ZKIT®, 2006, rom 130, Boim. 5 (11), crp. 796-803

© 2006

WAVE FUNCTIONS OF HELIUM-LIKE SYSTEMS
IN LIMITING REGIONS

E. G. Drukarev®, M. Ya. Amusia®c, E. Z. Liverts®, R. Krivec?, V. B. Mandelzweig®

® Konstantinov Petersburg Nuclear Physics Institute, Russian Academy of Sciences
188300, Gatchina, St. Petersburg, Russia

bRacah Institute of Physics, The Hebrew University
91904, Jerusalem, Israel

¢Ioffe Physical-Technical Institute
194021, St. Petersburg, Russia

d Department of Theoretical Physics, Josef Stefan Institute
1001, Ljubljana, Slovenia

Received 12 June, 2006

We find an approximate analytic forms for the solutions W(r1, 2, r12) of the Schrédinger equation for a system
of two electrons bound to a nucleus in the spatial regions r1 = ro = 0 and r12 = 0 that are of great impor-
tance for a number of physical processes. The forms are based on the well-known behavior of ¥ (r{,r2,7r12)
near the singular triple coalescence point. The approximate functions are compared to the locally precise ones
obtained earlier by the correlation function hyperspherical harmonic (CFHH) method for the helium atom, light
helium-like ions, and the negative ion of hydrogen H™. The functions are shown to determine a natural basis
for the expansion of CFHH functions in the considered spatial region. We demonstrate how these approximate

functions simplify calculations of high-energy ionization processes.

PACS: 32.80.Fb, 31.15.Ja

1. INTRODUCTION

The ground states of systems comprising two elec-
trons bound by a nucleus are described by radial wave
functions that depend on three variables. These can
be the distances between the electrons and the nucleus
r1, 2 and the interelectron distance r15. Here, we find
analytic expressions that approximate the solutions of
the Schrodinger equation ¥(ry,rs,7r12) in the special
cases where

ri =ro =0 and ri5 = 0:

F(R)=9(0,R,R); ®(R)=%(R,R,0). (1)
We consider the ground states of the helium atom and
of the light helium-like ions, including the negative ion
of hydrogen H™. In this paper, we treat the ground
states only. Therefore, the total spin of the two-electron

system is equal to zero.

*E-mail: liverts@phys.huji.ac.il

796

We note that this problem is essentially different
from the traditional problem of approximating the to-
tal wave function ¥ (ry,72,712) [1]. There are numerous
wave functions of this kind, with the approximate func-
tions usually given by certain combinations of expo-
nentials and polynomials, while a set of fitting parame-
ters is found by minimization of the energy functional.
Thus, the quality of such functions is determined by
the accuracy of reproducing the binding energy value.
Because the averaged value of the Hamiltonian is de-
termined by the distances of the order of the size of
the atom, such functions provide very good approxi-
mations at these distances. However, as was already
emphasized in [2], they are not necessarily as precise in
the limit cases r{ = r, = 0 and r12 = 0.

The motivation for our study is that in a number of
dynamical problems, one needs the bound state wave
functions in regions of these variables where one of
the distances is much smaller than the others. This
is the case with those processes involving bound elec-
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trons that are kinematically forbidden for free elec-
trons. For example, the high-energy asymptotic form of
the photoionization cross section is expressed in terms
of the two-electron function ¥ (0, R, R), where 7y or 79
is zero [1]. The same is correct for the nonrelativistic
high-energy asymptotic form of double photoionization
and for the energy distribution of Compton scattering
at sufficiently small energies of the outgoing electrons.
Some of the characteristics of double photoionization
are expressed in terms of the two-electron function with
zero interelectron distance U(R, R, 0) [3]. The straight-
forward way to obtain the functions F'(R) and ®(R) is
to calculate them from ¥(ry,rs,712) that is derived nu-
merically. This is a rather complicated procedure.

Of course, one can use numerous accurate approx-
imations of the functions W(rq,r2,r12) by superposi-
tions of analytic functions depending on a large num-
ber of variational parameters (see [1] and more recent
papers [4] and [5]). However, it would be useful to
also have simple (although less precise) wave functions
with a small number of parameters explicitly depend-
ing on the physical characteristics of the system. This
is increasingly true because, as discussed in [6] and [3],
there is no common view yet on the relative role of the
possible mechanisms of ionization processes. It would
therefore be reasonable to have tools not only for accu-
rate computations but also for rapid and explicit esti-
mations.

Here, we build approximate wave functions F4(R)
and @ 4(R) based on the known behavior of the exact
wave function only near the triple coalescence point
R = 0. The only free parameter in our approach is the
value of the wave function at the coordinate origin,

N = (0,0,0). (2)

Our approach was initiated and motivated by the im-
portant role played by the proper treatment of the
two-particle coalescence point in earlier calculations.
For example, the binding energies can usually be re-
produced with a good accuracy by approximate wave
functions that are certain combinations of exponential
and polynomial factors [1]. Approximate wave func-
tions based on exponential and polynomial factors are
adequate representations at distances of the order of
typical atomic dimensions. However, it was understood
long ago that the analytic dependence on R is more
complex and that the dependence is logarithmic in the
vicinity of the origin [7]. Later, it was found that as ry,
ro or r12 tend to zero, the solution of the Schrédinger
equation satisfies specific Kato conditions [§]. Inclu-
sion of the logarithmic terms [9] or accounting for the
Kato conditions [10] (or both [11]) does not influence
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the energy value much, but strongly improves the con-
vergence of the U(ry, ra,712) calculations. This encour-
aged us to try a rather simple approach.
As is shown in this paper, the approximate func-
tions for (1) are given by
)7l

They have to be compared with precise or highly ac-
curate locally correct functions Fpo(R) and ®,0(R).
For the latter, we use the functions obtained by the
correlation function hyperspherical harmonic (CFHH)
method [12]. These nonvariational wave functions of
the two-electron system in the s-state bound to a light
nucleus have been obtained by direct solution of the
three-body Schrédinger equation [13], without addi-
tional approximations. They require complicated com-
puter codes for solution.

The way we construct the approximate wave func-
tions insures that they reproduce the CFHH functions
Frc(R) and ®1,¢(R) with good accuracy at sufficiently
small values of R. The question is how long can this
last as R increases? In other words, we must calcu-
late the characteristics of the processes determined by
F(R) and ®(R) at R being of the order of the size of
the atom, and compare the results obtained with (3)
and with the CFHH functions.

The answer is that the relative discrepancy between
functions (3) and the CFHH functions does not exceed
several percent at characteristic distances 1/(Z — 1/2)
and 1/2Z. The same is the accuracy of experimental
detection of the photoionization characteristics.

Of course, this accuracy would not have been suf-
ficient for the calculation of static atomic characteris-
tics, e.g., of energy levels. However, there was quali-
tative controversy in theoretical results on the double
photoionization energy distribution until recently [6],
with quantitative results differing by orders of magni-
tude. Thus, it would be unjustified to aim for too high
accuracy in any case. On the other hand, good accu-
racy of functions (2) prompts a basis for expansion of
the CFHH functions. Because functions (3) have the
radial dependence of the 1s-functions in the Coulomb
fields with the respective charges (Z — 1/2) and 27,
we can represent the numerical CFHH functions as lin-
ear combinations of the functions of this field with the
dominant contribution coming from the 1s-terms.

Fu(R) = Nexp [— <z - %

& 4(R) = N exp(—2ZR).

(3)

We build our approximate wave functions and dis-
cuss their relation to other approaches in Sec. 2. We
analyze the expansion of the CFHH functions at two-
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particle coalescence points in series of the single-par-
ticle eigenfunctions of Coulomb fields in Sec. 3. We
consider the applications in Sec. 4, and summarize in
Sec. 5. The atomic system of units is used throughout
this paper.

2. WAVE FUNCTIONS

It is known that at small distances 71, < Z71,
the solution of the Schrédinger equation can be writ-
ten as [14, 15]

U(ry,79,m12) =

1
=N |1—-2Z(r +7r2) + 572 + 0@, nr)|, (4)
with r = \/r? + r3. The explicit form of the quadratic

terms was found in [14]. Equation (4) is consistent with
the more general Kato conditions [8]

Qi) | 70, ),
ory r1=0 B

v

OFlrurar2) | g 0.m), (5)
87"2 ro=0

OR(ryrasma) | L g
Oris r1a=0 2 o

which are satisfied for the CFHH functions.
Eq. (4), we find that at ry,ry < Z7 1,

Using

F(R):N[1—<Z—%>R+..l,
dR)=N(1-2ZR+...),

(6)

with the dots denoting higher-order terms. Therefore,

.1 dF(R) 1
FR ar - 2t @
and
1 do(R) _
i sm ar - (®)

We require Eqgs. (7) and (8) to be satisfied by our
approximate functions F4(R) and ®4(R) for all R.
This leads to Eq. (3).

The functions in (3) correspond to a very simple
physical picture. We note that Eqs. (3) look like the
1s-functions in the Coulomb fields with the charges
Z — 1/2 and 2Z, which serve in fact as a sort of ad-
justable parameters. The R-dependence is the one of
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the 1s-electron, while the small probability of the three-
particle coalescence is contained in the factor N deter-
mined by Eq. (2). We calculate it using the CFHH
functions.

To characterize the quality of our approximate func-
tions, we introduce

were the subscript CFHH denotes the wave functions
obtained in [13].

The accuracy of functions (3) increases rapidly with
increasing the nuclear charge Z. However, even for
the negative ion H~ (Z = 1), the accuracy is rather
high. At characteristic values R ~ (Z — 1/2)"! and
R ~ (27)7!, the error of the function ®, for H™ is
about 6%, but only about 1% for the function Fj.
The errors increase at larger values of R. They ex-
ceed 10 % at the distances at which the wave functions
are already very small. The functions y;(R) defined by
Eqs. (9), which describe the R-dependence of the er-
rors, are presented in Fig. 1. We show the results for
helium (Z = 2) because most of the studies of two-
electron systems are carried out for this case. We also
give results for Z = 4 to illustrate the Z-dependence.
The curve for H™ (Z = 1) is also presented, because
this case is most difficult for investigations. The dip
in the graph in Fig. 1a is a result of the logarithmic
scale, because the logarithm of the absolute value of
the difference of the two functions tends to —oo at the
points where the difference changes sign. The overall
accuracy of the solution can therefore be inferred only
at the values of R not too close to the dip.

One can see that as R approaches the order of the
size of the atom, the discrepancy with the CFHH func-
tions becomes much greater than that at smaller R.
However, the precision is still good enough for obtain-
ing results with the accuracy of several percent.

The values of N defined by Eq. (2) are presented in
Table 1. At large Z, the single-particle hydrogen-like
model is expected to become increasingly true, because
the interaction between the electrons is Z times weaker
than their interaction with the nucleus. Hence, in the
limit Z > 1,

Fu(R) — Foran(R)
Feruu(R)
®4(R) — ®crun(R)
Pornn(R)

yi1(R) =g

(9)

)

y2(R) =lg

(10)

The results in Table 1 illustrate this tendency. As ex-
pected, deviations from the limit law (10) are of the
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Fig.1. The functions y1(R) and y2(R) defined by Eq.

order of Z~!. The actual results are smaller than pre-
dicted by (10) because Eq. (10) does not include the
electron repulsion, which diminishes this value.

Of course, there are numerous simple approximate
wave functions of the type

(9).
(Z = 2) (b), and for the ion Be™*(Z = 4) (¢)

799

0 0.05 0.10 0.15 0.20 UR25

for the negative ion H™(Z = 1) (a), for atomic helium

U 4(r1,72,712) = c(exp(—ar; —bra)+ exp(—ars—bry)),

which are built in order to calculate the ground-state
energy values [1] and approximate the solutions of the
Schrédinger equation at r; and ro of the order of Z7!
(in the case of H™, they must also reproduce the very
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Table 1.  The value F(0) = ®(0) = N for several
values of Z. The ratio 7 = N/N. with N, defined
by Eq. (10) illustrates the convergence to the high-Z

limit
Z 1 2 3 4 5 6
0.071 | 1.37 | 5.77 | 15.2 | 31.6 | 56.8
N N
r=—1 022 | 0.61]0.67|0.74 | 0.79 | 0.83
N
Wave function
1.5F. i
1.0
0.5
0 0.05 0.10 0.15 0.20 0.25
R, a.u.

Fig.2. The exact and approximate helium wave func-

tions at the electron—electron coalescence line. Ex-

act curve (solid line), Nexp(—4R) (dashed line),
(@®/m) exp(—2aR), a = 27/16 (dotted line)

existence of the bound state). Technically, they turn
to the single-exponential forms at r; = ro = R and are
independent of r15. These functions can be compared
with our functions ®(R) defined by Eq. (3). But they
do not approximate the locally correct CFHH func-
tions ® 4(R), and, as argued in [2], are not supposed
to. In Fig. 2, we illustrate this statement by present-
ing the CFHH function ®(R), our function (3), and the
screened Coulomb wave function

asd

d,(R) = —e~

™

2aR

with a = 27/16 for helium [1].

In Ref. [16], the function F(R) for H™, He, and Li*™
was approximated by a hydrogen-like function with the
effective charge Z.s; treated as a variational parame-
ter. The respective values of Zy for Z = 1,2,3 have
been found to be 0.58, 1.53 and 2.52. In Ref. [17], the
function F(R) for the ion H™ was analyzed at large
distances. We do not claim our functions to be ac-
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curate in this R-region, which is not essential because
the R-domain within the atomic radius is of primary
importance.

3. EXPANSION OF THE CFHH FUNCTIONS
IN SERIES IN THE COULOMB FIELD
EIGENFUNCTIONS

The R-dependence of the approximate wave func-
tions F4(R) and ® 4(R) in (3) is the same as that of
1s-functions in the Coulomb fields of the nuclei with the
respective charges Z; = Z—1/2and Zy = 2Z. The high
precision of these functions suggests that the eigenfunc-
tions of the Schrodinger equations in these fields form
convenient series for expansion of the CFHH functions
F(R) and ®(R).

With the common notation X (R) for the functions
F(R) and ®(R), we introduce the normalized functions

1
XN(R) = 1/2X(R)‘/
Cy
where -
Cx = /R2X2(R) dR
0
Thus,

/RQX?V(R) dR =1.
0

In the expansions over the complete sets of some
eigenfunctions, Xn(R) can be represented as

mmhzﬁmm %@hﬁﬁ%&(m

where ), denotes summation over the discrete-spect-
rum states and integration over the continuum, and

oo

wzfmmmwmma
; (12)

b; = /R2<I>N(R)ga;‘(R) dR.
0

For fi(R) and ¢;(R) normalized to unity, we have
Z al = Z v = 1.

Choosing the solutions of the Schrédinger equations in
the Coulomb fields with the charges Z; = Z —1/2 and
Zy = 27 as the respective functions f;(R) and ¢;(R)

(13)

3
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Table 2.
in expansions (11) of the CFHH functions in terms
of the Coulomb functions. The coefficients of the

next terms are limited by the conditions |a;| < a,
1/2

The coefficients of the two lowest terms

Ibi| < b, while the values of @ = (1 — a?, — a2,)
and b = (1 — b}, — b3,)"/? are presented in the two
bottom lines

Z 1 2 3 4
ars | 0.98482 | 0.99970 | 0.99991 | 0.99996
bis | 0.99067 | 0.99807 | 0.99918 | 0.99955
a2 —0.144 | —0.020 | —0.010 | —0.007
bas —0.108 | —0.046 | —0.030 | —0.022

a 0.097 0.015 0.008 0.005

b 0.082 0.041 0.028 0.021

we find the values ays and bys given in Table 2. For
atomic helium, a5 = 0.9997 and b = 0.998. High
accuracy of functions (3) corresponds to domination of
the terms a?; and b7, in sums (13).

The precision of calculations can be improved by
adding the contributions of the higher states in accor-
dance with Eq. (12). Of course, only the s-states are
involved in our case. For example, ass = —0.02 and
bas = —0.05 in the case of atomic helium. The results
for other values of Z are given in Table 2. This proce-
dure allows achieving any desired accuracy, controlled
by Eq. (13).

4. EXAMPLES OF APPLICATION

As mentioned above, one of the possible applica-
tions of functions (3) is given by high-energy photoion-
ization processes. We start with single photoionization.
The high-energy nonrelativistic asymptotic form of the
K-shell ionization cross section can be written as [1]

211/2 102 722
o= ————

3mew™/2 (14)

where m is the electron mass and c is the speed of light.
The properties of the ionized states are contained in the
factor

C= [ BF@®ucR) R (15)

0
where F(R) is determined by Eq. (1) and i (R) is the
single-particle function of the K-electron in the resid-

ual ion. In our case, ¥ (R) is just the 1s-function of
the Coulomb field with the charge Z.

39 ZKOT®, eem. 5 (11)

In the single-particle approximation, C' is simply
the value of the single-particle wave function at the co-
ordinate origin. To illustrate the quality of functions
(3), we compare the results for the factor C' calculated

using the CFHH functions and functions (3). In the
latter case, we find the analytic expression
2N Z3/2
C=———F= (16)

 Vr(2Z - 1/2)3’

yielding C' = 0.102 for atomic helium. Numerical cal-
culations with the CFHH functions give C' = 0.103 in
this case. Hence, using approximate function (3) leads
to an error of 1%. Earlier, the authors of [18] found
that the value of C' obtained by using the Hylleraas-ty-
pe variational function is well approximated by using a
hydrogen-like function with Z.s = Z — 0.53.

We now turn to the case of double photoionization.
The shape of the spectrum curve of double photoioniza-
tion changes as the photon energy increases. The mech-
anisms that cause these changes are explained in [3].
While the photon energy w is smaller than a certain
value wy, the energy distribution approaches its min-
imum at the central point, with the equal energies of
the outgoing electrons, i.e., e = £5. There is a peak at
the central point for w > wy, which splits into two for
w > ws. Thus, there is a local minimum at 1 = &5 for
w > Wwo.

The values of wy and wy were obtained in [19] using
the CFHH functions. We do not repeat the deriva-
tion of the corresponding equations here. Instead, we
explain their origin and formulate them in order to il-
lustrate how functions (3) allow obtaining approximate
solutions.

The values of w; and wy can be given as solutions
of the following equation, which involves the functions
F(R) and ®(R) [19]:

M= w2 A(w), (17)

where A is a numerical coefficient,
p= [ arFor. (15)
0

and the function A depends on w in a more complicated
way,

+1
Alw) = /dtt2(1—2t2)D(w2t2), (19)
with i
D(g?) = /Sin;fT) ®(r)r2dr| . (20)
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Table 3.

for the ground states of the lightest helium-like sys-

tems, calculated using the CFHH functions [13] and
functions (3)

The values of wi and wy (Sec. 4) in keV

7z 1 2 3 4
w1, this work 0.67 2.11 3.92 6.14
wi, [13] 0.55 1.93 3.70 5.89
wy, this work 4.86 9.71 14.5 19.3
wa, [13] 3.97 8.89 13.7 18.5

Using the exact CFHH functions requires tedious
computations.  However, approximate wave func-
tions (3) allow obtaining analytic expressions for both
left-hand side and right-hand side of Eq. (17). Setting
F(r) = Fa(r) and ®(r) = ®4(r), we obtain

_ 1
h=571
and
1
Alw) = 5
y 6a% +13a* +2a> +3 1 —2a> arct 1 (21)
6a2(a® +1)3 2a3 &4
with a = 2Z/w.

The values of w; and wy obtained by using the
CFHH functions and functions (3) are presented in Ta-
ble 3. It can be seen that the discrepancy between the
two sets of results decreases rapidly with increasing Z.
Being 22 % for H™ and 9% for He, it becomes 4 % for
7 = 4.

5. SUMMARY

We have built very simple analytical approxima-
tions (3) for the wave functions F(R) and ®(R) de-
scribing ground states of two-electron systems bound
by the Coulomb field of a nucleus in the spatial regions
ry = ro = 0 and r1o = 0. The presentation is based on
the behavior of the exact solution of the Schrodinger
equation near the three-particle coalescence singularity.
Comparing our functions (3) with the locally correct
CFHH functions for the ion H™, atomic helium, and
light helium-like ions (relativistic corrections, which are
of the order of (Z/137)2, are not included), we found
good agreement in a large interval of the values of R.
As is evident, the precision of the approximate func-
tions increases with increasing the nuclear charge Z.
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We have shown that the solutions of the single-par-
ticle Schrédinger equations in Coulomb fields with
charges 7y = Z — 1/2 and Z, = 2Z provide natu-
ral bases for the expansion of the functions F'(R) and
®(R) with dominant 1s-terms. The tendency for their
domination increases with Z. The approach is more
precise for F'(R) than for ®(R).

Examples presented in Sec. 4 show that even for the
lightest helium-like systems, such as H~ and He, wave
functions (3) can be used for estimations of the physical
parameters at least.

The high precision of such a simple approximation
that properly treats singularities in the wave function
is in agreement with the conventional belief that
singularities determine important physical characteris-
tics such as high-energy photoionization cross sections.
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