# СВЯЗЬ ГИГАНТСКОЙ ОБЪЕМНОЙ МАГНИТОСТРИКЦИИ С КОЛОССАЛЬНЫМ МАГНИТОСОПРОТИВЛЕНИЕМ И РАЗМЯГЧЕНИЕМ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ В МАНГАНИТАХ $La_{1-x}A_yMnO_3$ (A = Ca, Ag, Ba, Sr)

Л. И. Королева<sup>\*</sup>, Р. В. Демин, А. В. Козлов, Д. М. Защиринский

Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

### Я. М. Муковский

Московский институт стали и сплавов 119936, Москва, Россия

Поступила в редакцию 15 июня 2006 г.

Обнаружена гигантская объемная магнитострикция (ГОМ) в районе температуры Кюри  $T_C$  в монокристаллах La $_{1-x}$ A $_x$ MnO $_3$  (A = Ca, Sr, Ba,  $0.1 \le x \le 0.3$ ) и выше  $T_C$  в керамике La $_{1-x}$ Ag $_y$ MnO $_3$  $(x=y=0.15,\ 0.2$  и  $x=0.2,\ y=0.1)$ , достигавшая в последней системе  $6.5\cdot 10^{-4}$  в магнитном поле 8.2 кЭ. Поведение ГОМ и колоссального магнитосопротивления (КМС) оказалось подобным: они отрицательны, температурная зависимость их абсолютных величин проходит через максимум, и изотермы не испытывают насыщения вплоть до максимальных полей измерения 130 кЭ. В составах La<sub>0.7</sub>Ba<sub>0.3</sub>MnO<sub>3</sub> и La<sub>0.85</sub> Ag<sub>0.15</sub> MnO<sub>3</sub> ГОМ и КМС наблюдались при комнатной температуре: в магнитном поле 8.2 кЭ ГОМ достигает соответственно  $2.54\cdot 10^{-4}$  и  $2\cdot 10^{-4}$ , а КМС -11.6 % и 11.2 %. Оба явления объяснены присутствием в рассматриваемых системах магнитно-двухфазного ферромагнитного-антиферромагнитного состояния, вызванного сильным s-d-обменом. Обнаружено, что в монокристаллах La<sub>1-x</sub> A<sub>x</sub> MnO<sub>3</sub> (A = Ва, Sr, Ca, Ag) максимальная величина ГОМ зависит от радиуса  $R_{\sf A}$  катиона A: она тем больше, чем больше разность  $|R_A - R_{La^{3+}}|$ . Исключение составляет состав с A = Ag, где картина усложняется из-за дополнительной дефектности. Локальный беспорядок в подрешетке La<sub>1-x</sub>A<sub>x</sub>, вызванный наличием катионов с разными радиусами, приводит к смещению ионов кислорода и размягчению кристаллической решетки. В La<sub>1-x</sub> A<sub>x</sub> MnO<sub>3</sub> (A = Ca, Sr, Ba, Ag) обменные s-d-взаимодействия оказываются сравнимыми с электростатическими взаимодействиями, обеспечивающими существование кристалла, что и приводит к возможности проявления ГОМ.

 $PACS:\ 75.50.Pp,\ 75.80.+q,\ 75.47.Lx,\ 75.47.Gk$ 

### 1. ВВЕДЕНИЕ

Интерес к оксидным соединениям марганца со структурой перовскита связан с колоссальным магнитосопротивлением (КМС), которое наблюдалось в некоторых составах при комнатной температуре. Этот эффект может быть использован в различных сенсорных устройствах. Наши исследования показали, что в системах  $La_{1-x}Sr_xMnO_3$  и  $La_{1-x}Ba_xMnO_3$  (x = 0.2, 0.3) в районе точки Кюри  $T_C$  кроме КМС имеется еще и гигантская объемная магнитострикция (ГОМ) [1–4]. В составах La<sub>0.7</sub>Ba<sub>0.3</sub>MnO<sub>3</sub> и La<sub>0.85</sub>Ag<sub>0.15</sub>MnO<sub>3</sub> ГОМ и КМС наблюдались при комнатной температуре: так, в магнитном поле 8.2 кЭ ГОМ достигает соответственно 2.54 · 10<sup>-4</sup> и 2 · 10<sup>-4</sup>, а КМС — 11.6 % и 11.2 %, что делает возможным применение этих материалов в различных магнитомеханических устройствах уже в настоящее время. Кроме того, на базе этих составов можно создать новые устройства, использующие как КМС, так и ГОМ. Поведение КМС и ГОМ в районе  $T_C$  оказалось подобным в указанных системах: оба

<sup>\*</sup>E-mail: koroleva@phys.msu.ru



Рис.1. Температурная зависимость линейного теплового расширения  $\Delta l/l$  керамики La $_{1-x}$ Ag $_y$ MnO $_3$ 

отрицательны, их абсолютные величины максимальны вблизи  $T_C$  или выше нее, и изотермы не испытывают насыщения в максимальных полях измерения, достигавших 130 кЭ, тогда как насыщение на изотермах намагниченности наблюдалось в полях в несколько килоэрстед. Однако оставалось неясным, всегда ли ГОМ присутствует в КМС-манганитах или нет. При положительном ответе на этот вопрос оба явления, КМС и ГОМ, можно объяснить присутствием в этих материалах магнитно-двухфазного ферро-антиферромагнитного (АФМ) состояния, вызванного сильным *s*-*d*/*d*-*d*-обменом [5-8]. При этом носители заряда сосредоточены в ферро-магнитной (ФМ) части кристалла, в которой параметры решетки уменьшены. Следует заметить, что понятие температуры Кюри для образца, находящегося в магнитно-двухфазном состоянии, весьма условно: это температура Кюри его ФМ-части.

Однако в традиционных магнитных полупроводниках, таких как EuSe и др., в которых присутствуют магнитно-двухфазное состояние и KMC, явление ГОМ не наблюдается. Вполне вероятно, что это связано с жесткостью их кристаллической решетки. В этом случае обменное *s*-*d*-взаимодействие оказывается недостаточным, чтобы преодолеть сопротивление электростатических сил между ионами, обеспечивающих существование кристалла. Вследствие этого необходимо изучать магнитострикцию и магнитосопротивление на более широком круге составов манганитов, различающихся различЖЭТФ, том **131**, вып. 1, 2007

ной степенью локального беспорядка, размягчающего кристаллическую решетку, и, возможно, связать величину объемной магнитострикции со степенью размягченности кристаллической решетки. С этой целью в данной работе изучены магнитосопротивление и объемная магнитострикция составов La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub> (A = Ca, Ag, Ba). Различие радиусов ионов Ca, Ag, Ba и Sr позволит выявить влияние локального катионного беспорядка, вызванного разностью радиусов перечисленных ионов и радиуса иона La<sup>3+</sup>, на величину ГОМ. При этом будут привлечены полученные нами ранее данные по ГОМ в системе La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> [1,2] и составов с x = 0.2, 0.3в системе La<sub>1-x</sub>Ba<sub>x</sub>MnO<sub>3</sub> [3,4]. Последняя система будет исследована более подробно.

# 2. ТЕХНИКА ЭКСПЕРИМЕНТА

В данной работе изучены линейное тепловое расширение, магнитострикция, электросопротивление  $\rho$ , магнитосопротивление  $\Delta \rho / \rho =$  $= (\rho_H - \rho_{H=0}) / \rho_{H=0}$  и намагниченность M монокристаллов  $La_{1-x}Ca_x MnO_3$  (0.15  $\leq x \leq 0.3$ ),  $La_{1-x}Ba_xMnO_3$  (x = 0.15, 0.25) и керамик  $La_{1-x}Ag_yMnO_3$  (x = y = 0.15, 0.2 и x = 0.2,у = 0.1). Монокристаллы получены методом бестигельной зонной плавки [9]. Так как серебро является высокоподвижным компонентом, получение керамик La<sub>1-x</sub>Ag<sub>y</sub>MnO<sub>3</sub> легированием соединения LaMnO<sub>3</sub> серебром не дало положительных результатов. Указанные керамики были получены путем легирования серебром соединения La<sub>1-x</sub>MnO<sub>3+δ</sub> при мягких условиях синтеза. Подробности синтеза керамик  $La_{1-x}Ag_yMnO_3$  описаны в работе [10]. С помощью тензодатчиков были изучены параллельная  $(\lambda_{\parallel})$  и перпендикулярная  $(\lambda_{\perp})$  магнитострикция и линейное тепловое расширение  $\Delta l/l$ . Тензодатчик был приклеен на плоскость, параллельную направлению роста кристалла. Это направление составляло с осью [100] угол в несколько градусов. Точность измерения величины  $\Delta l/l$  была не хуже  $4 \cdot 10^{-6}$ . Для измерения  $\rho$  и  $\Delta \rho / \rho$  использовался стандартный четырехзондовый метод. Контакты к образцу были приделаны с помощью токопроводящего клея. Для измерения намагниченности был применен вибрационный магнитометр.



**Рис. 2.** Температурные зависимости продольной (λ<sub>||</sub>) и поперечной (λ<sub>⊥</sub>) магнитострикции (a), а также объемной (ω) и анизотропной (λ<sub>t</sub>) магнитострикции (б) в магнитном поле 8.2 кЭ для состава La<sub>0.85</sub> Ag<sub>0.15</sub> MnO<sub>3</sub>

Составы La<sub>1-x</sub>A<sub>y</sub>MnO<sub>3</sub> (A = Ag, Ca, Ba, Sr). Максимальные значения объемной магнитострикции  $|\omega|_{max}$ , магнитосопротивления  $|\Delta \rho / \rho|_{max}$ , удельного электросопротивления  $\rho_{max}$  и температур, при которых они наблюдаются  $(T_{|\omega|_{max}}, T_{|\Delta \rho / \rho|_{max}}, T_{\rho_{max}})$ 

| Состав           | $ \omega _{max},$<br>H = 8.2 кЭ | $T_{ \omega _{max}},\mathrm{K}$ | $\begin{aligned}  \Delta \rho / \rho _{max}, \ \% \\ H = 8.2 \ \text{k} \varTheta \end{aligned}$ | $T_{ \Delta  ho /  ho _{max}}, \mathbf{K}$ | $ ho_{max}, \ { m Om} \cdot { m M}$ | $\begin{array}{c} T_{\rho_{max}},\\ \mathrm{K} \end{array}$ | $T_C$ , K |
|------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------------------------------|-----------|
| A = Ag           |                                 |                                 |                                                                                                  |                                            |                                     |                                                             |           |
| x = 0.2, y = 0.1 | $6.5 \cdot 10^{-4}$             | 267                             | 34.0                                                                                             | 259                                        | 1.1                                 | 268                                                         | 198       |
| x = y = 0.15     | $6 \cdot 10^{-4}$               | 285                             | 11.6                                                                                             | 296                                        | 4.7                                 | 306                                                         | 191       |
| x = y = 0.2      | $5.33 \cdot 10^{-4}$            | 275                             | 14.2                                                                                             | 285                                        | 2.2                                 | 303                                                         | 194       |
| A = Ca           |                                 |                                 |                                                                                                  |                                            |                                     |                                                             |           |
| x = y = 0.15     | $8.6 \cdot 10^{-5}$             | 131                             | 18.5                                                                                             | 145                                        | 0.08                                | 170                                                         | 155       |
| x = y = 0.2      | $8.2 \cdot 10^{-5}$             | 170                             | 13.4                                                                                             | 180                                        | 0.1                                 | 187                                                         | 180       |
| x = y = 0.3      | $8 \cdot 10^{-5}$               | 180                             | 7.5                                                                                              | 190                                        | 0.005                               | 215                                                         | 205       |
| A = Ba           |                                 |                                 |                                                                                                  |                                            |                                     |                                                             |           |
| x = y = 0.15     | $4.15 \cdot 10^{-4}$            | 198                             | 25.4                                                                                             | 202                                        | 0.25                                | 216                                                         | 228       |
| x = y = 0.2      | $2.09 \cdot 10^{-4}$            | 247                             | 24.2                                                                                             | 236                                        | $10^{-3}$                           | 250                                                         | 251       |
| x = y = 0.25     | $4.8 \cdot 10^{-4}$             | 245                             | 42.0                                                                                             | 245                                        | $10^{-2}$                           | 246                                                         | 250       |
| x = y = 0.3      | $4 \cdot 10^{-4}$               | 312                             | 22.7                                                                                             | 317                                        | $2 \cdot 10^{-3}$                   | 332                                                         | 316       |
| A = Sr           |                                 |                                 |                                                                                                  |                                            |                                     |                                                             |           |
| x = y = 0.1      | $4.1 \cdot 10^{-4}$             | 134                             | 14.8                                                                                             | 134                                        | $10^{4}$                            | 150                                                         | 145       |
| x = y = 0.15     | $0.82 \cdot 10^{-4}$            | 230                             | 10.5                                                                                             | 210                                        | 6                                   | 232                                                         | 230       |
| x = y = 0.3      | $0.59\cdot 10^{-4}$             | 364                             | 4.1                                                                                              | 355                                        | $4 \cdot 10^{-2}$                   | 385                                                         | 371       |

### 3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

## 3.1. Система La<sub>1-x</sub>Ag<sub>y</sub>MnO<sub>3</sub> (x = y = 0.15, 0.2 и x = 0.2, y = 0.1)

В таблице представлены температуры Кюри всех указанных в заголовке п. 3.1 составов, полученные экстраполяцией наиболее крутой части кривой M(T), измеренной в магнитном поле 1.4 кЭ, до ее пересечения с осью Т. На рис. 1 показана температурная зависимость величины  $\Delta l/l$  для указанных составов. Видно, что в области температур, захватывающих температуру Кюри Т<sub>C</sub>, наблюдается дополнительный, по сравнению с линейным по T, вклад в тепловое расширение (excess thermal expansion). В немагнитных материалах зависимость  $\Delta l/l$  обычно подчиняется закону Грюнайзена, близкому к линейному по T. На рис. 2a показаны кривые  $\lambda_{\parallel}(T)$ и  $\lambda_{\perp}(T)$  в магнитном поле 8.2 кЭ для состава с x = y = 0.15. Из экспериментальных значений  $\lambda_{\parallel}$ и  $\lambda_{\perp}$  были вычислены анизотропная магнитострикция  $\lambda_t = \lambda_{\parallel} - \lambda_{\perp}$  и объемная магнитострикция  $\omega = \lambda_{\parallel} + 2\lambda_{\perp}$  (рис. 2б). На рис. 3a показаны зависимости  $\omega(T)$  в некоторых полях для состава с x = y = 0.15. Как видно из этого рисунка, объемная магнитострикция отрицательна и ее абсолютная величина достигает максимума при температуре  $T_{|\omega|_{max}} = 285$  K, которая превышает  $T_C = 191$  K. При дальнейшем нагревании величина  $|\omega|$  быстро убывает. Максимальное значение  $|\omega|$  при H = 8.2 кЭ равно 6 · 10<sup>-4</sup>. В таком же поле при комнатной температуре  $(T = 300 \text{ K}) |\omega| \approx 2 \cdot 10^{-4}$ ; это гигантские значения объемной магнитострикции, что важно для практических применений. На рис. 4 а показаны изотермы объемной магнитострикции  $\omega(H)$  при некоторых температурах вблизи  $T_{|\omega|_{max}}$ . Видно, что кривые  $\omega(H)$  далеки от насыщения вплоть до максимальных полей измерения H = 8.2 кЭ. Зависимости  $\omega(T)$  и  $\omega(H)$  для двух других составов похожи на приведенные на рис. За и 4а для состава с x = y = 0.15.

На рис. 5 приводятся кривые температурной зависимости удельного электросопротивления данной системы. Как видно из рисунка, кривые  $\rho(T)$  проходят через максимум. Температуры  $T_{\rho_{max}}$  этих максимумов и величины  $\rho$  в максимуме приводятся в таблице. Из таблицы видно, что  $T_{\rho_{max}} > T_C$ . При  $T \leq T_{\rho_{max}}$  величина  $\rho$  увеличивается с ростом T, что свидетельствует о металлическом типе проводимости в этой температурной области. На рис. 36 и 46 приводятся кривые зависимостей  $\Delta \rho / \rho$  от температуры и магнитного поля H для состава с x = y = 0.15, которые характерны и для

двух оставшихся составов с серебром. Из этих рисунков видно, что магнитосопротивление отрицательно и его абсолютная величина максимальна при температуре  $T_{|\Delta\rho/\rho|_{max}},$  которая, как видно из таблицы, немного ниже  $T_{\rho_{max}}$ , что характерно для магнитных полупроводников [11]. В максимуме величина  $|\Delta \rho / \rho|$  достигает колоссальной величины: 11.6 % для состава с x = y = 0.15, 14.2 %для состава с x = y = 0.2 и 34 % для состава  $La_{0.8}Ag_{0.1}MnO_3$  при H = 8.2 кЭ. Следует указать, что магнитосопротивление двух первых составов при комнатной температуре (300 К) очень велико: соответственно 11.2 % и 9.6 % при H = 8.2 кЭ. Максимальные значения  $|\omega|, \rho$ и  $|\Delta \rho / \rho|$  и температуры, при которых они наблюдаются, представлены в таблице для составов, указанных в заголовке п. 3.1. Следует заметить, что изотермы магнитосопротивления и объемной магнитострикции в окрестностях соответственно  $T_{|\Delta \rho / \rho|_{max}}$ и  $T_{|\omega|_{max}}$  не испытывают насыщения вплоть до максимальных полей измерения H = 8.2 кЭ и имеют плавный характер (рис. 4), так что в более сильных полях ожидаются еще большие значения магнитосопротивления и объемной магнитострикции.

# 3.2. Система $\operatorname{La}_{1-x}\operatorname{Ba}_{x}\operatorname{MnO}_{3}(x=0.15, 0.2, 0.25, 0.3)$

На рис.5 6 <br/>и6показаны температурные зависимости величин  $\rho$  и  $\Delta l/l$  для всех составов, перечисленных в подзаголовке. Из рис. 56 видно, что кривые зависимости  $\rho(T)$  проходят через максимумы в районе точки Кюри и при  $T < T_C$  составы с x = 0.2, 0.25,0.3 имеют проводимость металлического типа, а состав с x = 0.15 — полупроводникового. Как видно из рис. 6, у всех составов при  $T < T_C$  тепловое расширение линейно возрастает с температурой, что вызвано фононным ангармоническим вкладом. Наклон линии  $(\Delta l/l)(T)$  значительно возрастает в окрестности  $T_C$ , что указывает на дополнительный вклад в тепловое расширение. Температурный гистерезис  $(\Delta l/l)(T)$ , имеющий место для составов с x = 0.20, 0.25 при  $T < T_C$ , по-видимому, связан со структурным фазовым переходом от орторомбической фазы к ромбоэдрической фазе, наблюдавшимся для состава с x = 0.2 [12]. В качестве примера рассмотрим поведение величин  $\omega$  и  $\Delta \rho / \rho$  в зависимости от T и Н для монокристалла La<sub>0.7</sub>Ba<sub>0.3</sub>MnO<sub>3</sub>, которое характерно для всех составов, перечисленных в подзаголовке. На рис. 7 показаны температурные зависимости величин  $\omega$  и  $\Delta \rho / \rho$ , на рис. 8 — изотермы  $\omega$  и  $\Delta \rho / \rho$  в районе  $T_C$ . Из рис. 7 видно, что зависимости  $\omega(T)$  и  $(\Delta \rho / \rho)(T)$  вблизи  $T_C$  проходят через мини-



Рис. 3. Температурные зависимости объемной магнитострикции  $\omega$  (*a*) и магнитосопротивления  $\Delta \rho / \rho$  ( $\delta$ ) в различных магнитных полях для состава La<sub>0.85</sub>Ag<sub>0.15</sub> MnO<sub>3</sub>



Рис. 4. Изотермы объемной магнитострикции (a) и магнитосопротивления ( $\delta$ ) в районе температуры максимума на кривых  $\omega(T)$  и ( $\Delta \rho / \rho$ )(T) для состава La<sub>0.85</sub>Ag<sub>0.15</sub>MnO<sub>3</sub>



Рис.5. Температурные зависимости удельного электросопротивления  $\rho$  для системы La<sub>1-x</sub>Ag<sub>y</sub>MnO<sub>3</sub> (*a*) и La<sub>1-x</sub>Ba<sub>x</sub>MnO<sub>3</sub> (*b*)



Рис. 6. Температурная зависимость линейного теплового расширения  $\Delta l/l$  системы монокристаллов La<sub>1-x</sub>Ba<sub>x</sub>MnO<sub>3</sub>

мум и в минимуме величины  $|\omega|$  и  $|\Delta\rho/\rho|$  достигают гигантских значений:  $|\omega| = 4 \cdot 10^{-4}$  и  $|\Delta\rho/\rho| = 22.7\%$  в магнитном поле 8.2 кЭ. В том же магнитном поле при комнатной температуре  $|\omega| = 2.54 \cdot 10^{-4}$  и  $|\Delta\rho/\rho| = 11.6\%$ . Такое гигантское значение объемной магнитострикции важно для практических применений в магнитомеханических устройствах. Следует указать, что в максимальных полях измерения, равных 8.2 кЭ, кривые  $\omega(H)$  и  $(\Delta\rho/\rho)(H)$  далеки от насыщения, как видно из рис. 8. В то же время изотермы намагниченности при  $T < T_c$  испытывают насыщение в магнитых полях в несколько килоэрстед. В таблице для рассматриваемой системы представлены величины  $|\omega|_{max}$ ,  $\rho_{max}$ ,  $|\Delta\rho/\rho|_{max}$ ,  $T_{|\omega|_{max}}$ ,

# 3.3. Системы La<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub> (x = 0.15, 0.2, 0.3) и La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> (x = y = 0.1, 0.15, 0.3)

Магнитосопротивление систем  $La_{1-x}Ca_xMnO_3$  и  $La_{1-x}Sr_xMnO_3$  изучено многими авторами (см. обзоры [6, 7] и монографии [11, 13]). В этих системах наблюдалось явление КМС вблизи  $T_C$ , которое заключалось в подавлении максимума на кривой  $\rho(T)$ . Нами изучены тепловое расширение и магнитострикция монокристаллических образцов указанных систем. Как и в системе  $La_{1-x}Ba_xMnO_3$ , в них наблюдалось излишнее, по сравнению с линейным по температуре, тепловое расширение в районе  $T_C$ . В той же температурной области наблюдалась отрицательная ГОМ. На рис. 9 показаны температурные зависимости объемной магнитострикции для монокристаллов  $La_{1-x}Ca_xMnO_3$  и  $La_{1-x}Sr_xMnO_3$ . Отличитель-

ной чертой системы La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> является сильная зависимость  $\omega_{max}$  от x: чем больше x, тем меньше величина  $\omega_{max}$ . Как видно из рис. 96 и таблицы,  $|\omega|_{max}$ для составов с x = 0.1 и x = 0.3 различаются примерно в семь раз. В системе  $La_{1-x}Ca_xMnO_3$  величины  $|\omega|_{max}$  являются наименьшими для исследованных в данной работе составов (см. рис. 96 и таблицу). В обеих системах изотермы магнитострикции не испытывают насыщения вплоть до максимальных полей измерения. В составе с x = 0.15 объемная магнитострикция была исследована в магнитных полях до 130 кЭ [2]. На рис. 10 приводятся изотермы магнитострикции вблизи температуры Кюри. Видно, что  $\omega$  монотонно возрастает с ростом H и при *H* = 130 кЭ примерно на порядок выше, чем при H = 8.2 кЭ, при этом насыщение на кривой  $\omega(H)$ еще не достигнуто. В то же время намагниченность при  $T < T_C$  насыщается в полях в несколько килоэрстед.

Как следует из сказанного в разд. 3 и как показано на рис. 3, 4, 7, 8, поведение объемной магнитострикции и магнитосопротивления в зависимости от T и H подобно во всех исследованных в данной работе составах.

### 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Описанные разд. 3 свойства систем в  $La_{1-x}A_{x}MnO_{3}$ (A = Ca, Sr, Ba, Ag)можобъяснить присутствием в них HO магнитно-двухфазного ФМ-АФМ-состояния, вызванного сильным s-d/d-d-обменом [5-8,13]. В таком магнитно-двухфазном состоянии носители заряда сосредоточены в ФМ-части кристалла и отсутствуют в АФМ-части. Это состояние может быть как изолирующим при небольшом уровне легирования, так и проводящим при большем. Так как в системах  $La_{1-x}A_xMnO_3$  (A = Ba, Sr, Ca) зависимость  $\rho(T)$ для составов с x = 0.1 и x = 0.15 при  $T < T_C$ имеет полупроводниковый тип проводимости, а для составов с  $0.2 \le x \le 0.3$  — металлический (рис. 56), можно предположить, что магнитно-двухфазное состояние является изолирующим при x = 0.1, 0.15 и проводящим при  $0.2 \le x \le 0.3$ . В системе  $La_{1-x}Ag_yMnO_3$  все составы, исследованные в данной работе, при T < T<sub>C</sub> имеют металлический тип проводимости (рис. 5), и здесь можно предположить существование в них проводящего магнитно-двухфазного состояния. Различие типов проводимости для составов с x = 0.15 в  $La_{1-x}A_xMnO_3$  (A = Ba, Sr, Ca) и  $La_{1-x}Ag_yMnO_3$ 



Рис.7. Температурные зависимости объемной магнитострикции (*a*) и магнитосопротивления (*б*) для состава La<sub>0.7</sub>Ba<sub>0.3</sub>MnO<sub>3</sub> в различных магнитных полях: *H* = 3.6 кЭ (**■**), 6.2 кЭ (**●**), 8.2 кЭ (**▲**)



Рис. 8. Изотермы объемной магнитострикции (*a*) и магнитосопротивления (б) в районе температуры Кюри на кривых  $\omega(T)$  и  $(\Delta \rho / \rho)(T)$  для состава La<sub>0.7</sub>Ba<sub>0.3</sub>MnO<sub>3</sub>

объясняется более высоким уровнем легирования в последнем. Это связано с условиями приготовления  $La_{1-x}Ag_yMnO_3$  путем легирования серебром состава  $La_{1-x}MnO_3$ . Добавление серебра в  $La_{1-x}MnO_3$ в количестве *y* закрывает *y* вакансий и создает в нем *y* двухзарядных акцепторов, так что в целом соединение  $La_{1-x}Ag_yMnO_3$  ( $y \leq x$ ) является легированным  $A\Phi$ M-полупроводником, содержащим *y* двухзарядных акцепторных ионов  $Ag^{1+}$  и x - yдефектов — вакансий  $La^{3+}$ . В составах с x = yдля сохранения электронейтральности кристалла на один введенный ион  $Ag^{1+}$  приходится два иона  $Mn^{4+}$ , тогда как на один введенный двухвалентный ион ( $Ba^{2+}$ ,  $Sr^{2+}$ ,  $Ca^{2+}$ ) — один ион  $Mn^{4+}$ , т.е. при одном и том же значении *x* ионов  $Mn^{4+}$  в два раза больше в соединении LaMnO<sub>3</sub>, легированном  $Ag^{1+}$ , чем в этом соединении, легированном  $Ba^{2+}$ ,  $Sr^{2+}$ ,  $Ca^{2+}$ . Этим объясняется металлический тип проводимости в La<sub>0.85</sub>Ag<sub>0.15</sub>MnO<sub>3</sub> в отличие от составов La<sub>0.85</sub>A<sub>0.15</sub>MnO<sub>3</sub> (A = Ba, Sr, Ca), в которых тип проводимости полупроводниковый. При y < x дефектность еще выше.

Объясняется КМС следующим образом. Для проводящего магнитно-двухфазного состояния характерно резкое возрастание  $\rho$  в районе  $T_C$ . Здесь имеются два механизма, по которым примесно-магнитное взаимодействие влияет на сопротивление: рассеяние носителей заряда, уменьшающее их подвижность, и образование хвоста их зоны «проводимости», состоящего из локализованных



Рис.9. Температурные зависимости объемной магнитострикции для монокристаллов La<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub> (*a*) и La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> (*b*),  $T_{min}$  — температура минимума на кривой  $\omega(T)$ 



**Рис.10.** Изотермы объемной магнитострикции в La<sub>0.85</sub>Sr<sub>0.15</sub>MnO<sub>3</sub>

состояний. В районе  $T_C$  резко уменьшается подвижность носителей заряда и они частично локализуются в хвосте зоны, что и объясняет максимум на кривой  $\rho(T)$  вблизи  $T_C$ . Под действием магнитного поля происходят делокализация носителей заряда из хвостов зоны и увеличение их подвижности, что и приводит к КМС. В случае существования изолирующего магнитно-двухфазного состояния в образце внешнее магнитное поле увеличивает радиусы ФМ-капель, что облегчает туннелирование носителей заряда между ФМ-каплями. Кроме того, магнитные моменты ФМ-капель упорядочиваются внешним полем, что также облегчает туннелирование носителей внешним полем, что также облегчает туннелирование носителей заряда. И, наконец,

внешнее магнитное поле имеет тенденцию разрушать ФМ-капли, увеличивая энергию дырок внутри капель и тем самым облегчая их переход в делокализованное состояние [6].

В настоящее время неясно, как происходит термическое разрушение магнитно-двухфазного состояния, разрушается ли сначала АФМ-фаза при температуре Нееля  $T_N$ , а затем при более высокой температуре ФМ-фаза или наоборот. В работах Нагаева указывалось, что в образце, находящемся в магнитно-двух фазном состоянии,  $T_N$  и  $T_C$  близки по величине [13]. Как указано в п. 3.1, в системе  $La_{1-x}Ag_yMnO_3$  температуры  $T_{|\omega|_{max}}, T_{\rho_{max}}$ и  $T_{|\Delta\rho/\rho|_{max}}$  на несколько десятков градусов превышают температуру Кюри, тогда как в остальных обсуждавшихся в данной работе системах это различие много меньше. По-видимому, это связано с существованием при  $T > T_C$  в системе  $La_{1-x}Ag_{u}MnO_{3}$  ближнего  $\Phi M$ -порядка, вызванного сильным *s*-*d*-обменом, т.е. ФМ-каплями (в которых сосредоточены носители заряда), располагающимися в парамагнитной матрице. Такое магнитно-двухфазное состояние в манганитах обсуждалось в работах [7, 11, 14–18].

Как следует из сказанного в разд. 3 и показано на рис. 3, 4, 7, 8, объемная магнитострикция и магнитосопротивление в составах  $La_{1-x}A_xMnO_3$  (A = Ca, Ba, Sr) при температурах, близких к  $T_C$  (A = Ca, Ba, Sr) или превышающих ее (A = Ag), ведут себя подобным образом: значения  $\omega$  и  $\Delta \rho / \rho$  отрицательны, их абсолютные величины проходят через максимум, в котором достигают гигантских величин, и изотермы не испытывают насыщения вплоть до максимальных полей 130 кЭ, тогда как насыщение на изотермах намагниченности наблюдалось в полях в несколько килоэрстед при  $T < T_C$ . Поэтому можно предположить, что природа этих явлений одна и та же. Как указывалось выше в данном разделе, КМС объясняется наличием магнитно-двухфазного состояния, вызванного сильным *s*-*d*-обменом. В работе [8] показано, что в магнитных полупроводниках, в которых существует такое состояние, параметры решетки в его ФМ-части уменьшены [8]. Это связано с тем, что в ФМ-части кристалла расстояние между примесным ионом и его ближайшими соседями — магнитными ионами — уменьшается из-за экранирования новым распределением заряда, при котором происходит уменьшение энергии ФМ-части кристалла вследствие увеличения перекрытия между оболочками валентного электрона примеси и *d*-оболочками ближайших магнитных ионов. Нагаев показал [4], что объем ФМ-части образца, находящегося в магнитно-двухфазном состоянии, увеличивается при наложении магнитного поля. В районе T<sub>C</sub> это состояние разрушается под действием нагревания, при этом должно наблюдаться расширение образца в целом. Как видно из рис. 1 и 6, при  $T \ll T_C$  величина  $\Delta l/l$  линейно растет с температурой, что связано с фононным ангармоническим вкладом. В области температур, включающей  $T_C$ , рост  $\Delta l/l$  с увеличением температуры происходит с большей скоростью, что можно отнести за счет дополнительного вклада в  $\Delta l/l$ , вызванного разрушением магнитно-двухфазного состояния в кристалле. При более высоких температурах этот рост замедляется, что очевидно обусловлено тем, что разрушение уже закончено. ГОМ заключается в подавлении магнитным полем этого дополнительного вклада в тепловое расширение. В области температур выше  $T_C$  включение внешнего магнитного поля увеличивает степень ФМ-порядка вблизи примесей сильнее, чем в среднем по кристаллу, так как его действие усиливается *s*-*d*-обменом. Другими словами, магнитное поле восстанавливает в образце магнитно-двухфазное состояние, разрушенное нагреванием, и присущее ему сжатие решетки, что и является причиной возникновения ГОМ в районе  $T_C$  (рис. 3a, 4a, 7a, 8a, 9, 10). Однако указанный выше процесс восстановления магнитно-двухфазного состояния магнитным полем имеет место только в ограниченном температурном интервале вблизи  $T_C$ , поэтому кривые  $|\omega|(T)$ имеют резкий максимум вблизи или выше  $T_C$  и быстро убывают с дальнейшим повышением температуры.

Следует указать, что ГОМ не наблюдается традиционных магнитных полупроводниках, в таких как EuSe и др., в которых решетка более жесткая, чем в манганитах. Очевидно, ГОМ, определяемая *s*-*d*-обменом, проявляется лишь в размягченной кристаллической решетке, где обменное *s*-*d*-взаимодействие сравнимо с электростатическими взаимодействиями, обеспечивающими существование кристалла. Размягченность решетки в манганитах проявляется в зависимости типа решетки от Т, Н и уровня легирования [11]. Так, в кристаллах  $La_{1-x}A_xMnO_3$  (A = Ba, Sr) обнаружена структурная неустойчивость, проявляющаяся в виде фазовых переходов от орторомбической фазы к ромбоэдрической, при этом температура перехода T<sub>s</sub> зависит от x [19,20]. Различие упругих энергий в этих фазах очень мало по оценкам, проведенным в работе [21] для состава  $La_{0.83}Sr_{0.17}MnO_3$ , для которого  $T_s = 285$  К и  $T_C = 280$  К. Магнитное поле порядка нескольких тесла переводит этот состав из орторомбической фазы в ромбоэдрическую [19]. Используя резонансную ультразвуковую спектроскопию, авторы работы [21] определили модули упругости этого материала и из них подсчитали энергию деформации

$$\frac{\Delta E}{k} = \frac{VK}{2k(\Delta V/V)^2} = 5 \text{ K},\tag{1}$$

требуемую для перевода ромбоэдрической фазы в орторомбическую. Здесь K — объемный модуль упругости,  $\Delta V/V = 0.0026$  — относительное изменение объема элементарной ячейки при переходе от ромбоэдрической ячейки при 290 К к орторомбической ячейке при 280 К, полученное в работе [22]. Авторы работы [21] также наблюдали особенности на температурной зависимости модулей сдвига  $c_{44}$  и  $c_{11} - c_{12}$  в области  $T_s \leq T \leq T_C$ : минимум на кривой  $c_{44}(T)$  и ступеньку на кривой  $(c_{11} - c_{12})(T)$ . Следовательно, магнитное поле в несколько тесла способно деформировать орторомбическую фазу и перевести ее в ромбоэдрическую.

Известно, что ультразвуковые измерения являются очень чувствительным методом исследования всех видов фазовых переходов, в том числе магнитных и структурных. Обычно вблизи фазовых переходов наблюдается уменьшение скорости звука, что эквивалентно уменьшению упругих констант, вызванному ослаблением некоторых силовых констант, в частности, размягчением фононных мод. Так, в работах [23,24] в системе  $La_{1-x}Ca_xMnO_3$  при изучении распространения в ней ультразвука в составе с x = 0.33 были обнаружены минимум скорости ультразна силования и ставля силования скорости ультразна в составе с составет с составет и споратиратия и ставля в составет и составет и споратия и ставля в составет и составети и сост

тразвука,  $\Delta v/v \approx 4\%$  (т. е. существенное уменьшение  $\Delta v/v$ ) и максимум затухания вблизи  $T_C$ . Объемный модуль упругости B, вычисленный из соотношения

$$B = \rho \left( v_l^2 - \frac{4}{3} v_{tr}^2 \right), \tag{2}$$

где  $\rho$  — плотность образца,  $v_l$  и  $v_{tr}$  — продольная и поперечная скорости звука, имеет минимум при  $T = T_C$  и далее возрастает примерно на 8 % в  $\Phi$ М-области.

Изучение ИК-спектров соединений  $La_{1-x}A_xMnO_3$  (A = Sr, Ca, x < 0.3) показало их существенную перестройку с увеличением x и изменением температуры. ИК-спектр нелегированного соединения LaMnO<sub>3</sub> состоит из 11 линий [25]. Из них наибольшей интенсивностью обладают следующие зоны: ниже 330 см<sup>-1</sup> — возникающие от колебаний La-катионов и поворотов октаэдров  ${\rm MnO}_6;$ выше 400 см $^{-1}$  — происходящие от вибраций, изменяющих угол Mn-O-Mn (изгибающие моды); в районе 600 см<sup>-1</sup> — связанные с колебаниями длины связи Mn-O (растягивающие моды). С увеличением уровня легирования во всех трех зонах наблюдается «размягчение» мод, а для состава  $La_{0.7}Ca_{0.3}MnO_3$ эти зоны практически исчезают [25-28]. Исследование температурной зависимости частот указанных мод для составов с x < 0.14, A = Sr показало [27], что когда температура опускается ниже точки Кюри или температуры Нееля, наблюдается размягчение изгибной и растягивающей мод (при слабом легировании). Так, для изгибной моды при понижении температуры от  $T_C$  до 5 К уменьшение частоты достигает 7 см<sup>-1</sup> для состава с наибольшим *x* = 0.14, тогда как для растягивающей (дышащей) моды это смещение достигает гигантской величины  $30 \text{ см}^{-1}$  для составов с x = 0.125 и x = 0.14. Наложение магнитного поля в 3 Тл на образец с x = 0.125смещает начало размягчения мод к более высокой температуре, при этом размягчение усиливается между 110 и 240 К и ниже 50 К оно насыщается. Приведенные выше данные свидетельствуют о размягчении модулей упругости решетки в указанных соединениях, что приводит к структурной неустойчивости и размягчению кристаллической решетки, что делает возможным проявление в них ΓOM.

Оказалось, что в монокристаллах  $La_{1-x}A_xMnO_3$ (A = Ba, Sr, Ca) максимальная величина  $|\omega|_{max}$  зависит от радиуса  $R_A$  катиона A: она тем больше, чем больше разность  $|R_A - R_{La^{3+}}|$  ( $R_{La}^{3+} = 0.136$  нм). Так, при H = 8.2 кЭ имеем  $|\omega|_{max} = 4.8 \cdot 10^{-4}$  в  $La_{1-x}Ba_xMnO_3$  ( $R_{Ba^{2+}} = 0.161$  нм),  $4.1 \cdot 10^{-4}$  в  ${\rm La}_{1-x}{\rm Sr}_x{\rm MnO}_3~(R_{{\rm Sr}^{2+}}=0.144~{\rm Hm})$ и 8.6  $\cdot$  10<sup>-5</sup> в  ${\rm La}_{1-x}{\rm Ca}_x{\rm MnO}_3~(R_{{\rm Ca}^{2+}}=0.134~{\rm Hm}).$  Рост $|\omega|_{max}$ с ростом разности  $|R_{\rm A}-R_{{\rm La}^{3+}}|,$  вероятно, связан с размягчением кристаллической решетки, вызванным флуктуациями величины радиусов катионов A и  ${\rm La}^{3+},$  которые принято характеризовать параметром беспорядка

$$\sigma^2 = \sum_i x_i r_i^2 - \langle r \rangle^2, \tag{3}$$

где  $x_i$  и  $r_i$  — соответственно концентрация и радиус *i*-го катиона и  $\langle r \rangle$  — средний радиус в подрешетке. Так, величины  $\sigma^2$  в составах с  $|\omega|_{max}$  следующие:  $1.1 \cdot 10^{-5}$  нм<sup>2</sup> (A = Ba),  $6 \cdot 10^{-6}$  нм<sup>2</sup> (A = Sr) и  $6 \cdot 10^{-8}$  нм<sup>2</sup> (A = Ca). Хотя в керамике  $La_{1-x}Ag_yMnO_3$  величина  $\sigma^2 = 7.5 \cdot 10^{-7}$  нм<sup>2</sup>  $(R_{Ag^{+1}} = 0.142$  нм) меньше, чем в  $La_{1-x}Ba_xMnO_3$  и  $La_{1-x}Sr_xMnO_3$ , в ней наблюдается наибольшее среди составов  $La_{1-x}A_xMnO_3$  (A = Ba, Sr, Ca, Ag) значение  $|\omega|_{max} = 6.5 \cdot 10^{-4}$ . Здесь следует иметь в виду, что приготовление  $\operatorname{La}_{1-x}\operatorname{Ag}_{y}\operatorname{MnO}_{3}$  возможно только путем легирования соединения La<sub>1-x</sub>MnO<sub>3+δ</sub> серебром при мягких условиях синтеза [10]. Очевидно, при расчете  $\sigma^2$  не учтены другие дефекты решетки, которые также размягчают решетку. Разупорядочение в подрешетке  $\operatorname{Re}_{1-x} A_x$  приводит к смещению кислородных атомов, как показано на рис. 1 работы [29], что и вызывает размягчение кристаллической решетки.

### 5. ЗАКЛЮЧЕНИЕ

В 1997 г. нами была обнаружена гигантская объемная магнитострикция вблизи точки Кюри в монокристалле La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> [1]. Зависимость ее от температуры и магнитного поля была подобна аналогичной зависимости колосмагнитосопротивления. сального Нами было сделано предположение, что оба явления, ГОМ и КМС, объясняются присутствием в этом состамагнитно-двухфазного ФМ-АФМ-состояния, ве вызванного сильным *s*-*d*-обменом. Еще в 1955 г. Воллан и Кёхлер на основе данных нейтронной дифракции предположили существование магнитно-двухфазного ФМ-АФМ-состояния в системе La<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub> [30]. В настоящее время существование магнитно-двухфазного состояния в манганитах экспериментально подтверждено с помощью различных методов исследования: сканирующей электронной микроскопии, эффекта Мессбауэра, рассеяния нейтронов, прецессии и релаксации положительных мюонов и др. Часть этих работ описана в монографиях [11,15] и обзоре [7]. Наши

дальнейшие исследования систем монокристаллов  $La_{1-x}Sr_xMnO_3$  [14],  $La_{1-x}Ba_xMnO_3$  (составы с x = 0.2, 0.3) [3, 4] и керамик  $Eu_{0.55}Sr_{0.45}MnO_3$  [31], (TbNd)<sub>0.55</sub>Sr<sub>0.45</sub>MnO<sub>3</sub> и (EuNd)<sub>0.55</sub>Sr<sub>0.45</sub>MnO<sub>3</sub> [32], Sm<sub>0.55</sub>Sr<sub>0.45</sub>MnO<sub>3</sub> [33] показали, что в этих составах явление ГОМ сопровождает КМС.

В настоящей работе приведены данные наших последних исследований систем монокристаллов  $La_{1-x}Ca_xMnO_3$ ,  $La_{1-x}Ba_xMnO_3$  и керамики  $La_{1-x}Ag_yMnO_3$ , в которых, так же как в перечисленных выше составах, обнаружено подобное поведение ГОМ и КМС в зависимости от T и H. Так что с большой долей вероятности можно утверждать, что ГОМ является универсальным свойством манганитов, обладающих КМС.

До выполнения настоящей работы оставалось неясным, почему ГОМ присуща манганитам и отсутствует в традиционных магнитных полупроводниках, таких как EuSe и др. Наши исследования  $\Gamma OM$  в La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub> (A = Sr, Ca, Ba) показали, что максимальная величина ГОМ для каждой из трех систем зависит от радиуса  $R_{\rm A}$  катиона A: она тем больше, чем больше разность  $|R_{\rm A} - R_{{\rm La}^{3+}}|$ , или, что то же самое, от степени катионного беспорядка  $\sigma^2$  в подрешетке La<sub>1-x</sub>A<sub>x</sub> (см. формулу (3)). Наличие катионов разного радиуса в этой подрешетке смещает ионы кислорода и тем самым размягчает кристаллическую решетку. Очевидно, эффект ГОМ возможен лишь в мягкой кристаллической решетке, где обменные *s*-*d*-взаимодействия оказываются сравнимыми с электростатическими взаимодействиями, обеспечивающими существование кристалла. О размягченности кристаллической решетки в манганитах свидетельствует зависимость типа кристаллической решетки от состава, температуры и магнитного поля. В статье приводятся данные других работ по исследованию акустических свойств и ИК-спектров манганитов, убедительно свидетельствующие о размягчении в них кристаллической решетки.

Работа выполнена при поддержке РФФИ (грант № 06-02-81050). Мы благодарны А. М. Балбашову, О. Ю. Горбенко, А. Р. Каулю и О. В. Мельникову за приготовление и анализ монокристаллов La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> и керамики La<sub>1-x</sub>Ag<sub>y</sub>MnO<sub>3</sub>.

# ЛИТЕРАТУРА

 R. V. Demin, L. I. Koroleva, and A. M. Balbashov, Phys. Lett. A 231, 279 (1997).

- Р. В. Демин, Л. И. Королева, Р. Шимчак, Г. Шимчак, Письма в ЖЭТФ 75, 402 (2002).
- R. V. Demin, L. I. Koroleva, and Ya. A. Mukovskii, J. Phys.: Condens. Matter 17, 221 (2005).
- R. V. Demin, L. I. Koroleva, R. V. Privezentsev, and N. A. Kozlovskaya, Phys. Lett. A 325, 325 (2004).
- 5. Э. Л. Нагаев, Физика магнитных полупроводников, Наука, Москва (1979).
- Э. Л. Нагаев, УФН 166, 833 (1996); Е. L. Nagaev, Phys. Rep. 346, 387 (2001).
- E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
- A. Yanase and T. Kasuya, J. Phys. Soc. Jpn. 25, 1025 (1968).
- D. Shulyatev, S. Karabashev, A. Arsenov, and Ya. Mukovskii, J. Cryst. Growth 198/199, 511 (1999).
- 10. J. Yu. Gorbenko, O. V. Melnikov, A. R. Kaul et al., Mat. Sci. Eng. B 116, 64 (2005).
- **11**. Л. И. Королева, *Магнитные полупроводники*, Изд-во МГУ, Москва (2003).
- В. Е. Архипов, В. С. Гавико, К. М. Демчук и др., Письма в ЖЭТФ 71, 169 (2000).
- E. L. Nagaev, Colossal Magnetoresistance and Phase Separation in Magnetic Semiconductors, Imperial College Press, UK (2002).
- 14. А. И. Абрамович, Р. В. Демин, Л. И. Королева и др., Письма в ЖЭТФ 69, 404 (1999).
- E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresicrance. The Physics of Manganites and Related Compounds, Springer, Berlin (2003).
- 16. S. I. Yuan, C. S. Xiong, Z. Y. Li et al., J. Phys.: Condens. Matter 14, 173 (2002).
- 17. M. Fath, S. Freisem, and A. A. Menovsky, Science 285, 1540 (1999).
- 18. H. J. Ju, Y. S. Nam, J. E. Lee, and H. S. Shin, J. Magn. Magn. Mat. 219, 1 (2000).
- A. Urishibara, Y. Morimoto, T. Arima et al., Phys. Rev. B 51, 14103 (1995).
- 20. V. E. Arkhipov, N. G. Bebenin, V. P. Dyakina et al., Phys. Rev. B 61, 11229 (2000).
- 21. T. V. Darling, A. Migliori, E. J. Moshopoulou et al., Phys. Rev. B 57, 5093 (1998).

- 22. A. Asamitsu, Y. Morimoto, Y. Tomioka et al., Nature 373, 407 (1995).
- 23. R. K. Zheng, C. F. Zhu, J. Q. Xie, and X. G. Li, Phys. Rev. B 63, 024427 (2001).
- 24. Ch. Zhu, R. Zheng, J. Su, and J. He, Appl. Phys. Lett. 74, 3504 (1999).
- 25. F. Mayr, C. Hartinger, M. Paraskevopoulos et al., Phys. Rev. B 62, 15673 (2000).
- 26. E. Liarokapis, Th. Leventouri, D. Lampakis et al., Phys. Rev. B 60, 12758 (1999).
- 27. K.-Y. Choi, P. Lemmens, T. Sahaoui et al., Phys. Rev. B 71, 174402 (2005).

- 28. F. Mayr, Ch. Hartinger, and A. Loidl, Phys. Rev. B 72, 024425 (2005).
- 29. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B 58, 2426 (1998).
- 30. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
- **31**. А. И. Абрамович, О. Ю. Горбенко, А. Р. Кауль и др., ЖЭТФ **126**, 820 (2004).
- 32. A. Abramovich, L. Koroleva, A. Michurin et al., J. Magn. Magn. Mat. 242-245, 648 (2002).
- 33. А. И. Абрамович, Л. И. Королева, А. В. Мичурин, ЖЭТФ 122, 1063 (2002).