2212 effective 22 — y? orbital of the
Cu-3d shell along the symmetry lines in the Brillouin
zone (BZ) for ¢, and ¢". The background shows
quasiparticle damping given by the imaginary part of
the additive ¥(w) + Xk (w) self-energy. The more in-
tensive shading corresponds to the larger damping. In
the case of standard LDA+DMFT computations, with
nonlocal corrections neglected (Fig. 3), one can clearly
see that the damping is uniform over the entire BZ.
This is due to the local nature of the conventional
DMFT. Quasiparticles are well defined in a narrow light
region around the zero energy (Fermi level).

When we introduce a spatial inhomogeneity into the
DMFT bath within the LDA+DMFT+Xy approach,
the damping turns out to be much stronger and conse-
quently nonuniform, as can be seen in Fig. 4. Quasi-
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Energy, eV a

Energy, eV a

Fig.3. The LDA+DMFT quasiparticle bands for
Bi2212 (crosses) along the Brillouin zone high-symmet-
ry directions for the LDA-calculated value t; = 0.03 eV
(a) and the experimental value t5*" = 0.083 eV (b)
(Coulomb interaction U = 1.51 eV, filling n = 0.85).
Zero of the background (which is (1/7)Im X(w), the lo-
cal DMFT self-energy) corresponds to zero damping

particles are again well defined close to the Fermi level.
But now the contour plot of the Im[¥(w) + Zy (w)] self-
energy (damping) clearly shows the so-called “shadow
band”, which looks like the quasiparticle band mirrored
with respect to the zero energy. In Fig. 4, we can also
see pseudogap formation around the X point. In our
case, the shadow band is formed due to short-range
AFM fluctuations. Close to the X point, BS effects
are most pronounced. It can be seen that maxima of
A(w, k) belonging to the “shadow band” region are con-
served only rather close to the X point and vanish due
to large damping further away. In the middle of the
MG direction, we observe preformation of an AFM in-
sulating gap at the crossing point of the quasiparticle
and “shadow” bands.

10 ZKSBT®, Beim. 5

Fig.4. The LDA+DMFT+Xy quasiparticle bands for
Bi2212 (crosses) along the Brillouin zone high-symmet-
ry directions for the LDA-calculated value t; = 0.03 eV
(a) and the experimental value t9"" = 0.083 eV (b)
(Coulomb interaction U = 1.51 eV, filling n = 0.85,
pseudogap potential A = 0.21 eV, correlation length
& = ba). Zero of the background (which is
(1/m)Im[Z(w) + Bk (w)], additive local and “pseudo-
gap” self-energies) corresponds to zero damping

3. Bi2212 LDA+DMFT+X, spectral functions

To plot the spectral functions A(w,k) in (13), we
choose k-points along the 1/8th part of the “bare”
Fermi surface within the first quadrant of the Brillouin
zone for given lattice spectra and filling. In Fig. 5, the
corresponding spectral functions for different strength
of bilayer splitting are shown.

Close to the nodal point (upper curve), the spec-
tral function in Fig. 5 has a typical Fermi-liquid be-
havior, with a rather sharp peak close to the Fermi
level. In going to the antinodal point (lower curve),
fluctuations become stronger and push a sharp peak
out of the Fermi level down in energy. Simultaneously
with the growth of the fluctuation strength, damping
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Spectral functions —1/7G(k,w)

0.1 02 03 04 05
Energy, eV

Fig.5.

Spectral functions —1/7G(k,w)

01 02 03 04 05

Energy, eV

The LDA+DMFT+Xy spectral densities for Bi2212 along the noninteracting Fermi surface in the 1/8th of the

Brillouin zone for the LDA-calculated value t1 = 0.03 €V (a) and the experimental value t9"? = 0.083 eV (b) (Coulomb
interaction U = 1.51 eV, filling n = 0.85, pseudogap potential A = 0.21 eV, correlation length ¢ = 5a)

also grows, and hence the peak becomes less intense and
more broad. In the vicinity of the “hot spot” (solid line),
the shape of A(w,k) is completely modified: A(w,k)
becomes double-peaked and non-Fermi-liquid-like. Di-
rectly at the “hot spot”, A(w,k) has two peaks (the
second one is much less intense) situated symmetrically
with respect to the Fermi level and splitted from each
other by approximately 1.5A [21, 22].

In the case of " (Fig. 5b), behavior is similar to
one for t, (Fig. 5a). However, the bilayer splitting
strength is now big enough to be resolved, and hence a
peak—dip—hump structure [2] is formed at the edges of
the pseudogap.

4. Bi2212 LDA+DMFT-+3X;, ARPES spectra

Knowing A(w, k) in (13) of course allows us to cal-
culate angle resolved photoemission (ARPES) spectra,
which are the most direct experimental way to observe
a pseudogap in real compounds. For that purpose,
we only need to multiply our results for the spectral
functions by the Fermi function at the temperature
255 K. The resulting LDA+DMFT+Xy ARPES spec-
tra are presented in Fig. 6. They are again drawn along
the 1/8th of the noninteracting FS from the antinodal
(lower curve) to nodal point (upper curve). At the
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antinodal point, we find a well-defined (sharp) quasi-
particle peak close to the Fermi level. In moving to-
wards the antinodal point, the damping (widening) of
this quasiparticle peak and its shift to higher bind-
ing energies are observed. Such behavior is typically
obtained experimentally [2]. To describe the peak—
dip—hump splitting resolved in experiment [2], we take
t"" = 0.083 eV [51]. Indeed, for ¢"”, we obtain a
pronounced peak-dip-hump structure similar to the
experimental one [2]. It is recognized that our LDA-
calculated ¢ is several times smaller and cannot pro-
vide an adequate description of the peak-dip—hump
structure for ARPES data. We note that the inten-
sity of the antibonding branch is higher than that of
the bonding one. This is reversed in experiment. We
attribute this difference to the matrix-element effects
that are not taken into account in the present work.

In Fig. 7, we compare the LDA+DMFT-+Xy
ARPES spectra and the experimental one in Ref. [54]
for Bi2212 measured along the Fermi surface. Here,
the spectral functions displayed in Fig. 5 are multiplied
by the Fermi function at the experimental temperature
T = 140 K and convoluted with a Gaussian to simulate
the experimental resolution of 16 meV [54]. All theoret-
ical ARPES curves after multiplication and broadening
are normalized to 1. Figure 7 corresponds to the theo-
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Fig.6. The LDA+DMFT+Xy ARPES spectra for Bi2212 along the noninteracting Fermi surface in the 1/8th of the Brillouin

zone for the LDA-calculated value ¢t = 0.03 €V (a) and the experimental value t7"” = 0.083 eV (b). (Coulomb interaction

U = 1.51 eV, filling n = 0.85, pseudogap potential A = 0.21 eV, correlation length & = 5a.) The corresponding spectral
function A(w, k) is multiplied by the Fermi function at T' ~ 255 K (the temperature of NRG calculations)

retical data for ¢ and ¢"” values. Both figures demon-

strate a semiquantitative agreement of our theoretical
results with the experiment. A common trend for both
panels is the damping of the quasiparticle peak and its
retreat to higher binding energies in moving from the
nodal to the antinodal region. Displacements of theo-
retical and experimental peaks in Fig. 7a are in a good
quantitative agreement. But theoretical peaks are al-
ways a little bit sharper and narrower. We note that
the left panel demonstrates no BS effects. In Fig. 7b,
we found a slightly better agreement of intensities due
to a larger BS value t7"”. But for the k-values be-
tween the “hot spot” and the antinodal point, we have

some lack of spectral weight close to the Fermi level.
Also for these k-values, we observe some reminiscence
of the bilayer splitting. After all, we can infer that the
BS effects do not change the line shape of our ARPES
spectra significantly, and we obtain a rather satisfac-
tory agreement with the experiment in both cases.

5. Bi2212 LDA+DMFT-+X;, Fermi surface

In what follows, we characterize the renormalized
Fermi surfaces by intensity plots of the spectral den-
sity at zero frequency A(w = 0,k) (which in the free-
electron case just follow the “bare” Fermi surface).

10%*
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Fig.7. Comparison of the LDA+DMFT+X ARPES spectra (solid lines) for Bi2212 along the noninteracting Fermi surface

in the 1/8th of the Brillouin zone for the LDA-calculated value ¢ 1 = 0.03 eV (a) and the experimental value t9"” = 0.083 eV

(b) with experimental ARPES (Ref. [54]) (circles). (Coulomb interaction U = 1.51 €V, filling n = 0.85, pseudogap potential

A = 0.21 eV, correlation length ¢ = 5a.) The corresponding spectral function A(w,k) is multiplied by the Fermi function

at T' = 140 K (the temperature of experiment) and broadened with a Gaussian to simulate the experimental resolution of
16 meV (Ref. [54])

In Figs. 8 and 9, we display the thus defined
LDA4+DMFT and LDA-+DMFT4 Yy Fermi surfaces for
Bi2212. The LDA+DMFT FS has the LDA shape, as
it should within the DMFT (see Fig. 8). Slight broad-
ening close to the borders of the BZ is because of BS
effects. A nonzero width of the FS (in contrast to the
LDA) comes from a finite damping due to the inter-
action and temperature. For the LDA+DMFT+Xy
FS (see Fig. 9), we see significant “destruction” ef-
fects in the vicinity of the antinodal point induced by
pseudogap fluctuations. From comparison of the up-
per and lower panels in Fig. 9, we conclude that in
the strongly correlated case, BS effects alone are not
enough to describe the experimentally observed FS “de-
struction” close to the borders of the BZ and the for-
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mation of “Fermi arcs” around the nodal point, as ob-
served in ARPES experiments [2]. We found that the
shape of the Fermi surface is rather insensitive to the
BS strength because pseudogap fluctuations are much
stronger than the bilayer splitting and hide it. How-
ever, BS slightly amplifies pseudogap effects at the BZ
boundaries. Thus, the account of pseudogap (AFM)
fluctuations seems to be necessary to describe the ex-
perimental picture.

6. Bi2212 LDA+DMFT-+X, anisotropy of
static scattering

A strong anisotropy of (quasi) static scattering was
observed in the Bi2212 system in ARPES experiments
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Fig.8. The LDA+DMFT Fermi surfaces for Bi2212 within the 1/4th of the Brillouin zone (k. and k, in units of 7/a) for the
LDA-calculated value ¢, = 0.03 eV (a) and the experimental value t7"” = 0.083 eV (b) (Coulomb interaction U = 1.51 eV,
filling n = 0.85)
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Fig.9. The LDA+DMFT+Xy Fermi surfaces for Bi2212 within the 1/4th of the Brillouin zone (k. and k, in inits of
w/a) for the LDA-calculated value t; = 0.03 eV (a) and the experimental value 7" = 0.083 eV (b) (Coulomb interaction
U =1.51 eV, filling n = 0.85, pseudogap potential A = 0.21 eV, correlation length £ = 5a)
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Fig.10. Comparison of the experimental and the-

oretical LDA+DMFT+Xy static scattering a(k) =

= —(1/7) Im X(0)+ Xk (0) for Bi2212 within the 1/8th

of the Brillouin zone for the LDA-calculated value

t1 = 0.03 eV (light curve) and the experimental value

t7"" = 0.083 eV (dark curve) (Coulomb interaction

U = 1.51 eV, filling n = 0.85, pseudogap potential
A = 0.21 eV, correlation length ¢ = 5a)

in Refs. [54-56] and attributed to scattering by planar
impurities [57, 58]. Here, we show that this effect can
be naturally explained by (quasi) static scattering by
pseudogap fluctuations.

Our LDA+DMFT+ZXy-calculated  (quasi)static
scattering defined as a(k) = X(0) + Xk (0) is plotted
in Fig. 10, together with the experimental data in
Refs. [54, 56]. Here, k-points are taken along the 1/8th
of the noninteracting FS. We detect our results to
mediate the experimental data in Refs. [54, 56], while
the difference between these remains unexplained.

In our opinion, the anisotropy of (quasi)static scat-
tering a(k) naturally follows from the anisotropic renor-
malization of the electronic spectrum due to pseudogap
fluctuations, which directly follows from our “hot spot’-
like model [21, 22].

Although the overall behavior is analogous to the
one obtained in the experiment, there is a need for fur-
ther studies of the possible relevance of matrix-element
effects in ARPES, as well as that of additional scatter-
ing by random static impurities [5].

5. CONCLUSION

The present investigation is aimed at describ-
ing the pseudogap regime of high-T, cuprate
BisSryCaCusOg—s  (Bi2212) from first principles.
For this purpose, we used a novel generalized ab initio
LDA+DMFT+XYyx hybrid scheme. This scheme is
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based on the strategy of the most powerful com-
putational tool for real correlated materials: the
local density approximation (LDA) + dynamical
mean-field theory (DMFT). We supply the conven-
tional LDA+DMFT equations with an additional
(momentum-dependent) self-energy ) in the spirit
of our recently proposed DMFT+Xy approach. The
“external” self-energy Y is then chosen to describe
nonlocal dynamical correlations induced by short-
range collective Heisenberg-like antiferromagnetic spin
fluctuations (in the static Gaussian approximation
in Refs. [21, 22]). Necessary Bi2212 material-specific
model parameters for the effective 22 — y? orbital of
the Cu-3d shell, e.g., the values of intra- and interlayer
hopping integrals, the local Coulomb interaction
U, and the pseudogap potential A were calculated
within the LDA and LDA+DMFT. On the basis of
LDA+DMFT+XYyx computations, we obtain densities
of states, the spectral functions A(w,k) that allow
visualizing the quasiparticle band dispersion and
damping, the Fermi surface, the anisotropy of static
scattering a(k), and the ARPES spectra accounting
for pseudogap and bilayer splitting effects for normal
(slightly) underdoped Bi2212 (6 = 0.15). It is found
that on the DOS level, the BS and pseudogap effects
are separated in energy and hardly affect each other.
We showed that LDA+DMFT-+Xy, describes the
strong scattering at the Brillouin zone boundaries as a
pure many-body effect. The LDA+DMFT+Yy Fermi
surface in the presence of pseudogap fluctuations is
almost insensitive to the BS strength. Therefore,
the BS effects alone are not enough to describe the
Fermi surface destruction (although amplify it) and an
additional source of electron scattering is required (for
example, AFM short-range fluctuations). The only
place where BS effects play a significant role is forma-
tion of the experimentally observed peak—dip—hump
structure in ARPES spectra. The LDA-calculated
value of bilayer splitting is found to be rather small to
describe this effect. The results obtained are in a good
semiqualitative agreement with various recent ARPES
experiments.

At present, there are several alternative points of
view on the possible explanation of the Fermi surface
destruction, formation of shadow Fermi bands, etc. Re-
cently, the analysis of the effect of three-dimensionality
on the ARPES spectra was presented for Bi2212 in
Ref. [59]. It was shown that in a quasi-two-dimensional
system, the weak k.-dispersion can lead to Fermi sur-
face maps similar to those observed in the experiment.
This Fermi-surface broadening mechanism does not
have the many-body origin. The authors of Ref. [60]
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have shown that the shadow Fermi surface in Bi2212
can be interpreted as an intrinsic feature of the initial
electronic spectrum arising from bulk, orthorhombic
distortions located primarily in the BiO planes, but
most definitely felt throughout the three-dimensional
crystal. All these effects are not considered here thus
remain a subject of further investigations. Apparently,
in a real system, these mechanisms combine with
those described above leading to a complete picture of
electronic structure of Bi2212.
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