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The single-spin beam and target asymmetries in the hard electroproduction process e™ +p — e~ +~+p induced
by the loop radiative corrections to the vertex part of lepton interaction are considered. The physical reason
for the appearance of such a kind of asymmetries is a nonzero imaginary part of the amplitude (on the level of
radiative corrections) caused by diagrams with a photon radiation by the outgoing electron. We calculate the
single-spin beam and target asymmetries at a longitudinally polarized electron beam or at arbitrary polarizations
of the target proton for the CLAS and HERMES experimental conditions.

PACS: 12.20.-m, 13.40.-f, 13.60.-r, 13.60.Hb, 13.88.+e

1. INTRODUCTION

It has been well known during a long time that the
parity-conserving single-spin beam and target correla-
tions in elastic electron—proton scattering and the ra-
diative (ee’y) reaction can be used to extract infor-
mation about the virtual Compton scattering (VCS)
amplitude. This amplitude is a very important physical
quantity, which has triggered a significant experimental
and theoretical activity.

Below the pion production threshold, it allows ac-
cessing generalized polarizabilities of the proton, which
are defined by quadratic terms in the expansion of the
VCS amplitude in the photon momenta [1, 2]. Different
theoretical approaches and models have been suggested
to describe the proton polarizabilities [3-7] and the first
low-energy dedicated VCS experiments were performed
at MAMI [8] and Jlab [9].

In the region of large energies and photon vir-
tualities, VCS is usually referred to as deeply vir-
tual Compton scattering (DVCS). The corresponding
DVCS amplitude can be parameterized by new gener-
alized parton distributions [10-12], commonly termed
the skewed parton distributions. The pioneering pa-
pers cited above have stimulated considerable theoret-
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ical efforts in this field (see, e.g., reviews [13] and the
references therein) and experimental studies of related
hard electroproduction [14, 15].

In elastic scattering, the VCS amplitude enters
through the two-photon exchange diagram (TPE) with
two off-shell photons. The cross section and parity-con-
served spin—spin correlations in this case are sensitive
only to the real part of this diagram and, therefore,
to the real part of the double off-shell VCS amplitude.
The VCS-dependent contributions to these observables
have the status of the first-order electromagnetic ra-
diative correction to the Born values and have been
calculated suggesting elastic [16] and inelastic [17] in-
termediate hadronic states in the TPE diagram. On the
other hand, the single-spin normal asymmetry probes
only the imaginary part of the TPE amplitude for both
beam and target normal (perpendicular to the reac-
tion plane) polarizations [18] and is equal to zero if the
TPE diagram is excluded. Recent theoretical calcu-
lations suitable for different kinematical regions have
been performed in [19-21]. Although the respective ef-
fect is very small (of the order of a few ppm), it can
be measured in different experimental laboratories [22].
We also note that if the electron beam or the target
proton is polarized in the reaction plane, the parity-
conserving single-spin asymmetry for elastic scattering
is strictly zero.
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Nevertheless, a nonzero asymmetry of this kind can
manifest itself in the process with three (and more) final
particles provided that all the final-particle 3-momenta
do not belong to the same plane. The simplest process
of this type probing the VCS amplitude is the reaction
(ee'y) mentioned above,

e” (k1) +p(p1) — e (ka) +v(k) + p(p2), (1)

which is described in the Born approximation by dia-
grams in Fig. 1.

The diagrams in Fig. 1a, b correspond to the well-
known Bethe—Heitler (BH) amplitude, in which the
hadronic structure is described by ordinary electro-
magnetic form factors of the proton. The diagrams in
Fig. 1¢, d contain a VCS block with one virtual and one
real photon. Below, we refer to them as the VCS am-
plitude. In general, the VCS amplitude includes both
the real and imaginary parts, in contrast to the BH
amplitude, which is purely real.

The parity-conserving single-spin asymmetries in
process (1) with an arbitrarily polarized electron beam
or target proton are proportional to the real part of the
whole amplitude times its imaginary part that arises
due to the VCS amplitude in Fig. 1d. As a rule, the
BH amplitude dominates and the effect caused by the
real part of the VCS one is a few times smaller. In spite
of this circumstance, experimental data for single-spin
correlations can be used to extract information about
both real and imaginary parts of the VCS amplitude.

We note that the one-loop correction to the lep-
ton part of the BH amplitude with radiation of a pho-
ton by the outgoing electron can generate an additional
contribution to the single-spin asymmetries due to the
interference of the diagrams in Fig. 1a, b and those
in Fig. 2. The knowledge of the radiative correction is
very important in analyzing experimental data because
the first absolute measurement of the VCS cross section
on a nucleon performed at MAMI [8] indicates a large
QED radiative correction of the order 20 %. There is
another class of diagrams at the level of radiative cor-
rections that also leads to a nonzero imaginary part —
the so-called box-type diagrams. Estimation of their
contribution to the observables in process (1) and to the
single-spin asymmetries, in particular, is a large theo-
retical problem because it requires a model for the VCS
amplitude. In comprehensive work [23] devoted to the
study of radiative corrections in this process, the au-
thors used an approach recently developed in [16], ex-
cluding inelastic intermediate hadronic states in model-
dependent box-type diagrams. By means of semian-
alytic (mainly numerical) calculations, they have ob-
tained different observables accounting for the radia-

tive corrections (also including single-spin beam asym-
metry), where model-independent contribution caused
by the diagrams in Fig. 2 mix with model-dependent
ones.

In this paper, we obtain analytic expressions for
model-independent contributions to the single-spin
beam and target asymmetries in the BH process that
appear due to one-loop vertex corrections to the BH
amplitude in Fig. 15. The knowledge of these contribu-
tions is necessary in order to be sure in determination
of the model-dependent pieces from experimental data,
which already arise at the Born level and are caused
by the VCS amplitude. The corresponding result turns
out to be simple enough to include it in Monte Carlo
generators for the analysis of VCS experiments. In our
calculations, we used analytic formulas for the one-
loop-corrected Compton tensor in electrodynamics in
the scattered channel obtained in [24] for the longitu-
dinally polarized electrons and in [25] in the unpolar-
ized case. We note that the results in Ref. [25] were
recently confirmed in [26], where such a Compton ten-
sor was calculated independently for the annihilation
channel and it was shown that both tensors are related
via analytic continuation.

2. KINEMATICAL VARIABLES AND THE
PHASE-SPACE FACTOR

To describe the physical observables in process (1)
the three dimensionless variables

3

= — (k1 — ko)? y = 2p1(k1 — k)
2p1 (k1 — k)’ |4 ' 2)
(p1 —p2)2
=——>="" V=2pk
P V 9 P1R1

and two azimuthal angles in the target proton rest
frame are typically used. One of them, ®, is simply
the angle between the leptonic and hadronic planes as
shown in Fig. 3 for two different choices of the z axis:
opposite to the direction of q; = k; — ko (Fig. 3a) [27]
and along the direction of k; (Fig. 3b) (in what follows,
we refer to these systems as K and K, respectively).
The other one, ¥, is the azimuthal angle of an arbi-
trary target polarization 3-vector provided that the xz
plane is defined by the outgoing electron 3-momentum.
The detailed consideration of transformations between
the different target polarization states and between the
angles ¥ and ¥ can be found in [28]. Here, we empha-
size that we consider only those target polarizations
that can be expressed through the particle 4-momenta
(their physical content is given in Sec. 4 below). This
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Fig.1. Born diagrams for process (1).
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The solid part of the proton line indicates that together with elastic intermediate

hadronic state, the inelastic ones must be taken into account. These last provide the imaginary part of diagram d
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Fig. 2. One-loop corrections to diagram Fig. 1b that generate a nonzero imaginary part of the BH amplitude in the order «

means that our target polarization asymmetries are in-
dependent of the angle ¥ and we can perform trivial
integration over it.

The energies and the 3-momentum modules of the
particles are independent of the choice of the z axis;
with the electron mass neglected, they are given by

51:67 52:ﬂ(1_y)7 Q10:597 (3)
E, =321 +p).  |p2| = BV p(dT +p),
2
lai| = BVy? + dayT, =\/g-, T=M77

where &1 (¢2) is the energy of the incoming (outgoing)
electron and E> (p2) is the energy (3-momentum) of
the recoil proton.

In contrast to the energies, the scattering angles
depend on the choice of the z-axis direction. For the
system K, we have

y(1 =y - 27)
cosf, = — - ,
(1—y)\/y? +4dzyr @
2
cosf, = yp +27(p + zy)

/T + p) (P + dayr)
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and for the system K,

Cosé_l—y—QxyT osf. p+2zT
e — — 5 p— T ——
-y VAT +p) (5)
P 2k1po
V 3

where 6. and 6, are the electron and proton scattering
angles in the system K; 6. and 9}, are the same angles
in the system I;” and we introduced, for convenience, a
new dimensionless quantity z that has to be expressed
through the azimuthal angle and invariant variables (2)
in the final results.

The photon is usually not recorded experimen-
tally, and therefore we have to eliminate the photon
4-momentum from the phase space of final particles by
means of the overall (4 -function. Thus, we have to
define
d?’kz d3p2

&2

dF =

3(k?). (6)

2
Elimination of 6(k?) is trivial in the system K,
1

6<k2) dcosép N 2\Q1HP2|

which leads to

% Y
— ————dxdydpd®.
2 /y? +dayT P

dFy = (7)
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Fig.3. Definition of angles in laboratory system with differently chosen coordinate axes

For the system R’, the equation k> = 0 represents
a relation between the variables z, y, p, ®, and cosf,
that is nonlinear with respect to cosf,, namely,

2
kv =—a—fcos®y/1—cos?b, +vycosb, =0, (8)

where a, 3, and 7 are always positive and

Y 1
a= xy+p+g—7-, B = —aypr(4r+p)(1-y—2y7),
1421
727‘“ )\/p(4r+p)~

2T
We note that in terms of the invariant variable z, this
equation is equivalent to

p(1 —ay) + 2y —yz(1 + 227) .
2y/zy(1 —y — xyn)p(1 - 2) — 2%7]

To eliminate the é-function in the phase space in
(6), we now have to find all possible solutions of Eq. (8),
taking into account that in accordance with Eq. (5), the
quantity cos 9;, is positive.

Simple analysis leads to the following conclusion.

i) If cos $ > 0, there is only one solution provided
that v > a (at 7 < «, the solution is absent).

i) If cos® < 0 and v > a, the required solution
exists if & > /3| cos ®|. With these conditions, we have

cosd = —

1
—_— X
v2 + B2 cos? @

X <a’y+ﬂ cos @\/72—a2+ﬂ2 cos? <i>> , y>a, (9)

cosf =

for an arbitrary sign of cos $. It is clear that in this
case, all values of the azimuthal angle are possible. We

3 ZKIT®, B, 2

also note that the condition v > « restricts the quan-
tity p at fixed x and y in the range p; < p < ps such
that p; > p_ and pa < p4 (for p4, see Eq. (17) below).

iii) If v < a and cos® < 0, only those azimuth
angles are allowed for which

042—’)/2
B

[cos | >

In the case where

Bleos®| < a < \/~2 + 2 cos? &,

we have two different solutions cosf+ with both signs
in front of the second term in the right-hand side of
Eq. (9). X

iv) Finally, if a < 8| cos @[, the quantity cosf be-
comes negative and only cosf_ survives.

Therefore, in general, we must account for two dif-
ferent roots of Eq. (8), which leads to

dz

§(k*)dcos ép =7

[0(z—z24)+6(z—2-)], (10)

. 1—y—

F, = y(142z7)+(p+227) cos @ w7
p—zp—2z2T

and the quantities z4 are simply expressed through

cosf4 as

cosfi—a
=

7 _ P - 2T ‘
! Vp(41+p) Vp(41+p)

In terms of the variables used, they become

_ A+ Bcosd

Z4+ D ) (11)
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where the coefficients A, B, and D are even functions
of cos @,

A=y [(1—}—2937)(p+xy(1—p))—2xp(1—y—xy) cos’ <i>] ,

B=2ay(l—y—ayr)H,

H =yp(1+ 227) {y(l +2z7) —p—2zy(l — p)} -

—7lotay(1-p)+ayp(1—y—zyr)(47+p) cos® &,  (12)

D = y*(1 + 227)% + 4oyt (1 — y — xy7) cos® d.

We note that z; <« z_ under the substitution
® — 7+ ®. Thus, for the system K, we have

dFy, = %y dx dy dpd@% [0(z—z4)+d(z—2_)]. (13)

Here, we emphasize a principal distinction in the
description of any polarization observable by means of
the coordinate systems K and K. In the first case, the
same factors in polarization-dependent and unpolarized
parts of the cross section can always be eliminated in
their ratio. In the second case, this cannot be done
under condition iii) because every z-dependent factor
actually represents the sum of two terms weighted with
different functions. To clarify this point, we imagine for
a moment that the cross section has the form

do = (U + P)GdF, (14)

where the function U (P) describes unpolarized
(polarization-dependent) events and depends on in-
variant variables x, y, p, and z. Then for the system
K, the polarization asymmetry is the ratio

P
U
where we have to express the invariant variable z
through z, y, p, and cos ® as (see also [27])

Ag = (15)

1
z = = 2K cos @ + 2z7(zy + p) +
+zy+ p(1 + 2y —22)|, (16)
w2 = P=y=ay7)(y—2y+7)(p+—p)(p—p-)

Y
The quantities p+ in the last expression have the mean-
ing of the maximum and minimum values of p at fixed
z and y,

o Y
C2y(1—x) + 7] X

X [(1 — ) (;yi Vy? +4xyr) +21‘T} .

P+

(17)
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For the system K, simple substitution of Eq. (13)
in cross section (14) defines the polarization asymmetry
under condition iii) as

4, = Pe)GG) P (2o )+P(2- )G (2= ) Fa (24)
p =

Ue)GeE (o )+ U )G () )

and we can see that neither the multiplicative function
G nor the phase-space factor F, can be eliminated.

In current experiments [29-31], cases i) and ii) are
realized, and Eq. (14) can be used to calculate asym-
metries. Moreover, at fixed values of x and y, it is valid
in a wide range of the p values. Condition iii), requiring
that Eq. (18) must be used, is satisfied only in small
regions near p4 and p_. In our numerical calculations
for the system K, we restrict ourselves to conditions i)
and ii).

3. THE BEAM SINGLE-SPIN ASYMMETRY

In calculating the beam single-spin asymmetry, we
consider only the case with a longitudinally polarized
electron because the respective effect for the transverse
polarization of the electron is suppressed by the elec-
tron mass.

The cross section of process (1) caused by the BH
amplitude can be written in terms of a contraction of
the leptonic L, and hadronic H,, tensors,

as

do = oLy Hyy dF.

(19)

The hadronic tensor is determined by the Dirac (Fy)
and Pauli (F3) proton form factors, which are real in
the space-like region, and by the target polarization
4-vector S,

L A )
Huy = 3 Te(p> + M)Ty (1 + M)(1 = 58)Ts,

_ wtpu) 2

Fu:(F1+F2)7u M 2

where M is the proton mass. It is convenient to
write it as a sum of the real symmetric polarization-in-
dependent and imaginary antisymmetric polarization-
dependent parts,

Hyy = H) + iHyy),

Vp 5
H(uu) = _T(Fl + F2)2gu,/ +

+2<F12 + £F22>ﬁ1u]51m (21)
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H[ul/] = _(/“/q)\)M(Fl +F2) X

P (Sp2)pix
r-F TR =p— 22
X[(l yp 2>S>\+ onf L2l 4=pimpe (22)
where we use () and [ ] to denote symmetric and anti-

symmetric parts of second-rank tensors and

(P19)qy
2 b)
q

dudv .
77 Pip = Pip —

gut/ = Guv —

(,ul/q/\) = €uvpdp, €0123 = 1.

The general structure of the leptonic tensor, ac-
counting for the one-loop radiative correction, can be
written as

Lyw = By + 1Py +

= 1B +iB!) +iP{)

1 (1)
47 | (wv [nv [wr] + P

+ (uv) |

(23)
where B (P) denotes the unpolarized (spin-dependent)
part in the Born approximation and the superscript (1)
corresponds to the one-loop correction contribution.
The contraction of tensors in Eq. (19) in the case of
the polarized beam and unpolarized proton target is
_ a (1) (1)
Hyw Lyw = Huw) [B(uv)"'g (B(W)"'P(W))] , (24)
whereas for the polarized target and unpolarized elec-
tron beam, we have

H, L, = (H(MV) + Z'H[M,,]) X

o (B(l)

X [B(MV) + A1 (pv)

+B))]. (25)

Therefore, the single-spin beam asymmetry is defined
by the formula

(1)
@ H(u,,)PW dF

Ay =~ 0 ) 26
"7 AT ) B AF 20
and the single-spin target asymmetry is given by
H;, BY dF
At a (V]2 1) (27)

47 ) By AF

where we neglect terms of the order a in the denomina-
tor. We recall that for the system K, we can eliminate
the phase space dF in the right-hand sides of Eqs. (26)
and (27), but this cannot be done in the system K in
the general case.

The experimental conditions in reaction (1) are such
that the photon has a sufficiently large energy and flies
at large angles with respect to both the incoming and
outgoing electrons. We can therefore neglect the elec-
tron mass (wherever possible) in expressions for both

the unpolarized and spin-dependent parts of the lepton
tensor.

The unpolarized part in the Born approximation is
well-known and is given by

(s+u)?+ (t+u)?._

B( Juv +

) = st

42 1~ - ==
= (R + o), (28)

u = —2]{51]{22, s = Qkkz, t= —Qkkl,

P =s+t+u, |ul,lt]|d?,s>m’

The loop correction to the spin-dependent part of
the leptonic tensor in the case of a longitudinally po-
larized electron beam has the structure

ip!)

)+ Pl = z'[P[MD + (krqu) (Ar + A7) +

(uv)
+ (kaqup) (A + A3) +

+(k1kaqu) (Bi k1 +Bakay) — (ki kaqu) (Bliﬂlu-i-BQ/N@u)] )

where all the functions D, A;, and B; depending on
the invariants s, ¢, and u in limit case m — 0 consid-
ered here have been calculated in [24]. We note that
the function D is purely real, whereas the functions
A; and B; have real and imaginary parts. After short
simplification, we derive

P(l)

[uv] =

1
+Re {2A1+@ [(st—ug?®) By ~(s-+1)2 . } (kagup)+

Py D +

1
+ Re {2A2 + el [(u +t)2B; — (st — uq2)32} } X

X (kaquu), (29)

PO — Im {[(k1k2q,u)l~cl,, + (kykaqu)ky ) By +

(ki koqp)kay + (ki ko) ko] Ba . (30)

The imaginary parts of By and By appear due to
the interference of the Born diagrams in Fig. 1a, b with
one loop-corrected diagrams in Fig. 2. In accordance
with the results in [24], the quantity Bj is given by
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2 2
=3[ 1-En)
st | a a
6t 2u? — 2% — su
+€th+( cu )qu+
2b s 2
+ 2 (14 2Ly) + 20— 5) L +
4c2 120 4s? 4b2
B, P Loyu+ —L
+< st t ut) aut Ty et
Que 2t 20 22\ ~
24+ ——-——1G —+—=11G+6 31
+< +S2 8) +<t+t2>+},()

where we use the same notation as in [24] (see also [25]):

(k1k2qo) = €aprokiakopar, a=s+t,

b=s+u, c=t+u,

7T2
G = Lyu(Ly+Lu = 2Le) = & ~

2 t

— 2L, <1—q— + 2Li, <1——2>,
u
¢ u

The quantities By and G can be derived from B; and
G by the simple substitution

B, = —Bi(s & t), G=GC(st).

The imaginary part of B; is hidden in the terms
containing L, and G and, in turn, the imaginary part
of G arises due to L, as well to the Spence function
Lis (1 — ¢*/s), whose argument is greater than 1. From
the casuality principle, it follows that the imaginary
part of a diagram containing a loop integration must be
reconstructed by adding an extra small negative imag-
inary piece to the electron mass. This leads to

S .
Ly =In— —im,
m

1—s/q®
. s dr Inx u+t (32)
Lisg (11— —= ) =— —In Lgq,
e 1-2 e
0
and therefore,
ImG = 271n u+t‘
u

By combining the previous results, we obtain

o i
ImBl_—s—:Bl, Im B, = ——B,,
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_ o 2(u?—2s%—su)  2bs  4b?
1:— —2 _
uc c ut
4b  4b? u+t
A
<t+t2>nu’(33)
_ 6s 2(2b—t) 2ub  2s u+t
=25 2 (o4 ) 0 (34
c t * ( * 12 t> a (34)

It can be verified that the singularities of B; and Bs
as t — 0, which enter separate terms, disappear in the
entire expressions. Moreover, they are proportional to
t in this limit. This indicates directly that the loop-
corrected diagrams with radiation from the initial elec-
tron leg do not contribute to the imaginary part of the
BH amplitude. We also note that B; and Bs tend to
zero as ¢> — 0.

We can now express all the contractions that are
necessary to compute the single-spin beam asymmetry
in terms of the invariant variables,

Vv
H,, B ==
L) = TG ey
x [a(R+B)? +20 (FF+ZR)], (5

X1 =—p[22(z — p—ay) + (p + 2y)?],

X2 = (2 = p—ay)[227 + p(1 - y)] +
+7(p+ay)® —pll—z+ (1—y)°],

where we also use

s=V(z—p), t=-V(z-uy),
and
(1) 27TVp
H PV = " F
) = = p) (s = )

X <F12+£F22) <C+Dln£> X

x VZ [F sign(sin ®)],  (36)
where the minus sign in front of the signature func-
tion pertains to the system K and the plus sign to
the system K, and here we do not distinguish between
the notation for the azimuthal angles in these systems.
Other quantities in the right-hand side of Eq. (36) are
defined as

7 =dzylp(l1 —y)(1 —2)+71(z —2y)(p— 2)] —
= [p(1 = ay) —y(z — 2))%,
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1
C=;[z—2+xy—p—y+

2[p — xy(1 —
L pray 2o —ay( y+p)]}7
z z—ay
2 —ay(l -
D [y(l_x)_p zy( y+p)}.
z—ay z—xy

In writing Eq. (36), we took into account that

v: oo
(k1kapipe) = e [T sign(sin ®)] VZ.

It is clear that this quantity is proportional to sin ®
and can be expressed in the more transparent form

V2 2Ky

-7 sin ®

(k1kapip2) = (37)

y? + doyt
for the system K and

2

14
(kikopipe) = ke

x 2\/[ey(1 —y — xy7)(p — pz — 227)]sin®  (38)

for the system K. These last equations indicate evi-
dently that the single-spin asymmetry in the BH pro-
cess tends to zero if all the final particles belong to
the same plane provided that the electron beam has
the longitudinal polarization. Only the normal beam
asymmetry can be nonzero in this case, but it is sup-
pressed by the electron mass.

By combining (26), (35), and (36), we calculate the
single-spin asymmetry in the BH process, and our re-
sults are shown in Fig. 4.

We see that this asymmetry is of the order 10~* for
the considered experimental conditions and reaches a
maximum (about four times bigger) at middle values
of p at fixed values of 2 and y. The curves for the co-
ordinate systems K and K slightly differ in form but
are opposite in sign in accordance with Eq. (36). We
can assume that the respective effect represents only a
small background to the total single-spin beam asym-
metry in process (1) caused mainly by the interference
between the BH and the imaginary part of VCS ampli-
tudes for a longitudinally polarized electron heam.

4. THE SINGLE-SPIN TARGET
ASYMMETRIES

To compute the single-spin target asymmetries in
the BH process, we have to find the tensor B[(jl] that is
related to the imaginary antisymmetric part of the un-
polarized leptonic tensor (see Eq. (27)). The one-loop

correction to the spin-independent part of the leptonic
tensor has been considered in [25], where it was writ-
ten as

(1) 1)
1B 2 + B )

[ = (Ty+T,)guv + (T1a +T1*1)/~€1u]~€1,,+

—~—

+ (T + ng)ifuz?zy +
+ (T2 + Tz*l)iflu%w + (T2 + T1*2)l~€2u]:71'/~

The functions Tj, and Ty are derived in [25].

It is easy to divide the right-hand side of the above
equation into its symmetric and antisymmetric pieces,
and we obtain

B(?,,) =Re |2(TyGuv + Tnifluzhu + T221:32u1~€2u) +

+ (Tha + Ton) (k1 k) o |»

B(l) = Im(le - T21)[]~€1];52]uu~

uv] = (39)

Neglecting terms that contain the squared electron
mass, we have

Tio = —
27 s2 t2

2
u
pw <i +
st

2 [ch(u - 3)G N 7 (ug® — st)é_

T
uzstt Lqu>+8u+3t—3+
a

N 2us 4(u? = es)(¢*Lgu — a) N
c a
2 2 2
¢*(2¢ + t)(st — ug?) ¢*c(2u — s)
+ 2t LQS - bs th ) (40)

and Ty can be obtained from T}s by the substitution
Ty = Tia(s <> t). By means of rule (32), we can extract
the imaginary part and write

B[(iz)/] = 2 (k1pkay — kivkz, )T,

r-C {y-l-élu <11n“+t —1” .
st | c2 t u c
In the same manner as By and B, in Sec. 3, the
quantity 7' does not have a singularity as ¢t — 0 and
tends to zero as ¢ — 0.
The contraction of the hadronic and leptonic ten-

sors in the numerator of the right-hand side of Eq. (27)
is given by

(41)

AxMp(F, + Fy)
Hy, Bl = -
W1l = TV (2 = p) (2 — ay)

— 2
X <—1 P _xy2p A i) Gs, (42)
z z

z—xy xyY
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Fig.4. Dependence of the single-spin beam asymmetry on the azimuthal angle (in degrees) for three different experimental

conditions (top panel): = 0.19, y = 0.825, p = 0.024 for CLAS1 [29] (solid lines), z = 0.18, y = 0.5, p = 0.0185 for

CLAS2 [30] (dashed lines), and z = 0.11, y = 0.458, p = 0.005 for HERMES [31] (dotted lines). Curves for different values

of p = 0.0185 (solid lines), 0.2 (dashed lines), 0.42 (dotted lines) on the bottom panel are suitable under CLAS2 conditions.
The left column corresponds to the system K, and the right one to the system K

where the quantity G5 depends on the target-proton
polarization 4-vector S,

k1kaqpi)(p2S)

Gs = 2(]?31]632(]5) (F1 - ﬁFg) + ( VT F2-

To calculate the target single-spin asymmetries, we
must know the polarization vector S,. In general, the
one-loop correction to the leptonic part of the interac-
tion generates different types of such an asymmetry.

If the longitudinal (L) target proton polarization in
laboratory system is chosen along the direction of ky,
the transverse (T') polarization in the plane (ki,ks),
and the normal (V) one along the direction of k; x ko,
then the respective polarization 4-vectors S{L’T’N) can
be expressed through the particle 4-momenta as [32]
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SL _ 27’]’6‘1” _plﬂ‘
" VT (43)
gN - _ 2(pk1 kapr) .
e VEay(T—y —ayr)’
7 ko — (1 =y = 2xy7)ki, — xyp1y
Sty = ,
VVay(l —y —ay7)
where
(S18{) = ~61s, (Sip1) =0, I.J=L,T,N.
For this choice of the target polarization, we have
1 (kikagpr)
Gh = -2 (2F1 + zF2)7 (44)
(k1kagp1)

Gt =
# VVay(l —y — ayr)

F
x | =2xyF) + 2—72_(p +ay —yz(1+ 2507))} ;. (45)
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corresponds to the system K, and the right one to the system K

1

-3 Vizy ){(Fl—%Fz)X

(1—y—zyr
4F (ki kagpr)? } . (46)

X [C=y)—p—ay(I=p)]-—7r

where the proton form factors depend on
-Q* = —pV.

For the quanity (kjkagp1), we have to use Eq. (37) if
the system K is taken or Eq. (38) in the case of the

q2
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system K. The target single-spin asymmetries corre-
sponding to polarizations (43) are shown in Figs. 5, 6.
The left column corresponds to the K system and the
right one to K.

The absolute values of the target asymmetries Ay
and A7 are about one order smaller than the beam
asymmetry but strongly depend on the value of p. The
normal target asymmetry is nonzero when sin ® = 0,
which is not surprising because such a parity-conser-
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ved asymmetry exists even in elastic electron—proton
scattering where the outgoing electron and the recoil
proton belong to the same plane.

Another often used choice of directions to define
target polarizations in laboratory system is as follows.
The longitudinal direction can be taken along the 3-
momentum ps, the transverse one in the plane (k;, p2),
and the normal direction along the 3-vector ps x kj.
The covariant expressions for the respective polariza-
tion 4-vectors are [33]

Lo 2Tqu = ppn oy _ _ 2(up2kapr)
O Vrplar +p) T Vi)

n=p(l—2) -2

p(47 + p)kry + (p+227)q, — p(2 = 2)p1u
Vnp(4t + p)

T _
Szp—

These 4-vectors are orthogonal and satisfy the same
normalization and transversality conditions as the 4-
vectors Sllu' With this choice, we have

264



MWITD, Tom 129, Bhim. 2, 2006

S

ingle-spin asymmetries in the Bethe — Heitler process ...

0.0020 AL, %
0.0015

N\
0.0010 / \

0.0005 . o

0 ! Ncsq. L

50 ~To—T50 z‘oc}qg\?o 30035
—0.0005 - By
—0.0010 \
—0.0015 | 7

—0.0020
An, %

0.0005

0.0004 | \ /

T
-
~

0.0003

T
~

0.0002

\ /
0.0001 | \

0.0004f A7 z
/N
/ \
0.0002 , \
0 50 TO0 150 200 "®30._ 300 3
T
—0.0002 \ /
\ /
. /
—0.0004 - 7

0.0020 - Az, %
0.0015 | PN
0.0010 | / \
VASSRENE
0.0005 - 1" )
7 ®
0 ‘ﬁ 100 /450500 —256—"300 350
—0.0005 |-\, e
\ e
—0.0010F /
N
—0.0015F  ~
—0.0020L
AN, %
0.0005 |
N , 4
0.0004 | \\ /
\ /
0.0003F /
\ /
0.0002 - \ /
\ /
0.0001 | \ /
----- \ /
0 ~|\"‘~.\ L — »/.M(b
50 100 150 200 250 300 350
Ar, %
0.0004 | ol
/ \
0.0002 | / \
/N
Lot A\ D
0 LT Z )
a0 100-7150 200 250 300 350
eeanes /
—0.0002} \ /
\ /
\ /
—0.0004F N~

Fig.7. The same as in Fig. 5 but for the parameterization of the target proton polarization given by (47)

Lo_ _ p +F
Gy = =2 Vr(4r + p) (g (B4 e )
o) Vs p)( 1k2gp1)(2 — z) %

X (F1 - ﬁz«}) . (49)

Gy, = %ﬁ{p[%y —2(1+ay)] —yz(z — 2)} x

X (F1 - %FZ) . (50)
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The target asymmetries corresponding to parame-
terization (47) of the proton polarization are repre-
sented in Figs. 7, 8 The longitudinal and transverse
asymmetries are about two times smaller than in the
previous case, whereas the normal one is smaller by an
order of magnitude.

We note that combinations of form factors that en-
ter GL, and G5 are exactly the Sachs electric and
magnetic ones [34],

}‘_‘1—|—}‘_‘2=C;]\/[7 Fl—gTFQZGE.
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That is why the target single-spin asymmetries in the
BH process for the polarization chosen as in Eq. (47)
can be used, in principle, for independent determina-
tion of the proton form factors. The corresponding ex-
periments with transferred polarization from the elec-
tron to the recoil proton in elastic ep-scattering [35] re-
quire an analysis of the secondary scattering [36] that
involves the loss of a few orders of magnitude in the
count rate. The number of events that contribute to
the single-spin correlation in the BH process is of the
order a? compared with the elastic scattering, but the
secondary scattering is not necessary.

Our calculations indicate that single-spin beam and
target asymmetries generated by loop corrections to
the leptonic part of the interaction in the BH process
are very small and do not exceed 6 - 10~ for the ex-
perimental conditions considered here. The reason is
that in addition to the fine structure constant, they
contain kinematical suppression due to the chosen val-
ues of invariant variables. Thus, we conclude that the
considered effect gives a small contribution to the to-
tal radiative correction in process (1), which mainly
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probes the virtual Compton scattering amplitude and
can reach about 5% [23].
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