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WAVE FUNCTIONS OF HELIUM-LIKE SYSTEMSIN LIMITING REGIONSE. G. Drukarev a, M. Ya. Amusia b;, E. Z. Liverts b*, R. Krive d, V. B. Mandelzweig baKonstantinov Petersburg Nulear Physis Institute, Russian Aademy of Sienes188300, Gathina, St. Petersburg, RussiabRaah Institute of Physis, The Hebrew University91904, Jerusalem, IsraelIo�e Physial-Tehnial Institute194021, St. Petersburg, RussiadDepartment of Theoretial Physis, Josef Stefan Institute1001, Ljubljana, SloveniaReeived 12 June, 2006We �nd an approximate analyti forms for the solutions 	(r1; r2; r12) of the Shrödinger equation for a systemof two eletrons bound to a nuleus in the spatial regions r1 = r2 = 0 and r12 = 0 that are of great impor-tane for a number of physial proesses. The forms are based on the well-known behavior of 	(r1; r2; r12)near the singular triple oalesene point. The approximate funtions are ompared to the loally preise onesobtained earlier by the orrelation funtion hyperspherial harmoni (CFHH) method for the helium atom, lighthelium-like ions, and the negative ion of hydrogen H�. The funtions are shown to determine a natural basisfor the expansion of CFHH funtions in the onsidered spatial region. We demonstrate how these approximatefuntions simplify alulations of high-energy ionization proesses.PACS: 32.80.Fb, 31.15.Ja1. INTRODUCTIONThe ground states of systems omprising two ele-trons bound by a nuleus are desribed by radial wavefuntions that depend on three variables. These anbe the distanes between the eletrons and the nuleusr1, r2 and the intereletron distane r12. Here, we �ndanalyti expressions that approximate the solutions ofthe Shrödinger equation 	(r1; r2; r12) in the speialases where r1 = r2 = 0 and r12 = 0:F (R) � 	(0; R;R); �(R) � 	(R;R; 0): (1)We onsider the ground states of the helium atom andof the light helium-like ions, inluding the negative ionof hydrogen H�. In this paper, we treat the groundstates only. Therefore, the total spin of the two-eletronsystem is equal to zero.*E-mail: liverts�phys.huji.a.il

We note that this problem is essentially di�erentfrom the traditional problem of approximating the to-tal wave funtion 	(r1; r2; r12) [1℄. There are numerouswave funtions of this kind, with the approximate fun-tions usually given by ertain ombinations of expo-nentials and polynomials, while a set of �tting parame-ters is found by minimization of the energy funtional.Thus, the quality of suh funtions is determined bythe auray of reproduing the binding energy value.Beause the averaged value of the Hamiltonian is de-termined by the distanes of the order of the size ofthe atom, suh funtions provide very good approxi-mations at these distanes. However, as was alreadyemphasized in [2℄, they are not neessarily as preise inthe limit ases r1 = r2 = 0 and r12 = 0.The motivation for our study is that in a number ofdynamial problems, one needs the bound state wavefuntions in regions of these variables where one ofthe distanes is muh smaller than the others. Thisis the ase with those proesses involving bound ele-796



ÆÝÒÔ, òîì 130, âûï. 5 (11), 2006 Wave funtions of helium-like systems : : :trons that are kinematially forbidden for free ele-trons. For example, the high-energy asymptoti form ofthe photoionization ross setion is expressed in termsof the two-eletron funtion 	(0; R;R), where r1 or r2is zero [1℄. The same is orret for the nonrelativistihigh-energy asymptoti form of double photoionizationand for the energy distribution of Compton satteringat su�iently small energies of the outgoing eletrons.Some of the harateristis of double photoionizationare expressed in terms of the two-eletron funtion withzero intereletron distane 	(R;R; 0) [3℄. The straight-forward way to obtain the funtions F (R) and �(R) isto alulate them from 	(r1; r2; r12) that is derived nu-merially. This is a rather ompliated proedure.Of ourse, one an use numerous aurate approx-imations of the funtions 	(r1; r2; r12) by superposi-tions of analyti funtions depending on a large num-ber of variational parameters (see [1℄ and more reentpapers [4℄ and [5℄). However, it would be useful toalso have simple (although less preise) wave funtionswith a small number of parameters expliitly depend-ing on the physial harateristis of the system. Thisis inreasingly true beause, as disussed in [6℄ and [3℄,there is no ommon view yet on the relative role of thepossible mehanisms of ionization proesses. It wouldtherefore be reasonable to have tools not only for au-rate omputations but also for rapid and expliit esti-mations.Here, we build approximate wave funtions FA(R)and �A(R) based on the known behavior of the exatwave funtion only near the triple oalesene pointR = 0. The only free parameter in our approah is thevalue of the wave funtion at the oordinate origin,N = 	(0; 0; 0): (2)Our approah was initiated and motivated by the im-portant role played by the proper treatment of thetwo-partile oalesene point in earlier alulations.For example, the binding energies an usually be re-produed with a good auray by approximate wavefuntions that are ertain ombinations of exponentialand polynomial fators [1℄. Approximate wave fun-tions based on exponential and polynomial fators areadequate representations at distanes of the order oftypial atomi dimensions. However, it was understoodlong ago that the analyti dependene on R is moreomplex and that the dependene is logarithmi in theviinity of the origin [7℄. Later, it was found that as r1,r2 or r12 tend to zero, the solution of the Shrödingerequation satis�es spei� Kato onditions [8℄. Inlu-sion of the logarithmi terms [9℄ or aounting for theKato onditions [10℄ (or both [11℄) does not in�uene

the energy value muh, but strongly improves the on-vergene of the 	(r1; r2; r12) alulations. This enour-aged us to try a rather simple approah.As is shown in this paper, the approximate fun-tions for (1) are given byFA(R) = N exp ���Z � 12�R� ;�A(R) = N exp(�2ZR): (3)They have to be ompared with preise or highly a-urate loally orret funtions FLC(R) and �LC(R).For the latter, we use the funtions obtained by theorrelation funtion hyperspherial harmoni (CFHH)method [12℄. These nonvariational wave funtions ofthe two-eletron system in the s-state bound to a lightnuleus have been obtained by diret solution of thethree-body Shrödinger equation [13℄, without addi-tional approximations. They require ompliated om-puter odes for solution.The way we onstrut the approximate wave fun-tions insures that they reprodue the CFHH funtionsFLC(R) and �LC(R) with good auray at su�ientlysmall values of R. The question is how long an thislast as R inreases? In other words, we must alu-late the harateristis of the proesses determined byF (R) and �(R) at R being of the order of the size ofthe atom, and ompare the results obtained with (3)and with the CFHH funtions.The answer is that the relative disrepany betweenfuntions (3) and the CFHH funtions does not exeedseveral perent at harateristi distanes 1=(Z � 1=2)and 1=2Z. The same is the auray of experimentaldetetion of the photoionization harateristis.Of ourse, this auray would not have been suf-�ient for the alulation of stati atomi harateris-tis, e.g., of energy levels. However, there was quali-tative ontroversy in theoretial results on the doublephotoionization energy distribution until reently [6℄,with quantitative results di�ering by orders of magni-tude. Thus, it would be unjusti�ed to aim for too highauray in any ase. On the other hand, good au-ray of funtions (2) prompts a basis for expansion ofthe CFHH funtions. Beause funtions (3) have theradial dependene of the 1s-funtions in the Coulomb�elds with the respetive harges (Z � 1=2) and 2Z,we an represent the numerial CFHH funtions as lin-ear ombinations of the funtions of this �eld with thedominant ontribution oming from the 1s-terms.We build our approximate wave funtions and dis-uss their relation to other approahes in Se. 2. Weanalyze the expansion of the CFHH funtions at two-797



E. G. Drukarev, M. Ya. Amusia, E. Z. Liverts et al. ÆÝÒÔ, òîì 130, âûï. 5 (11), 2006partile oalesene points in series of the single-par-tile eigenfuntions of Coulomb �elds in Se. 3. Weonsider the appliations in Se. 4, and summarize inSe. 5. The atomi system of units is used throughoutthis paper. 2. WAVE FUNCTIONSIt is known that at small distanes r1;2 � Z�1,the solution of the Shrödinger equation an be writ-ten as [14, 15℄	(r1; r2; r12) == N �1� Z(r1 + r2) + 12r12 +O(r2; r2 ln r)� ; (4)with r =pr21 + r22 . The expliit form of the quadratiterms was found in [14℄. Equation (4) is onsistent withthe more general Kato onditions [8℄�	(r1; r2; r12)�r1 ����r1=0 = �Z	(0; r2; r2);�	(r1; r2; r12)�r2 ����r2=0 = �Z	(r1; 0; r1);�	(r1; r2; r12)�r12 ����r12=0 = 12 	(r1; r1; 0); (5)whih are satis�ed for the CFHH funtions. UsingEq. (4), we �nd that at r1; r2 � Z�1,F (R) = N �1��Z � 12�R+ : : : � ;�(R) = N (1� 2ZR+ : : : ) ; (6)with the dots denoting higher-order terms. Therefore,limR!0 1F (R) dF (R)dR = �Z + 12 (7)and limR!0 1�(R) d�(R)dR = �2Z: (8)We require Eqs. (7) and (8) to be satis�ed by ourapproximate funtions FA(R) and �A(R) for all R.This leads to Eq. (3).The funtions in (3) orrespond to a very simplephysial piture. We note that Eqs. (3) look like the1s-funtions in the Coulomb �elds with the hargesZ � 1=2 and 2Z, whih serve in fat as a sort of ad-justable parameters. The R-dependene is the one of

the 1s-eletron, while the small probability of the three-partile oalesene is ontained in the fator N deter-mined by Eq. (2). We alulate it using the CFHHfuntions.To haraterize the quality of our approximate fun-tions, we introduey1(R) = lg ����FA(R)� FCFHH (R)FCFHH (R) ���� ;y2(R) = lg �����A(R)��CFHH (R)�CFHH(R) ���� ; (9)were the subsript CFHH denotes the wave funtionsobtained in [13℄.The auray of funtions (3) inreases rapidly withinreasing the nulear harge Z. However, even forthe negative ion H� (Z = 1), the auray is ratherhigh. At harateristi values R � (Z � 1=2)�1 andR � (2Z)�1, the error of the funtion �A for H� isabout 6%, but only about 1% for the funtion FA.The errors inrease at larger values of R. They ex-eed 10% at the distanes at whih the wave funtionsare already very small. The funtions yi(R) de�ned byEqs. (9), whih desribe the R-dependene of the er-rors, are presented in Fig. 1. We show the results forhelium (Z = 2) beause most of the studies of two-eletron systems are arried out for this ase. We alsogive results for Z = 4 to illustrate the Z-dependene.The urve for H� (Z = 1) is also presented, beausethis ase is most di�ult for investigations. The dipin the graph in Fig. 1a is a result of the logarithmisale, beause the logarithm of the absolute value ofthe di�erene of the two funtions tends to �1 at thepoints where the di�erene hanges sign. The overallauray of the solution an therefore be inferred onlyat the values of R not too lose to the dip.One an see that as R approahes the order of thesize of the atom, the disrepany with the CFHH fun-tions beomes muh greater than that at smaller R.However, the preision is still good enough for obtain-ing results with the auray of several perent.The values of N de�ned by Eq. (2) are presented inTable 1. At large Z, the single-partile hydrogen-likemodel is expeted to beome inreasingly true, beausethe interation between the eletrons is Z times weakerthan their interation with the nuleus. Hene, in thelimit Z � 1, N = N = Z3� : (10)The results in Table 1 illustrate this tendeny. As ex-peted, deviations from the limit law (10) are of the798
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Fig. 1. The funtions y1(R) and y2(R) de�ned by Eq. (9), for the negative ion H�(Z = 1) (a), for atomi helium(Z = 2) (b), and for the ion Be++(Z = 4) ()order of Z�1. The atual results are smaller than pre-dited by (10) beause Eq. (10) does not inlude theeletron repulsion, whih diminishes this value.Of ourse, there are numerous simple approximatewave funtions of the type 	A(r1; r2; r12) =  (exp(�ar1�br2)+ exp(�ar2�br1)) ;whih are built in order to alulate the ground-stateenergy values [1℄ and approximate the solutions of theShrödinger equation at r1 and r2 of the order of Z�1(in the ase of H�, they must also reprodue the very799



E. G. Drukarev, M. Ya. Amusia, E. Z. Liverts et al. ÆÝÒÔ, òîì 130, âûï. 5 (11), 2006Table 1. The value F (0) = �(0) = N for severalvalues of Z. The ratio ~r = N=N with N de�nedby Eq. (10) illustrates the onvergene to the high-ZlimitZ 1 2 3 4 5 6N 0.071 1.37 5.77 15.2 31.6 56.8~r = NN 0.22 0.61 0.67 0.74 0.79 0.83
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Fig. 2. The exat and approximate helium wave fun-tions at the eletron�eletron oalesene line. Ex-at urve (solid line), N exp(�4R) (dashed line),(�3=�) exp(�2�R), � = 27=16 (dotted line)existene of the bound state). Tehnially, they turnto the single-exponential forms at r1 = r2 = R and areindependent of r12. These funtions an be omparedwith our funtions �(R) de�ned by Eq. (3). But theydo not approximate the loally orret CFHH fun-tions �A(R), and, as argued in [2℄, are not supposedto. In Fig. 2, we illustrate this statement by present-ing the CFHH funtion �(R), our funtion (3), and thesreened Coulomb wave funtion�s(R) = �3� e�2�Rwith � = 27=16 for helium [1℄.In Ref. [16℄, the funtion F (R) for H�, He, and Li+was approximated by a hydrogen-like funtion with thee�etive harge Zeff treated as a variational parame-ter. The respetive values of Zeff for Z = 1; 2; 3 havebeen found to be 0.58, 1.53 and 2.52. In Ref. [17℄, thefuntion F (R) for the ion H� was analyzed at largedistanes. We do not laim our funtions to be a-

urate in this R-region, whih is not essential beausethe R-domain within the atomi radius is of primaryimportane.3. EXPANSION OF THE CFHH FUNCTIONSIN SERIES IN THE COULOMB FIELDEIGENFUNCTIONSThe R-dependene of the approximate wave fun-tions FA(R) and �A(R) in (3) is the same as that of1s-funtions in the Coulomb �elds of the nulei with therespetive hargesZ1 = Z�1=2 and Z2 = 2Z. The highpreision of these funtions suggests that the eigenfun-tions of the Shrödinger equations in these �elds formonvenient series for expansion of the CFHH funtionsF (R) and �(R).With the ommon notation X(R) for the funtionsF (R) and �(R), we introdue the normalized funtionsXN (R) = 1C1=2X X(R);where CX = 1Z0 R2X2(R) dR:Thus, 1Z0 R2X2N (R) dR = 1:In the expansions over the omplete sets of someeigenfuntions, XN(R) an be represented asFN (R) =Xi aifi(R); �N (R) =Xi bi'i(R); (11)where Pi denotes summation over the disrete-spet-rum states and integration over the ontinuum, andai = 1Z0 R2FN (R)f�i (R) dR;bi = 1Z0 R2�N (R)'�i (R) dR: (12)For fi(R) and 'i(R) normalized to unity, we haveXi a2i =Xi b2i = 1: (13)Choosing the solutions of the Shrödinger equations inthe Coulomb �elds with the harges Z1 = Z � 1=2 andZ2 = 2Z as the respetive funtions fi(R) and 'i(R),800



ÆÝÒÔ, òîì 130, âûï. 5 (11), 2006 Wave funtions of helium-like systems : : :Table 2. The oe�ients of the two lowest termsin expansions (11) of the CFHH funtions in termsof the Coulomb funtions. The oe�ients of thenext terms are limited by the onditions jaij < ~a,jbij < ~b, while the values of ~a = (1 � a21s � a22s)1=2and ~b = (1 � b21s � b22s)1=2 are presented in the twobottom linesZ 1 2 3 4a1s 0.98482 0.99970 0.99991 0.99996b1s 0.99067 0.99807 0.99918 0.99955a2s �0:144 �0:020 �0:010 �0:007b2s �0:108 �0:046 �0:030 �0:022~a 0.097 0.015 0.008 0.005~b 0.082 0.041 0.028 0.021we �nd the values a1s and b1s given in Table 2. Foratomi helium, a1s = 0:9997 and b1s = 0:998. Highauray of funtions (3) orresponds to domination ofthe terms a21s and b21s in sums (13).The preision of alulations an be improved byadding the ontributions of the higher states in aor-dane with Eq. (12). Of ourse, only the s-states areinvolved in our ase. For example, a2s = �0:02 andb2s = �0:05 in the ase of atomi helium. The resultsfor other values of Z are given in Table 2. This proe-dure allows ahieving any desired auray, ontrolledby Eq. (13).4. EXAMPLES OF APPLICATIONAs mentioned above, one of the possible applia-tions of funtions (3) is given by high-energy photoion-ization proesses. We start with single photoionization.The high-energy nonrelativisti asymptoti form of theK-shell ionization ross setion an be written as [1℄� = 211=2�e2Z2C23m!7=2 ; (14)wherem is the eletron mass and  is the speed of light.The properties of the ionized states are ontained in thefator C = 1Z0 R2F (R) K(R) dR; (15)where F (R) is determined by Eq. (1) and  K(R) is thesingle-partile funtion of the K-eletron in the resid-ual ion. In our ase,  K(R) is just the 1s-funtion ofthe Coulomb �eld with the harge Z.

In the single-partile approximation, C is simplythe value of the single-partile wave funtion at the o-ordinate origin. To illustrate the quality of funtions(3), we ompare the results for the fator C alulatedusing the CFHH funtions and funtions (3). In thelatter ase, we �nd the analyti expressionC = 2NZ3=2p�(2Z � 1=2)3 ; (16)yielding C = 0:102 for atomi helium. Numerial al-ulations with the CFHH funtions give C = 0:103 inthis ase. Hene, using approximate funtion (3) leadsto an error of 1%. Earlier, the authors of [18℄ foundthat the value of C obtained by using the Hylleraas-ty-pe variational funtion is well approximated by using ahydrogen-like funtion with Zeff = Z � 0:53.We now turn to the ase of double photoionization.The shape of the spetrum urve of double photoioniza-tion hanges as the photon energy inreases. The meh-anisms that ause these hanges are explained in [3℄.While the photon energy ! is smaller than a ertainvalue !1, the energy distribution approahes its min-imum at the entral point, with the equal energies ofthe outgoing eletrons, i.e., "1 = "2. There is a peak atthe entral point for ! > !1, whih splits into two for! > !2. Thus, there is a loal minimum at "1 = "2 for! > !2.The values of !1 and !2 were obtained in [19℄ usingthe CFHH funtions. We do not repeat the deriva-tion of the orresponding equations here. Instead, weexplain their origin and formulate them in order to il-lustrate how funtions (3) allow obtaining approximatesolutions.The values of !1 and !2 an be given as solutionsof the following equation, whih involves the funtionsF (R) and �(R) [19℄:�� = !9=2A(!); (17)where � is a numerial oe�ient,� = 1Z0 drjF (r)j2 ; (18)and the funtion A depends on ! in a more ompliatedway, A(!) = +1Z�1 dt t2(1� 2t2)D(!2t2); (19)with D(q2) = ������ 1Z0 sin(qr)qr �(r)r2dr������2 : (20)39 ÆÝÒÔ, âûï. 5 (11) 801



E. G. Drukarev, M. Ya. Amusia, E. Z. Liverts et al. ÆÝÒÔ, òîì 130, âûï. 5 (11), 2006Table 3. The values of !1 and !2 (Se. 4) in keVfor the ground states of the lightest helium-like sys-tems, alulated using the CFHH funtions [13℄ andfuntions (3)Z 1 2 3 4!1, this work 0.67 2.11 3.92 6.14!1, [13℄ 0.55 1.93 3.70 5.89!2, this work 4.86 9.71 14.5 19.3!2, [13℄ 3.97 8.89 13.7 18.5Using the exat CFHH funtions requires tediousomputations. However, approximate wave fun-tions (3) allow obtaining analyti expressions for bothleft-hand side and right-hand side of Eq. (17). SettingF (r) = FA(r) and �(r) = �A(r), we obtain� = 12Z � 1andA(!) = 1!6 ���6a6 + 13a4 + 2a2 + 36a2(a2 + 1)3 + 1� 2a22a3 artg 1a� (21)with a = 2Z=!.The values of !1 and !2 obtained by using theCFHH funtions and funtions (3) are presented in Ta-ble 3. It an be seen that the disrepany between thetwo sets of results dereases rapidly with inreasing Z.Being 22% for H� and 9% for He, it beomes 4% forZ = 4. 5. SUMMARYWe have built very simple analytial approxima-tions (3) for the wave funtions F (R) and �(R) de-sribing ground states of two-eletron systems boundby the Coulomb �eld of a nuleus in the spatial regionsr1 = r2 = 0 and r12 = 0. The presentation is based onthe behavior of the exat solution of the Shrödingerequation near the three-partile oalesene singularity.Comparing our funtions (3) with the loally orretCFHH funtions for the ion H�, atomi helium, andlight helium-like ions (relativisti orretions, whih areof the order of (Z=137)2, are not inluded), we foundgood agreement in a large interval of the values of R.As is evident, the preision of the approximate fun-tions inreases with inreasing the nulear harge Z.

We have shown that the solutions of the single-par-tile Shrödinger equations in Coulomb �elds withharges Z1 = Z � 1=2 and Z2 = 2Z provide natu-ral bases for the expansion of the funtions F (R) and�(R) with dominant 1s-terms. The tendeny for theirdomination inreases with Z. The approah is morepreise for F (R) than for �(R).Examples presented in Se. 4 show that even for thelightest helium-like systems, suh as H� and He, wavefuntions (3) an be used for estimations of the physialparameters at least.The high preision of suh a simple approximationthat properly treats singularities in the wave funtionis in agreement with the onventional belief thatsingularities determine important physial harateris-tis suh as high-energy photoionization ross setions.M. Ya. A. is grateful to the Binational Siene Foun-dation (grant � 2002064) and to the Israeli SieneFoundation (grant � 174/03) for �nanial support ofthis researh. E. G. D. is grateful for the hospitalityextended to him during his visit to the Hebrew Univer-sity. The researh of V. B. M. was supported by theIsraeli Siene Foundation (grant � 131/00).REFERENCES1. H. A. Bethe and E. E. Salpeter, Quantum Mehanis ofOne- and Two-Eletron Atoms, Springer-Verlag, Berlin(1958).2. J. H. Bartlett, Jr., J. J. Gibbons, Jr., and C. G. Dunn,Phys. Rev. 47, 679 (1935).3. M. Ya. Amusia, E. G. Drukarev, and V. B. Man-delzweig, Physia Sripta 72, C22 (2005).4. G. W. F. Drake, M. M. Cassar, and R. A. Nistor, Phys.Rev. A 65, 054501 (2002).5. V. I. Korobov, Phys. Rev. A 66, 024501 (2002).6. E. G. Drukarev, N. B. Avdonina, and R. H. Pratt,J. Phys. B 34, 1 (2001); T. Suri, E. G. Drukarev,and R. H. Pratt, Rhys. Rev. A 67, 022709 (2003).7. J. H. Bartlett, Jr., Phys. Rev. 51, 661 (1937); V. Fok,Izv. Akad. Nauk. SSSR, Ser. Fiz. 18, 161 (1954).8. T. Kato, Com. Pure Appl. Math. 10, 151 (1957).9. K. Frankowski and C. L. Pekeris, Phys. Rev. 146, 46(1984).10. Z. Teng and R. Shakeshaft, Phys. Rev. A 47, R3487(1994).802
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