СПИНОВЫЕ КОРРЕЛЯЦИИ И МЕЗОСКОПИЧЕСКАЯ СТРУКТУРА В Ni-Mn-Ga

В. В. Рунов^{*}, Ю. П. Черненков, М. К. Рунова

Петербургский институт ядерной физики Российской академии наук 188350, Гатчина, Россия

В. Г. Гаврилюк, Н. И. Главацкая

Институт металлофизики Национальной академии наук Украины 252680, Киев, Украина

А. Г. Гукасов

Лаборатория Леона Бриллюэна Сакле, Франция (LLB, Saclay, France)

В. В. Коледов, В. Г. Шавров, В. В. Ховайло

Институт радиотехники и электроники Российской академии наук 103907, Москва, Россия

Поступила в редакцию 8 июня 2005 г.

Представлены результаты исследований мезоскопической структуры в сплавах Гейслера Ni_{49.1}Mn_{29.4}Ga_{21.5} и Ni₂MnGa, выполненных методом малоуглового рассеяния поляризованных нейтронов в диапазоне температур 15 К < T < 400 К. Определены характерные температуры фазовых переходов (ферромагнитного, мартенситного и предмартенситного) и характерные размеры мезоскопических неоднородностей. Обнаружены различия в спиновой динамике в этих фазах и магнитно-ядерная интерференция в рассеянии нейтронов. Найдено существенное различие в эволюции мезоскопической структуры в нестехиометрическом и стехиометрическом сплавах.

PACS: 61.12.Ex, 75.25.+z, 75.40.-s

1. ВВЕДЕНИЕ

Тройной интерметаллический сплав Гейслера Ni₂MnGa испытывает мартенситный переход из кубической фазы типа L2₁ в тетрагональную фазу с соотношением параметров элементарной ячейки c/a = 0.94 [1]. Особенность сплава в том, что мартенситное превращение происходит в ферромагнитном состоянии, причем температуры ферромагнитного перехода T_C и особенно мартенситного перехода, T_m , существенно меняются при отклонении химического состава от стехиометрического (см. обзор [2] и ссылки в нем). Сильная взаимосвязь структурной и магнитной подсистем определяет такие притягательные свойства этого материала, как магнитноконтролируемый эффект памяти формы (МПФ), слияние магнитного и структурного переходов в один магнитоструктурный переход первого рода [3], который можно обратимо вызывать магнитным полем при постоянной температуре [4]. Что касается эффекта МПФ, то в Ni₂MnGa он достигает 6 % [2]. В Ni₂MnGa наблюдаются не только гигантские магнитодеформации, но и «гигантский магнитокалорический эффект» [5]. Сплав перспективен для практического применения и относится к классу функциональных материалов (smart or actuator materials) [6–11].

Помимо МПФ и сложной модулированной структуры в мартенситной фазе [2, 12], в сплаве наблюдается и ряд других интересных физических явлений. Это и смягчение фононной моды [13–16] с предмартенситным фазовым переходом [2, 16–18], и измене-

^{*}E-mail: Runov@pnpi.spb.ru

ние в распределении спиновой плотности при мартенситном переходе [19].

В работах [20-22] впервые выполнены исследования неоднородностей мезоскопического масштаба в сплаве Ni_{49.1}Mn_{29.4}Ga_{21.5} в широком диапазоне температур и магнитных полей методом малоуглового рассеяния поляризованных нейтронов. Получены данные о температурной зависимости мезоскопических неоднородностей в интервале 15 К < T < 400 К, найдены различия в спиновой динамике в тетрагональной и кубической фазах. В работе [20] было высказано предположение, что наблюдаемое малоугловое рассеяние при $T < T_C$ в основном магнитное и причиной его являются мезоскопические зародыши новой тетрагональной фазы, которые имеют отличный от кубической фазы магнитный момент и распределение спиновой плотности [19]. В таком случае при рассеянии поляризованных нейтронов, как известно (см., например, обзор [23] и ссылки в нем), помимо наблюдаемой зависимости рассеяния от приложенного магнитного поля, должны наблюдаться еще два эффекта: 1) изменение знака поляризации рассеянных нейтронов, 2) магнитно-ядерная интерференция при рассеянии в магнитном поле. Что касается магнитно-ядерной интерференции в Ni₂MnGa, то она априори должна быть мала, поскольку известно [1], что при мартенситном структурном фазовом переходе из кубической в тетрагональную фазу наблюдается сильная одноосная деформация решетки (c/a = 0.94), однако объем элементарной ячейки, а следовательно, и ядерный контраст, изменяются мало, на уровне процента. Тем не менее оба этих эффекта наблюдались в Ni_{49.1} Mn_{29.4}Ga_{21.5} [21, 22]. В работе [21] была измерена поляризация рассеянных нейтронов в кубической фазе при T = 340 К ($T_m = 306$ К), величина которой, например, при рассеянии с волновым вектором $q = 0.01 \,\text{\AA}^{-1}$ равнялась $-(0.84 \pm 0.14)$. В работе [22] была измерена магнитно-ядерная интерференция при T = 341 K в диапазоне векторов рассеяния $q < \pm 0.01$ Å⁻¹. Из экспериментальных данных получена оценка отношения ядерной и магнитной амплитуд, величина которой не превышает нескольких процентов. Наблюдение магнитно-ядерной интерференции, которая, как известно, возникает только тогда, когда оба типа рассеяния происходят в одной и той же области рассеивающей среды, имеет принципиальное значение. Эксперимент доказывает правильность предположения, высказанного в работе [20], о причине наблюдаемого малоуглового рассеяния.

Данная работа является обобщением и продол-

жением работ [20-22]. Интерес, в первую очередь, представляет сравнение характера фазовых переходов в образцах с разным отклонением состава от стехиометрии, поскольку существенно меняется соотношение температур мартенситного и магнитного переходов, характеризующих структурную и магнитную подсистемы. Поэтому в предлагаемой работе измерения малоуглового рассеяния поляризованных нейтронов выполнены на стехиометрическом сплаве Ni₂MnGa. Одна из задач эксперимента заключалась в исследовании мезоскопических неоднородностей в предмартенситном фазовом переходе методом рассеяния нейтронов. Этот переход, согласно цитируемой выше литературе, имеет место в сплавах Ni-Mn-Ga с температурами мартенситных переходов $T_m < 270$ K, т. е. при сравнительно небольших отклонениях от стехиометрии, и характеризуется образованием микромодулированного состояния (intermediate or micromodulated state). В экспериментах наблюдаются изменения в дисперсии фононных мод, модуляция решетки, аномалии упругих констант и магнитной восприимчивости. В данной работе обнаружена и анализируется аномалия в малоугловом рассеянии нейтронов при температуре выше Т_т примерно на 50 К, которая классифицируется как предмартенситный фазовый переход.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

В работах [20–22] исследовались монокристаллические образцы нестехиометрического состава Ni_{49.1}Mn_{29.4}Ga_{21.5} с характерными температурами, определенными в эксперименте: $T_C = 374$ К и $T_m = 306$ К. При таких концентрациях элементов и при определенной магнитно-механической обработке в сплаве достигается обратимый эффект МПФ, составляющий 2.5% [24]. В данной работе исследовался поликристаллический образец, близкий к стехиометрическому составу Ni₂MnGa. Образец в виде прямоугольной пластины с размерами $2 \times 10 \times 30$ мм³ был вырезан из слитка, приготовленного методом дуговой плавки на холодном поду и отожженного при температуре 1100 К в течение 9 дней с последующей закалкой в холодной воде.

Эксперименты по малоугловому рассеянию нейтронов выполнены на установке малоуглового рассеяния поляризованных нейтронов ВЕКТОР [25] (реактор ВВР-М, Гатчина) на длине волны $\lambda = 9.2$ Å ($\Delta\lambda/\lambda = 0.25$). Установка, оборудованная 20-счетчиковым (³He) детектором и многоканальным анализатором, работает в щелевой геометрии в диапазоне векторов рассеяния $1.5 \cdot 10^{-3} \text{ Å}^{-1} < q < 3 \cdot 10^{-1} \text{ Å}^{-1}$ ($\mathbf{q} = \mathbf{k} - \mathbf{k}'$, где \mathbf{k}, \mathbf{k}' — соответственно волновые векторы падающих и рассеянных нейтронов). Начальная поляризация падающего на образец нейтронного пучка, определяемая как $P_0 = (I^+ - I^-)/(I^+ + I^-)$, где I^+ , I^- — интенсивность пучка с направлением спина нейтронов соответственно по и против магнитного поля, составляла 93–94 %.

Эксперименты в магнитном поле были выполнены как в стандартной геометрии, когда направление магнитного поля ортогонально вектору рассеяния, так и в «наклонной» геометрии, когда образец намагничивается в плоскости рассеяния под углом φ к направлению падающего нейтронного пучка. Как показано в работах [26, 27] и в обзоре [23], такая геометрия позволяет наблюдать в плоскости рассеяния лево-правую асимметрию рассеяния нейтронов, поляризованных первоначально по и против направления прикладываемого поля, которая обусловлена неупругим магнитным взаимодействием нейтронов с магнитной подсистемой образца. Измерения проводились в магнитных полях 0 < H < 4500Э. Температурные измерения были выполнены с использованием криорефрижератора RNK10-300 (15 K < T < 320 K) и вакуумной печки (290 К < T < 400 К). Долговременная температурная стабилизация образцов была лучше, чем 0.1 К. Эксперименты по дифракции нейтронов на монокристалле Ni_{49.1}Mn_{29.4}Ga_{21.5} выполнены на четырехкружном дифрактометре 6Т2 в Лаборатории Леона Бриллюэна.

3. ЭКСПЕРИМЕНТ

3.1. Малоугловое рассеяние нейтронов

В данной работе анализируются экспериментальные данные малоуглового рассеяния нейтронов, характеризующие мезоскопические неоднородности масштаба 10 Å < R < 1000 Å в Ni₂MnGa. Температурные зависимости деполяризации нейтронов при термоциклировании в магнитных полях, регистрирующие магнитное текстурирование и магнитную структурную перестройку в образце Ni_{49.1} Mn_{29.4}Ga_{21.5}, а также кинетика мартенситного перехода в поле в этом образце подробно описаны в работах [20, 21].

Характерная температурная зависимость интенсивности малоуглового рассеяния нейтронов $(I = I^+ + I^-)$ и поляризации (q = 0) в Ni₂MnGa имеют ряд особенностей (см. рис. 1).

Рис.1. Температурные зависимости интенсивности рассеяния нейтронов с волновым вектором $q \approx 0.005 \,\text{\AA}^{-1}$ и поляризации ($q \approx 0$) в Ni $_2$ MnGa

1. Наблюдаемый пик в рассеянии при $T_I \approx 267 \text{ K}$ можно классифицировать как предмартенситный фазовый переход. Изменения интенсивности вблизи $T_I \approx 267 \text{ K}$ в укрупненном масштабе при прямом и обратном ходе и с меньшим шагом по температуре показаны на рис. 2. Температурная зависимость рассеяния имеет своеобразный вид — с провалом в интенсивности после подъема, гистерезис по температуре около 5 К.

2. При $T < T_m$ интенсивность не убывает резко, как это имело место в Ni_{49.1}Mn_{29.4}Ga_{21.5} [20, 21], а остается на максимальном уровне и не зависит от температуры. Более детально изменение интенсивности вблизи $T_m \approx 219$ К при охлаждении и нагреве показано на рис. 3. Наблюдается гистерезис по температуре около 10 К.

3. Сравнительно небольшое магнитное поле H = 720 Э (**H** \perp **q**) подмагничивает образец ($P \approx 45$ %) и подавляет малоугловое рассеяние при $T > T_m$ (рис. 4), причем система становится более магнитожесткой при $T < T_I$ (поляризация уменьшается в этом температурном диапазоне). Однако при $T \approx T_m$ поляризация скачком уменьшается практически до нуля и возникает сильное малоугловое рассеяние, т.е. образец становится негомогенным

Рис.2. Температурная зависимость интенсивности рассеяния нейтронов с волновым вектором $q \approx 0.005 \, \text{\AA}^{-1}$ в Ni₂ MnGa вблизи предмартенситного фазового перехода с температурой $T_I \approx 267 \, \text{K}$ в нулевом магнитном поле

не только в масштабе сотен ангстрем, но и в более крупном масштабе, на уровне обычных магнитных доменов.

В целом, малоугловое рассеяние в диапазоне $T_m < T < T_C$ довольно слабое в сравнении с рассеянием в Ni_{49.1}Mn_{29.4}Ga_{21.5}. (Критическое рассеяние вблизи T_C рассмотрим ниже.) Для сравнения на рис. 5 в одном масштабе приведены температурные зависимости интенсивности рассеяния при охлаждении с волновым вектором $q = 0.01 \,\text{\AA}^{-1}$ и поляризации (q = 0) для $Ni_{49,1}Mn_{29,4}Ga_{21,5}$ и Ni_2MnGa . В этом масштабе и с указанным вектором рассеяния аномалии в интенсивности в предмартенситном фазовом переходе (см. рис. 1 и 2) не видны. Отметим основные различия в интенсивности малоуглового рассеяния в Ni_{49.1}Mn_{29.4}Ga_{21.5} и Ni₂MnGa: 1) рост рассеяния с понижением температуры в аустенитной фазе в ${\rm Ni}_{49.1}{
m Mn}_{29.4}{
m Ga}_{21.5}$ $(T_m < T < T_C)$ и резкий спад при $T \approx T_m$, т.е. после перехода в мартенситную фазу, и, наоборот, скачок в рассеянии в мартенситной фазе в Ni₂MnGa; 2) пик в рассеянии в Ni₂MnGa при $T_I \approx 267$ K, классифици-

Рис.3. Температурная зависимость интенсивности рассеяния нейтронов с волновым вектором $q \approx 0.005 \,\text{\AA}^{-1}$ в Ni₂MnGa вблизи мартенситного фазового перехода с температурой $T_m \approx 219$ K в нулевом магнитном поле

руемый как предмартенситный фазовый переход; 3) рост малоуглового рассеяния в $Ni_{49.1}Mn_{29.4}Ga_{21.5}$ при T < 150 К.

3.2. Низкотемпературное малоугловое рассеяние в монокристалле Ni_{49.1}Mn_{29.4}Ga_{21.5}. Нейтрон-дифракционные измерения

В мартенситной фазе Ni_{49.1}Mn_{29.4}Ga_{21.5} в диапазоне 100 K < T < 250 K наблюдается изменение рассеяния с гистерезисом около 100 K по температуре [20, 21] (рис. 5), в то же время в мартенситной фазе Ni₂MnGa таких изменений нет. Известно, что в сплавах Гейслера с общей формулой Ni_{2+x+y}Mn_{1-x}Ga_{1-y} образуются различные мартенситные фазы и имеют место межмартенситные фазовые переходы. Как правило, наблюдается модуляция решетки в направлении [110] с периодом модуляции решетки от трех до семи в зависимости от температуры, стехиометрии и деформации (см.

Рис. 4. Зависимости интенсивности рассеяния нейтронов с волновым вектором $q\approx 0.005~{\rm \AA}^{-1}$ и поляризации ($q\approx 0$) при охлаждении в Ni_2 MnGa вблизи мартенситного фазового перехода с $T_m\approx 219~{\rm K}$ в поле $H=720~{\rm \Im}$ и (для сравнения) в H=0

обзор [2] и ссылки в нем, а также [12]). В образцах нестехиометрического состава, близкого к исследуемому в данной работе, наблюдались аномалии восприимчивости в низкотемпературной области [28-30] и модуляция решетки [31]. В работе [20] было высказано предположение, что низкотемпературное малоугловое рассеяние в Ni_{49.1}Mn_{29.4}Ga_{21.5} есть результат структурных изменений в образце. Эксперименты по дифракции нейтронов на монокристалле Ni_{49.1}Mn_{29.4}Ga_{21.5} подтвердили это предположение. На рис. 6 приведены профили сканов в направлении (*hh*0) около узла обратной решетки (220) в диапазоне температур 90 K < T < 300 K, полученные на четырехкружном нейтронном дифрактометре 6T2 в Лаборатории Леона Бриллюэна. При T < 150 К исчезают сверхструктурные отражения, обозначенные буквой «А», что свидетельствует об изменении периода модуляции решетки. Тем не менее модуляция решетки в низкотемпературной области сохраняется (сверхструктурные рефлексы, обозначенные буквой «В» на рис. 6). Эти изменения в модуляции решетки коррелируют по температуре не только с обнаруженными ранее аномалиями мало-

Рис. 5. Зависимости интенсивности рассеяния нейтронов с волновым вектором $q \approx 0.01 \, \text{\AA}^{-1}$ и поляризации ($q \approx 0$) в Ni_{49.1} Mn_{29.4} Ga_{21.5} и Ni_2 MnGa при охлаждении в поле H = 0

Рис. 6. Профили сканов в направлении $(h\overline{h}0)$ около узла обратной решетки (220) в Ni_{49.1} Mn_{29.4}Ga_{21.5} при разных температурах

углового рассеяния нейтронов, но и с изменениями в спин-волновой динамике [20] и, по-видимому, являются их первопричиной. Структурные исследования кристалла Ni_{49.1}Mn_{29.4}Ga_{21.5} в этой температурной области являются предметом отдельного рассмотрения.

3.3. Лево-правая асимметрия малоуглового рассеяния поляризованных нейтронов

В работах [26, 27] и в обзоре [23] показано, что лево-правая асимметрия малоуглового рассеяния нейтронов с поляризацией по или против поля, намагничивающего образец в «наклонной» геометрии, обусловлена спиновой динамикой в образце. Измерение спиновой динамики базируется на возможности выделения вклада от рассеяния поляризованных нейтронов на антисимметричных спиновых корреляциях. Этот интегральный метод был развит в теоретических работах [32, 33] и апробировался в работах [34, 35]. В спин-волновом приближении при квадратичном законе дисперсии энергия спиновых волн равна $\varepsilon = Dq^2$, где D — спин-волновая жесткость. Угловой диапазон, в котором должно наблюдаться рассеяние нейтронов с поглощением или возбуждением спиновой волны, не превышает угла отсечки $\vartheta_0 = (2M_n D)^{-1} \ll 1$, где M_n — масса нейтрона. Как видно из этой формулы, измерение углового диапазона рассеяния нейтронов позволяет непосредственно из эксперимента по углу отсечки получить оценку константы спин-волновой жесткости. Более строгое выражение для интенсивности асимметричной части рассеяния нейтронов Δ_a в «наклонной» геометрии записывается в виде

$$\Delta_a \propto P \langle S \rangle T \sin(2\varphi) \times \\ \times \int d\omega \frac{4\Gamma\omega}{(\omega^2 - \varepsilon^2)^2 + 4\omega^2\Gamma^2}, \quad (1)$$

где $\Delta_a = [\Delta(\Theta) - \Delta(-\Theta)]/2, \varphi$ — угол между векторами **H** и **k**, ω — изменение энергии нейтронов, $\Delta = I^+ - I^-$ — разность рассеяния нейтронов с поляризацией по и против магнитного момента образца, Γ — затухание спиновых волн. Интенсивность асимметричной части рассеяния пропорциональна поляризации, которую в данном случае надо понимать как среднюю поляризацию по толщине образца. В реальных экспериментах образцы не всегда удается намагнитить до насыщения, имеет место деполяризация, т. е. распределение поляризации по толщине образца от величины P_0 на входе в образец до измеряемой величины $P_{exp} < P_0$ после прохождения через образец. Однако даже в случае, когда измеряемая поляризация $P_{exp} = 0$, асимметрия в рассеянии наблюдаема, просто происходит перенормировка эффективной толщины образца, дающей асимметрию в рассеянии. Поэтому в таких экспериментах поляризацию нейтронов, прошедших образец, необходимо измерять непосредственно в ходе эксперимента.

Асимметрия рассеяния в Ni_{49.1} Mn_{29.4} Ga_{21.5} наблюдалась в аустенитной и мартенситной фазах в угловом диапазоне рассеяния $\Theta < 0.02$ рад [20, 21]. Что касается мартенситной фазы, то асимметрия в рассеянии наблюдалась в интервале температур 150 К < T < 300 К, что коррелирует по температур е с началом возрастания низкотемпературного малоуглового рассеяния при T < 150 К и изменением в периоде структурных модуляций (рис. 5 и 6). Наблюдаемая лево-правая асимметрия рассеяния имела разную зависимость от величины приложенного поля в мартенситной и аустенитной фазах. Асимметрия рассеяния в аустенитной фазе, в отличие от мартенситной фазы, подавляется в полях H > 2 кЭ.

Аналогичные зависимости лево-правой асимметрии рассеяния получены и на образце Ni₂MnGa. На рис. 7 приведена угловая зависимость асимметрии рассеяния, нормированная на среднюю поляризацию, в аустенитной (T = 294 K), предмартенситной (T = 256 K) и мартенситной (T = 200 K) фазах в полях, соответствующих максимально наблюдаемому эффекту асимметрии в доступном в эксперименте диапазоне полей 0 < H < 4.5 кЭ (угол наклона $\varphi = 45^{\circ}$). Асимметрия практически не наблюдается в предмартенситной фазе во всем диапазоне полей 0 < H < 4.5 кЭ и, так же как в Ni_{49.1}Mn_{29.4}Ga_{21.5}, подавляется в полях H > 2 к \Im в аустенитной фазе. В мартенситной же фазе асимметрия рассеяния хорошо видна в диапазоне углов $\Theta \leq 0.025$ рад, несмотря на то что образец плохо намагничивается вплоть до полей 4.5 кЭ. Поляризация прошедших нейтронов в мартенситной фазе в максимальных полях составляет всего несколько процентов.

Интегральный метод предполагает обработку данных асимметрии рассеяния по формуле (1) со свободными параметрами, определяющими энергию спиновой волны в магнитном поле H, которая записывается как

$$\varepsilon_q^2 = (Dq^2 + g\mu H_i) \times \left\{ Dq^2 + g\mu H_i + 4\pi g\mu M \left[1 - (\mathbf{e} \cdot \mathbf{m})^2 \right] \right\}, \quad (2)$$

где g — множитель Ланде, μ — магнетон Бора, $\mathbf{H}_i = \mathbf{H} - 4\pi N \mathbf{M}$ — внутреннее магнитное поле, N — размагничивающий фактор, $\mathbf{m} = \mathbf{M}/M$, M — намаг-

Рис. 7. Угловые зависимости лево-правой асимметрии рассеяния нейтронов $\Delta_a = [\Delta(\Theta) - \Delta(-\Theta)]/2$, где $\Delta(\Theta) = I^+ - I^-$ в Ni₂MnGa в аустенитной (\blacksquare , T = 294 K, H = 1521 Э), мартенситной (\bullet , T = 200 K, H = 4041 Э) и промежуточной (Δ , T = 255 K, H = 2000 Э) фазах в магнитных полях, соответствующих максимально наблюдаемому эффекту асимметрии

ниченность образца. Поскольку сплавы Ni-Mn-Ga достаточно магнитожесткие, для намагничивания образцов, необходимого для поляризационных измерений, нужны внешние магнитные поля порядка килоэрстед. Это означает, что в формуле (2) члены с Н нужно учитывать. Более того, поскольку сплавы Ni-Mn-Ga еще и сильно анизотропны, энергия анизотропии также должна быть добавлена в (2). Большое число свободных параметров, недостаточная статистическая точность экспериментальных данных по асимметрии рассеяния и малое число точек в угловом диапазоне делают практически невозможной обработку данных с определением параметров, входящих в формулы (1) и (2). Результаты экспериментов на данном этапе можно использовать только для качественных оценок.

Во-первых, подавление асимметрии рассеяния магнитным полем $H \approx 2$ кЭ в кубической фазе, означающее невозможность возбуждения нейтронами спиновых волн, дает оценку энергии щели в спектре спиновых волн в Ni₂MnGa в высокотемпературной фазе, примерно равную энергии нейтронов $E \approx 1$ мэВ. Во-вторых, можно сделать вывод о смягчении (уменьшении) константы спин-волновой жесткости в мартенситной фазе и, наоборот, о ее ужесточении (увеличении) в предмартенситной фазе в Ni₂MnGa (рис. 7). Показательны в этом отношении изменения в температурной зависимости асимметрии рассеяния в Ni_{49.1}Mn_{29.4}Ga_{21.5}. Асимметрия рассеяния наблюдается в мартенситной фазе только до температуры очередных структурных изменений в системе, $T \approx 150$ К, при которой наблюдаются изменения модуляции решетки [20].

Дисперсия спиновых волн в Ni₂MnGa в аустенитной фазе исследовалась в работе [36]. В диапазоне переданных векторов 0.12 Å⁻¹ < q < 0.46 Å⁻¹ получена квадратичная зависимость $\varepsilon_q = Dq^2$ с $D = (108 \pm 10)$ мэВ·Å². Константа спин-волновой жесткости, полученная без учета щели в спектре спиновых волн, соответствует углу отсечки $\vartheta_0 = 0.019$ рад. Как видно на рис. 7, асимметрия рассеяния в поле в аустенитной фазе Ni₂MnGa наблюдается при углах $\Theta < 0.015$ рад, в мартенситной фазе асимметрия рассеянии не наблюдалась вовсе. Оценка угла отсечки $\vartheta_0 \approx 0.015$ рад получена и для образца Ni_{49.1}Mn_{29.4}Ga_{21.5} в мартенситной фазе (T = 200 K) [20].

Очевидно, что энергия спиновых волн меняется при структурных изменениях, и, по-видимому, нужны прямые измерения температурной зависимости дисперсии спиновых волн для решения этой проблемы.

4. АНАЛИЗ МАЛОУГЛОВОГО РАССЕЯНИЯ. ОБСУЖДЕНИЕ

4.1. Мартенситная фаза

Детальный анализ данных малоуглового рассеяния в сплаве $Ni_{49,1}Mn_{29,4}Ga_{21,5}$ дан в работах [20, 21]. Показано, что во всей области температур при $T \leq T_C$, за исключением непосредственно диапазона мартенситного перехода, температурная зависимость интенсивности рассеяния в нулевом магнит 10^{-2}

 10^{-3}

Рис.8. Зависимость интенсивности рассеяния в Ni₂MnGa от волнового вектора вблизи мартенситного фазового перехода $T_m \approx 219$ К при следующих условиях измерений: $\triangle - T = 216.7$ K, $H = 720 \ \exists; \circ - T = 228 \ \mathsf{K}, \ H = 720 \ \exists;$ $\Box - T = 195$ K, H = 720 $\exists : \blacksquare - T = 195.4$ K, $H = 0; \blacklozenge - T = 216.9 \text{ K}, H = 0; \lor - T = 214.1 \text{ K},$ H = 0. Сплошные линии — расчет

ном поле удовлетворительно описывается квадрированным лоренцианом

$$I_m(q) = \frac{A}{(q^2 + \kappa^2)^2},$$
 (3)

где $\kappa = 1/R_c$ — обратная величина корреляционного радиуса R_c . В координатном пространстве выражению (3) соответствует коррелятор спинов, убывающий с расстоянием по закону $\langle S_i S_j \rangle \propto \exp(-r/R_c)$.

С понижением температуры корреляционный радиус при $T < T_C$ растет примерно от 40 Å вблизи T_C до 400–450 Å при 350–360 K, достигая максимума в этом диапазоне, и понижается приблизительно до 350 Å при $T \rightarrow T_m$. Удивительно, но сразу после мартенситного фазового перехода магнитная подсистема в $Ni_{49,1}Mn_{29,4}Ga_{21,5}$ гомогенизируется в мезоскопическом масштабе — интенсивность мало-

Рис.9. Температурные зависимости R_c в Ni₂MnGa при переходе в мартенситную фазу; $T_{inf} \approx$ $pprox 215.7 \ {
m K}$ — температура, при которой $R_c
ightarrow \infty$ при H = 0; $\blacksquare - H = 0$, $\bullet - H = 720$ Э

углового рассеяния скачкообразно убывает до уровня парамагнитного рассеяния (рис. 5), оставаясь при этом ферромагнитной с нормальными ферромагнитными доменами (P = 0). Дальнейший рост R_c до значений 130-150 Å наблюдается лишь при низкотемпературном переходе в мартенситной фазе при T < 150 K.

Существенно иная картина малоуглового рассеяния при $T < T_m$ наблюдается в Ni₂MnGa (рис. 1), сплав становится негомогенным в мезоскопическом масштабе при переходе в мартенситную фазу вплоть до T = 15 К. Зависимость рассеяния от волнового вектора при различных условиях измерений вблизи *T_m* приведена на рис. 8. Интенсивность рассеяния в диапазоне *T* < *T_m* удовлетворительно описывается выражением (3) как для H = 0, так и для полей 0 < H < 1 кЭ. Однако при $T > T_m$ рассеяние в Ni₂MnGa при H = 0 описывается асимптотикой формулы (3) при $\kappa \to 0$, т.е. формулой Порода, $I_m \propto q^{-4},$ а рассеяние в полях 0 < H < 1 кЭ формулой $I_m \propto q^{-n}$, где n изменяется от 2 до 4 при $T \rightarrow T_m$. Рассчитанные по этим формулам зависимости интенсивности рассеяния, свернутые с функцией разрешения прибора, приведены на рис. 8 сплошными линиями. Полученные из этих расчетов значения корреляционного радиуса показаны на рис. 9. Из расчетов следует, что масштаб неоднородностей в стехиометрическом сплаве Ni₂MnGa в диапазоне $T > T_m$ превышает разрешение установ-

Рис. 10. Температурные зависимости R_c при переходе из аустенитной в мартенситную фазу в Ni₂MnGa и в Ni_{49.1}Mn_{29.4}Ga_{21.5}. Сплошные линии — расчет по формуле $R_c = a_0 \tau^n$, где $\tau = |T_m - T|/T_m$, T_m соответствует температуре начала мартенситного перехода при охлаждении

ки, т.е. $R_c > 500$ Å, в то же время в мартенситной фазе сплав становится негомогенным с характерными размерами неоднородностей 200–250 Å. Обсуждаемые различия корреляционного радиуса для двух измеренных сплавов вблизи T_m хорошо видны на рис. 10 в координатах относительной температуры $\tau = |T_m - T|/T_m$. Сплошными линиями показаны расчетные значения $R_c = a_0 \tau^n$, которые при учете кроссовера удовлетворительно описывают экспериментальные данные. Как видно на рис. 10, в Ni_{49.1} Mn_{29.4} Ga_{21.5} корреляционный радиус меняется как $\tau^{-14.2}$ вплоть до T_C . Температуры кроссоверов составляют примерно 365 К и 213 К соответственно для Ni_{49.1}Mn_{29.4}Ga_{21.5} и Ni₂MnGa.

4.2. Предмартенситная фаза

Зависимость интенсивности от вектора рассеяния вблизи предмартенситного фазового перехода $(T_I \approx 267 \text{ K})$ показана на рис. 11. Рассеяние удовлетворительно описывается формулой Порода, т.е. и в этом температурном диапазоне масштаб неоднородностей превышает разрешение установки. Однако сам факт наблюдения малоуглового рассеяния и асимптотики Порода позволяет дать оценку характерного масштаба неоднородностей в этом температурном диапазоне как не превышающего нескольких тысяч ангстрем. Действительно, степенной закон рассеяния означает, что выполняется условие $q_{min}R_{min} \gg 1$. Практический и более точный критерий, предложенный в работе [37], соответствует $q_{min}R_{min} \approx 3.5$, что согласуется с приведенными выше оценками.

4.3. Критическое рассеяние вблизи T_C

Детальный анализ критического рассеяния в Ni_{49.1}Mn_{29.4}Ga_{21.5} [20] показал отсутствие температурного диапазона вблизи T_C , где рассеяние описывалось бы формулой Орнштейна–Цернике (ОЦ): Ni₂MnGa

I, отн. ед.

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

Рис. 11. Зависимость интенсивности рассеяния от волнового вектора вблизи предмартенситного фазового перехода ($T_I \approx 267$ K) в Ni₂MnGa: $\blacksquare - T \approx 272$ K, $\circ - T \approx 266$ K

0.01

0.02

 $\substack{0.03\\q, \mathrm{\AA}^{-1}}$

 $I_m = A/(q^2 + \kappa^2)$, характерной для классических магнетиков. Было найдено, что интенсивность рассеяния вблизи T_C и в диапазоне $T_m < T < T_C$ удовлетворительно описывается выражением (3) с гораздо менее резко убывающим с расстоянием коррелятором спинов, чем по формуле ОЦ.

Критическое рассеяние в нулевом поле в Ni₂MnGa ближе к классическому варианту. На рис. 12 приведена температурная зависимость интенсивности рассеяния вблизи T_C для волнового вектора q = 0.01 Å⁻¹ за вычетом парамагнитного фона, взятого в диапазоне температур 385–393 K, и поляризации нейтронов, прошедших в центральный счетчик (q = 0). Интенсивность рассеяния удовлетворительно описывается формулой ОЦ в диапазоне 368 K < T < 375 K. Характерный вид зависимости интенсивности рассеяния от переданного импульса в этом температурном диапазоне и расчетные зависимости показаны на рис. 13. При дальнейшем понижении температуры (T < 368 K) описание рассеяния функцией ОЦ ухудшается и

Рис. 12. Температурные зависимости интенсивности магнитного рассеяния ($q = 0.01 \text{ Å}^{-1}$) и поляризации (q = 0) в Ni₂ MnGa вблизи T_C

наблюдается тенденция к увеличению значения корреляционного радиуса, выходящей за пределы разрешения прибора. Попытка описать рассеяние суммой функций ОЦ и (3) улучшает сходимость, однако возрастание числа свободных параметров и их ошибок еще больше усложняет проблему. Температурные зависимости корреляционного радиуса, полученного из этих обработок, и поляризации прошедших нейтронов приведены на рис. 14.

На рис. 12 и 14 видно, что температурный диапазон пара-ферромагнитного перехода около 2 К (такой же температурный диапазон перехода и в Ni_{49.1}Mn_{29.4}Ga_{21.5}), что больше чем на порядок превышает диапазон перехода в классических ферромагнетиках (например, [38]). Традиционным является вопрос, чему равна температура Кюри образца? В случае фазового перехода второго рода, как показано теоретически в работе [39] и экспериментально при изучении критического рассеяния в Fe [38], T_C на поляризационной зависимости P(T) должна соответствовать деполяризации тепловых нейтронов, не превышающей нескольких процентов даже для классических ферромагнетиков. Это связано с малостью деполяризации, обусловленной рассеянием нейтро-

Рис. 13. Зависимость интенсивности рассеяния в Ni₂ MnGa от волнового вектора вблизи T_C : $\blacksquare - T = 371.6$ K, $\circ - T = 371.8$ K

нов на критических магнитных флуктуациях, описываемых формулой ОЦ. При $T < T_C$ деполяризация в основном происходит на магнитных доменах. В то же время корреляционный радиус при приближении к T_C должен стремиться к бесконечности по закону $R_c \propto \tau^{-\nu}$, где $\tau = (T_C - T)/T_C$, ν — критический индекс.

Исходя из критерия величины деполяризации, температура Кюри в Ni₂MnGa должна быть не менее 372 К. Однако критический радиус вблизи этой температуры мал, и на температурной зависимости $R_c(T)$ не видно особенности (рис. 14), т. е. температура Кюри не может находиться в этом диапазоне. В то же время продолжается рост корреляционного радиуса с понижением температуры примерно до температуры 371 К. На этом же рисунке приведены результаты расчета температурной зависимости R_c по скейлинговой формуле $R_c = a_0 \tau^{-\nu}$ с параметрами $a_0 = 4.3 \pm 0.1$, $\nu = 0.5 \pm 0.05$, $T_C = (371 \pm 0.05)$ К. Параметр a_0 близок к значению постоянной решетки в Ni₂MnGa, а критический индекс соответствует

Рис.14. Температурные зависимости корреляционного радиуса и поляризации в Ni₂MnGa вблизи T_C . Сплошная линия — расчет по формуле $R_c = a_0 \tau^{-\nu}$

теории молекулярного поля. Если $T_C \approx 371$ К, то надо предположить, что в образце существуют крупномасштабные магнитные образования выше T_C , которые практически полностью деполяризуют пучок! Размер этих магнитных образований можно оценить по формуле, описывающей деполяризацию прошедшего пучка:

$$\frac{P}{P_0} = \exp\left(-\frac{1}{2}\left(\frac{\gamma}{v}\right)^2 B^2 \delta L_{e\!f\!f}\right),$$

где γ — гиромагнитное отношение нейтрона, v — скорость нейтронов, B — индукция магнитных образований, L_{eff} — эффективная толщина (см., например, [23, 39, 40]). В такой оценочной формуле L_{eff} — часть образца, заполненная неоднородностями с характерным размером δ . Намагниченность насыщения Ni₂MnGa при комнатной температуре $M_s \sim 380$ Гс (например, [8]). Вблизи T_C при $\tau = 2.7 \cdot 10^{-3}$ (соответствует ($T_C - 1$) K) величина намагниченности, оцененная по скейлинговой зависимости $M_s \propto \tau^{-\beta}$ ($\beta = 1/3$), составляет около 90 Гс, средняя длина волны нейтронов $\lambda = 9.2$ Å. При этих параметрах для деполяризации в 90 % произведение $\delta L_{eff} \approx 2 \cdot 10^{-5}$ см², а при значении эффективной тол-

щины $L_{eff} = 1$ мм, т. е. половины толщины образца, размер неоднородностей составляет около 2 мкм.

Возникает проблема двух магнитных масштабов при фазовом переходе — критических флуктуаций с размерами 100-200 Å, дающих малоугловое рассеяние, и магнитных неоднородностей микронного размера, деполяризующих прошедший пучок. Используемый метод малоуглового рассеяния поляризованных нейтронов дает информацию как о первом, так и о втором масштабе. Аналогичная проблема изучалась в сплавах Fe–Ni в работах [41, 42]. По-видимому, наблюдаемое различие в сценарии фазовых переходов в сплавах и чистых ферромагнитных материалах — общая закономерность. Существование двух масштабов, как и увеличение температурного диапазона фазового перехода, связано как с химической, так и со структурной негомогенностью сплавов в разных масштабах. Например, известно, что аномальное смягчение фононной моды TA₂ в Ni₂MnGa наблюдается до температур гораздо более высоких, чем T_C, при которой наблюдается лишь кроссовер дисперсии фононной моды [15]. Негомогенность образца приводит к дисперсии ΔT_C температуры Кюри по образцу, например, для $\operatorname{Fe}_{70}\operatorname{Ni}_{30}$ отношение $\Delta T_C/\langle T_C \rangle \approx 1 \% [41, 42]$. Начало деполяризации в сплавах означает лишь появление локальных намагниченных областей, и только слияние этих областей при понижении температуры в бесконечный кластер, скорее всего перколяционным образом, приводит к появлению спонтанной намагниченности всего образца, что и соответствует температуре Кюри. Ширина деполяризационной кривой в таком случае является качественной мерой негомогенности системы. В этой ситуации температура, определяемая как особенность в температурной зависимости корреляционного радиуса в критическом рассеянии, является единственной выделенной температурой, которую можно сопоставить с *T_C*. В нашем случае в Ni₂MnGa эта температура равна примерно 371 К. Вполне ожидаемо, что критический индекс v при столь широком по температуре и сложном фазовом переходе соответствует теории молекулярного поля.

5. ЗАКЛЮЧЕНИЕ

Впервые в системе $Ni_{2+x+y}Mn_{1-x}Ga_{1-y}$, обладающей магнитноконтролируемым эффектом памяти формы (монокристалл $Ni_{49.1}Mn_{29.4}Ga_{21.5}$ и поликристалл Ni_2MnGa), исследована мезоскопическая структура в диапазоне температур 15 K < T < 400 K. Определены характерные разме-

ры мезоскопических неоднородностей, обнаружены различия в спиновой динамике в аустенитной, мартенситной и предмартенситной фазах. Найдено существенное различие в температурной эволюции мезоскопической структуры в нестехиометрическом и стехиометрическом сплавах. Очевидная сложность наблюдаемых явлений не позволяет дать исчерпывающие объяснения зависимости рассеяния нейтронов от температуры и переданного импульса в системе с фазовыми переходами первого рода и наблюдаемой разнице в рассеянии на образцах исследуемых сплавов. Отметим, однако, некоторое сходство в рассеянии на образце Ni₂MnGa в предмартенситной фазе (рис. 1 и 2) и рассеянии в $Ni_{49.1}Mn_{29.4}Ga_{21.5}$ при мартенситном фазовом переходе (рис. 5). В обоих случаях при охлаждении наблюдается максимум, а затем резкий спад интенсивности рассеяния. Можно предположить, что в Ni_{49.1}Mn_{29.4}Ga_{21.5} предмартенситный и мартенситный переходы произошли одновременно, в то время как в Ni₂MnGa переходы реализовались с интервалом примерно в 50 К. Вполне естественно взаимное влияние друг на друга структурного и магнитного фазовых переходов, поэтому магнитный переход в Ni_2MnGa как более удаленный по температуре от структурного в сравнении с Ni_{49.1}Mn_{29.4}Ga_{21.5} происходит по классическому сценарию.

Основные выводы исследования сплавов Ni-Mn-Ga методом малоуглового рассеяния поляризованных нейтронов:

1) все наблюдаемые структурные фазовые переходы идут через мезоскопически негомогенные фазы;

2) реализуется ситуация, когда флуктуации или зародыши новой фазы, возникающие при структурном фазовом переходе и практически ненаблюдаемые из-за малости ядерного контраста, могут быть наблюдаемы за счет магнитного контрастирования, что открывает новые возможности в изучении структурных фазовых переходов нейтронными методами;

 структурные изменения в сплавах, включая изменения модуляции решетки, сопровождаются изменениями в спиновой динамике.

Авторы благодарны А. И. Окорокову за интерес к работе и полезные замечания, С. В. Григорьеву и Г. П. Копице за дискуссии и помощь в работе. Работа выполнена при финансовой поддержке РФФИ (гранты №№ 04-02-16342, 03-02-17443, 03-02-39006) и в рамках программы «Ведущие научные школы» (грант № НШ-1671-2003.2).

ЛИТЕРАТУРА

- P. J. Webster, K. R. Ziebeck, and S. L. Town, Phil. Mag. B 49, 295 (1984).
- А. Н. Васильев, В. Д. Бучельников, Т. Такаги, В. В. Ховайло, Э. И. Эстрин, УФН 173, 577 (2003).
- А. Д. Божко, А. Н. Васильев, В. В. Ховайло, И. Е. Дикштейн, В. В. Коледов, С. М. Селецкий, А. А. Тулайкова, А. А. Черечукин, В. Г. Шавров, В. Д. Бучельников, ЖЭТФ 115, 1740 (1999).
- 4. И. Е. Дикштейн, Д. И. Ермаков, В. В. Коледов, Л. В. Коледов, Т. Такаги, А. А. Тулайкова, А. А. Черечукин, В. Г. Шавров, Письма в ЖЭТФ 72, 536 (2000).
- A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V. Khovailo, V. Koledov, R. Levitin, V. G. Shavrov, and T. Takagi, J. Magn. Magn. Mat. 272–276, 2040 (2004).
- А. Н. Васильев, В. В. Кокорин, Ю. И. Савченко, В. А. Черненко, ЖЭТФ 98, 1437 (1990).
- А. Н. Васильев, С. А. Клестов, Р. З. Левитин, В. В. Снегирев, В. В. Кокорин, В. А. Черненко, ЖЭТФ 109, 973 (1996).
- K. Ullakko, J. Huang, C. Kantner, R. C. O'Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).
- S. L. Murray, M. Farinelli, C. Kantner et al., J. Appl. Phys. 83, 7297 (1998).
- R. D. James and M. Wuttig, Phil. Mag. A 77, 1273 (1998).
- 11. R. C. O'Handley, J. Appl. Phys. 83, 3263 (1998).
- P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K.-U. Neumann, B. Ouladdiaf, and K. R. A. Ziebeck, J. Phys.: Condens. Matter 14, 10159 (2002).
- G. Fritsch, V. V. Kokorin, and A. Kempf, J. Phys: Condens. Matter 6, L107 (1994).
- 14. A. Zheludev, S. M. Shapiro, P. Wochner et al., Phys. Rev. B 51, 11310 (1995).
- U. Stuhr, P. Vorderwisch, V. V. Kokorin, and R. A. Lindgard, Phys. Rev. 56, 14360 (1997).
- 16. L. Manosa, A. Planes, J. Zarestky, T. Lograsso, D. L. Schlagel, and C. Stassis, Phys. Rev. B 64, 024305 (2001).
- L. Manosa, A. Gonzalez-Comas, E. Obrado, A. Planes, V. A. Chernenko, V. V. Kokorin, and E. Cesari, Phys. Rev. B 55, 11068 (1997).

- A. Gonzalez-Comas, E. Obrado, L. Manosa, A. Planes, V. A. Chernenko, B. J. Hattink, and A. Labarta, Phys. Rev. B 60, 7085 (1999).
- 19. P. J. Brown, A. Y. Bargawi, J. Crangle, K. U. Neumann, K. R. A. Ziebeck et al., J. Phys: Condens. Matter 11, 4715 (1999).
- 20. В. В. Рунов, Ю. П. Черненков, М. К. Рунова,
 В. Г. Гаврилюк, Н. И. Главацкая, Письма в ЖЭТФ
 74, 668 (2001).
- V. V. Runov, Yu. P. Chernenkov, M. K. Runova, V. G. Gavriljuk, and N. I. Glavatska, Physica B 335, 109 (2003).
- 22. V. V. Runov, M. K. Runova, V. G. Gavriljuk, and N. I. Glavatska, Physica B 350, 87 (2004).
- **23**. С. В. Малеев, УФН **172**, 617 (2002).
- 24. O. Heczko, N. Glavatska, V. Gavriljuk, and K. Ullakko, Proc. 8th European Magnetic Materials and Applications Conference, 7–10 June 2000, Kiev, Ukraine, Publ. Trans. Tech. Publications LTD, Switzerland, p. 341.
- 25. С. В. Григорьев, О. А. Губин, Г. П. Копица и др., Препринт ПИЯФ-2028, Гатчина (1995).
- 26. А. И. Окороков, А. Г. Гукасов, В. В. Рунов и др., ЖЭТФ 81, 1462 (1981).
- 27. А. В. Лазута, С. В. Малеев, Б. П. Топерверг, ЖЭТФ
 81, 1475 (1981).
- 28. А. Н. Васильев, А. Кайпер, В. В. Кокорин и др., Письма в ЖЭТФ 58, 297 (1993).
- O. Heczko, N. Lanska, O. Soderberg, and K. Ullakko, J. Magn. Magn. Mat. 242–245, 1446 (2002).
- 30. A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002).
- N. Glavatska, I. Glavatskiy, G. Mogylny, S. Danilkin, D. Hohlwein, O. Söderberg, V. Lindroos, and A. Beskrovnij, J. de Phys. IV 112, 963 (2003).
- **32**. Б. П. Топерверг, Письма в ЖЭТФ **37**, 430 (1983).
- 33. B. P. Toperverg, V. V. Deriglazov, and V. E. Mikhailova, Physica B 183, 326 (1993).
- 34. А. И. Окороков, В. В. Рунов, Б. П. Топерверг и др., Письма в ЖЭТФ 43, 390 (1986).
- 35. V. Deriglazov, A. Okorokov, V. Runov et al., Physica B 180–181, 262 (1992).
- 36. U. Stuhr, P. Vorderwisch, and V. V. Kokorin, Physica B 234–236, 135 (1997).

⁹ ЖЭТФ, вып.1

- 37. H. D. Bale and P. W. Schmidt, Phys. Rev. Lett. 53, 596 (1984).
- **38**. А. И. Окороков, В. В. Рунов, А. Г. Гукасов, Г. М. Драбкин, Изв. АН СССР **42**, 1770 (1978).
- **39**. С. В. Малеев, В. А. Рубан, ЖЭТФ **62**, 416 (1972).
- 40. O. Halpern and T. Holstein, Phys. Rev. 59, 960 (1941).
- 41. С. В. Григорьев, С. А. Климко, С. В. Малеев, А. И. Окороков, В. В. Рунов, Д. Ю. Чернышов, ЖЭТФ 112, 2134 (1997).
- 42. S. V. Grigoriev, S. A. Klimko, W. A. Kraan, S. V. Maleyev, A. I. Okorokov, M. Th. Rekveldt, and V. V. Runov, Phys. Rev. B 64, 094426 (2001).