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SPONTANEOUS AND PERSISTENT CURRENTS IN MESOSCOPICAHARONOV�BOHM LOOPS: STATIC PROPERTIESAND COHERENT DYNAMIC BEHAVIOR IN CROSSED ELECTRICAND MAGNETIC FIELDSI. O. Kulik a;b*aDepartment of Physis and Astronomy, Stony Brook University,Stony Brook, NY 11794-3380, USAbDepartment of Physis, Bilkent University06533, Ankara, TurkeySubmitted 8 June 2004Mesosopi or maromoleular onduting rings with a �xed number of eletrons are shown to support persis-tent urrents due to the Aharonov �Bohm �ux, and the �spontaneous� persistent urrents without the �uxwhen strutural transformation in the ring is bloked by strong oupling to the externally azimuthal-symmetrienvironment. In the free-standing maromoleular ring, symmetry breaking removes the azimuthal periodiity,whih is further restored at the inreasing �eld, however. The dynamis of the Aharonov � Bohm loop in rossedeletri and magneti �elds is investigated within the tight-binding approximation; we show that transitionsbetween disrete quantum states our when stati voltage pulses of presribed duration are applied to theloop. In partiular, the three-site ring with one or three eletrons is an interesting quantum system that anserve as a qubit (quantum bit of information) and a qugate (quantum logial gate) beause in the presene ofan externally applied stati eletri �eld perpendiular to a magneti �eld, the maromoleular ring swithesbetween degenerate ground states mimiking the NOT and Hadamard gates of quantum omputers.PACS: 73.23.Ra, 73.63.-b, 03.65.Vf, 03.67.Lx1. PERSISTENT CURRENTS IN MESOSCOPICSYSTEMSPersistent urrents have been predited for meso-sopi onduting ballisti or quasiballisti loops ([1℄1)and referenes therein, [2℄) that do not show the ef-fet of superondutivity, and extended to di�usiverings [3℄. The urrent appears in the presene of a mag-neti �eld as a result of the Aharonov �Bohm e�et [4℄,demonstrating the speial role of vetor potential inquantum mehanis. As disussed in review [5℄, per-sistent urrents are similar to orbital urrents in nor-mal metals �rst onsidered by Teller [6℄ in his inter-pretation of Landau diamagnetism in metals [7℄, butare spei� to the doubly onneted geometry of on-*E-mail: iokulik�yahoo.om1) This paper proved exat periodiity of ring energy as a fun-tion of the magneti �ux with the period h=e, although with theinde�nite amplitude.

dutors (loops, hollow ylinders, et.). Persistent ur-rents have been observed in the indiret [8; 9℄ as wellas diret [10; 11℄ experiments, showing the single-�ux-quantum �0 = h=e periodiity in the resistane of thinNb wires [8℄ and networks of isolated Cu rings [9℄, andin single-loop experiments on metals [10℄ and semion-dutors [11℄. In [12℄, the periodi variation of resistivityin moleular onduting ylinders (arbon nanotubes)was attributed to the Altshuler �Aronov � Spivak ef-fet [13℄, a ompanion to the lassial Aharonov �Bohmmehanism with the twie smaller periodiity in mag-neti �ux �1 = h=2e. A further trend in maromoleu-lar persistent urrents [14�16℄ is in the quantum ompu-tational [17℄ perspetives of using the Aharonov �Bohmloops as quantum bits (qubits) with an advantage ofeasier (radiation-free) manipulation of qubit states, andin the inreased deoherene times ompared to maro-sopi �Shrödinger at� strutures (Josephson jun-tions).1145
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Fig. 1. A �-shaped energy on�guration in theAharonov �Bohm ring. Arrows indiate a transition be-tween degenerate states j0i and j1i through a virtualtransition to the ontrol state jiThe present paper fouses on ballisti Aharonov �Bohm rings, like those naturally found in moleularrystals with metal�organi omplexes as the buildingbloks [18; 19℄. We approximate suh maromoleu-lar strutures as rings with resonant hopping of ele-trons between the near-site atoms or omplexes serv-ing as eletron loalization sites. As shown in [14℄, thesmallest (three-site) persistent urrent ring displays a�-shaped energy on�guration (Fig. 1) with two de-generate ground states, at the external �ux throughthe ring equal to half the normal-metal �ux quantum,� = h=2e. At a ertain number of eletrons in thering, persistent urrent appears at zero �eld (the �spon-taneous� urrent). The spontaneous persistent urrentloop, to be disussed below, ahieves the degeneratestate at zero �eld or, if the degeneray is lifted by theeletron�phonon oupling, at reasonably small �elds.Persistent urrent is a voltage-free nondeaying ur-rent that exists as a manifestation of the fat thatthe ground state of a doubly onneted ondutor ina magneti �eld is a urrent-arrying one. This state-ment was proved for ballisti loops [2℄ and for di�u-sive rings [3℄. There is no prinipal di�erene betweenthese extremes. Counterintuitively, a ballisti stru-ture does not show in�nite ondutivity, as was some-times naively supposed; a d.. resistane of the loopis in�nite rather than zero when a d.. eletri �eldis applied to the system. In the ase where a urrentis fed through the struture, no voltage appears pro-vided the magnitude of the urrent is smaller than aertain ritial value. This applies to both elasti andinelasti satterings. The magnitude of the ritial ur-rent of a ballisti ring smoothly mathes the urrent ofthe di�usive ring when the mean free path of the ele-

tron beomes large. In a dirty limit, l � L, where l isthe eletron mean free path and L is the ring irum-ferene, the ritial value of the persistent urrent de-reases proportionally to l=L aording to Ref. [20℄, orto (l=L)1=2 aording to numerial simulation [5℄. Thenondeaying urrent does not even require severe re-stritions on the so-alled �phase breaking� mean freepath l'. In fat, the normal-metal superurrent is ananalogue of the �inoherent� Josephson e�et [21; 22℄,the one in whih the phase of superondutor is on-sidered a lassial variable. Stronger riteria (the de-phasing length larger than the system size, and theanalogous requirement in the time domain, that the�deoherene time� is larger than the harateristitime of observation) apply to persistent urrent rings asquantum omputational tools, whih are the analoguesof marosopi quantum tunneling [23�26℄. Persistenturrent is a thermodynami property, learly distintfrom the dissipative urrents in ondutors, and anin priniple exist in a system that has the vanishingOhmi ondutane.2. SPONTANEOUS PERSISTENT CURRENTSPersistent urrent in a ballisti ring appears dueto the Aharonov �Bohm �ux. The urrent, however,an also our when the external magneti �eld is zero,in whih ase it is alled the �spontaneous� urrent.Suh a situation was notied aidentally by variousauthors, in partiular, [27; 28℄, but did not seem on-vining, did not attrat attention due to �xed hemialpotential on�guration studied, and was attributed tothe e�et of Peierls instability in the ring [29�32℄ (withthe later paper ritiized [33; 34℄ in regard to the ina-uray of the mean-�eld approximation). In fat, the�xed-number-of-partile ring with an odd number ofeletrons displays a number of strutural instabilities,of whih the Peierls transformation [35℄ and the Jahn �Teller e�et [36℄ are the best known examples, or gen-erally, a more omplex atom rearrangement when theground state proves degenerate in a symmetri on�g-uration.The origin of the �spontaneous� urrent an be un-derstood as follows. We onsider a one-dimensionalring in the �eld of a vetor potential reated by a thinin�nitely long solenoid perpendiular to the plane ofthe ring and piering the ring (Fig. 2a). The eletronenergy in the ring is"n = h22mL2 �n� LA�0 �2 ; (1)1146
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Fig. 2. Models of mesosopi and nanosopi Aharo-nov �Bohm loops: a one-dimensional ontinuous loop(a); a disrete loop with regularly spaed enters ofeletron loalization (sites) (b); a 3-dimensional loopin the form of the ylinder with the longitudinal dimen-sion L = 2�R and transverse dimensions L1, L2 ()
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Fig. 3. Ground state energies and urrents in the on-tinuous ring with 3 eletrons at various strengthes ofthe barrier: g = 0 (1 ), 1 (2 ), 2 (3 )where A = �=L is the angular omponent of the vetorpotential (� is the total magneti �ux of the solenoid)and n = 0;�1;�2; : : : Suh a state orresponds to theurrent J = ��"n�� = ehmL2 �n� ��0� ;whih is zero at � = 0 and n = 0, but is nonzeroat n 6= 0 even at zero �ux. At T = 0, eletrons, inthe total number N , oupy the lowest possible ener-gies ompatible with the Pauli priniple, i.e., suh thateah state is oupied with two eletrons with oppositespins at most. Therefore, the ground state of one ortwo eletrons is that of n = 0, and hene has zero ur-rent at � = 0. But the state with the next eletron
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Fig. 4. Persistent urrent versus the number of ele-trons in a ring with the ratio ross-setional dimensionsL : L1 : L2 = 10 : 1 : 1 (on�guration with spin).The upper urve is the maximum urrent in units ofJ0 = evF =L, at given N , the dotted urve is the am-plitude of the �rst harmoni of Jpers(�), and the urveat negative J is the spontaneous persistent urrent, alsoin units of J0. The bottom urve is the square root ofthe number of perpendiular hannels N?number, N = 3, already resumes at n = 1 or n = �1,or is in a superposition of these states, �j1i+ �j � 1i,depending on the way of preparation of the state at theinitial ondition, and therefore arries a urrent unless� 6= �. If there is no deoherene of the state due tothe interation of the loop with the environment, theurrent persists in time without any voltage appliedalong the loop. This applies to a ballisti perfetlysymmetri ring. The inhomogeneity in the ring as wellas sattering of eletrons by impurities may result in anondegenerate urrent-free state. This is illustrated inFig. 3 for the ring with a Æ-funtional barrier V0Æ(x),whih results in the Kronig �Penney equation for theenergy,os(2�k) + V0L2"0 sin(2�k)2�k = os�2� ��0� : (2)The eletron energy is " = "0k2, where k = kn is oneof solutions of Eq. (2) and "0 = h2=2mL2. The sameonlusion is obtained for a disrete Aharonov �Bohmring (Fig. 2b), to be onsidered in detail below.Figure 4 shows the maximum value of persistenturrent, as well as that of the spontaneous urrent in-trodued above, versus the number of eletrons in athree-dimensional ballisti ring (the one with the ele-tron mean free path l =1) modeled as a �nite-length1147
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Fig. 5. Examples of the ourene of a bistable on-�guration in a ring. Energy versus �ux in a ring of10 (1 ) and 11 (2 ) eletrons. Curve 2 is shifted downfor onveniene but is not resaledhollow ylinder (Fig. 2) with the retangular ross se-tion L1�L2 ontaining a �nite number of perpendiulareletron hannels N? = L1L2k2F2�2 :We note that the magnitude of the urrent in a ballistiring is not evF =L, as is sometimes suggested (vF is theFermi veloity), butJmax � evFL N1=2?(see also [2℄). The dependene Jmax(N) at T = 0 isirregular due to the ontribution to the total urrent ofboth the negative and positive terms originating fromdi�erent eletron eigenstates.Figure 5 explains the origin of persistent urrent asa bistability e�et in a ring. While the eletron en-ergy has a minimum at � = 0 for an even number ofeletrons, it aquires a maximum when the number ofeletrons is odd. The indutive energy, to be inludedbelow, only very slightly shifts the position of minimain that urve. The spontaneous urrent has the sameorder of magnitude as the maximum persistent urrent,and is an inseparable part of the Aharonov �Bohm ef-fet in a ballisti ring.In a one-dimensional loop, disrete quantum statesare  n = 1pLein�; (3)

where � is the azimuthal angle, with the energies givenby (1) plus the indutive energy of the urrent. For theloop with 3 eletrons, this gives the total energyE(f) = "0 �f2 + 12(�1� f)2�+ LJ2022 j2(f); (4)orresponding at � = 0 to two spin-1/2 states withn = 0 and one state with n = 1 or n = �1. The lastterm in Eq. (4) is the magneti indutive energy andL is the indutane (of the order of the ring irumfer-ene, in the units adopted). The urrentJ = � eh �E�fis equal toJ(f) = J0(�1� 3jf j); J0 = e"0h (5)and is nonzero at f = 0 in either of the states �. Theratio of the magneti energy to the kineti energy is ofthe order of� = LJ2022"0 � e24�m2R � 10�6a0R ; (6)where a0 is the Bohr radius. This is a very small quan-tity, and therefore the magneti energy is unimportantin the energy balane of the loop. The total �ux in theloop is f = fext + 2�j(f), where fext is the external�ux and j(f) = J(f)=J0. The orretion to the exter-nally applied �ux is essential only at very small �eldsfext � �, otherwise we an ignore this ontribution.When a persistent-urrent loop is plaed in an ele-tri �eld perpendiular to a magneti �eld, the systemoherently swithes between the disreet states of theloop providing for quantum transitions (quantum logi-al gates) in the loop performing as a qubit in a quan-tum omputer. This aspet of persistent urrents inballisti loops is analyzed in Se. 3.The property of a nonzero spontaneous persistenturrent thus demonstrated for noninterating eletronssurvives strong eletron�eletron oupling but ollapseswhen the oupling to the lattie is inluded. This isonsidered in detail in Se. 4. In what follows, thestrutural transformation in the ballisti ring is investi-gated in an exat way by onsidering the ring dynamisin the tight-binding approximation [37; 38℄. The �lat-tie� (the atomi on�guration of the loop) an respondto the bistable state by a readjustment of atoms similarto the Peierls transition (doubling of the lattie periodin a one-dimensional atomi hain, see, e.g., [39; 40℄),or by a more general lattie transformation that doesnot redue to simple doubling. When the loop is in the1148



ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005 Spontaneous and persistent urrents : : :rigid bakground in the periodi lattie on a substrateof a muh stronger bound solid, the degeneray maynot be lifted, or may remain in a very narrow intervalof the externally applied �eld.3. DYNAMICS OF PERSISTENT CURRENTSIN CROSSED ELECTRIC AND MAGNETICFIELDSThe Hamiltonian of the ring onsisting of N sitesloalizing eletrons at equidistant angular positions�n = 2�n=N isH0 = �� NXn=1(a+n an+1ei� + a+n+1ane�i�) (7)where a+n is a fermioni operator reating (and an,annihilating) the eletron at the site Rn in the ringwith the periodi boundary ondition aN+1 = a1, and� = 2��=N�0 is the phase related to the Aharonov �Bohm �ux threading the ring. Plaing the ring in thehomogeneous eletri �eld perpendiular to the mag-neti �eld (Fig. 6) results in adding the extra termH1 = V0 NXn=1 os 2�nN a+n an (8)to the Hamiltonian. The Hamiltonian H0 is dia-gonalized by the angular momentum (i.e., m == 0; 1; : : : ; N � 1) eigenstates A+mj0i suh thatA+m = 1pN N�1Xn=0 a+n exp 2�imnN : (9)These states have the energies"m = �2� os 2�N �m� ��0� (10)
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FluxE-�eldFig. 6. Sheme of a 3-site qubit in the eletri �eldperpendiular to the magneti �eld
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Fig. 7. Curves 1 and 3 are energy versus magneti �uxdependenes in the degenerate states arrying oppo-site urrents. The urrent is found as the derivativej = ��"=��. Curve 2 orresponds to the zero-urrentvirtual state at the operating point of a qubit at thehalf-�ux quantum � = �0=2plotted versus the �ux in Fig. 7. The eletroni on�g-uration at � = �0=2 has a �-shaped energy struturewith two degenerate ground states shown in Fig. 1,whih were suggested as j0i and j1i omponents of aqubit in Refs. [14; 15℄. The time evolution of angu-lar-momentum eigenstates A+mj0i is periodi at ertainvalues of V0 and at the value of the �ux equal to halfthe �ux quantum �0=2 = h=2e.In the eigenbasis of the operators Am, the Hamil-tonian H0 +H1 at N = 3 in the absene of an eletri�eld is transformed into the diagonal form (we sale allenergies in units of �)H0 =Xm "mA+mAm = 0B� �1 0 00 2 00 0 �1 1CA (11)and the Hamiltonian H1 beomesH1 = 0B� 0 v vv 0 vv v 0 1CA ; (12)where v = V0=2� . We let the m = 1 and m = 3 statesbe denoted by j0i and j1i, in the qubit terminology,and the exited state m = 2 by ji (the �ontrol� stateoupling qubit states to the �qugate�, or the quantumlogi gate).1149
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Fig. 8. Energy versus eletrostati potential. Curves1 and 3 (solid and dotted lines) are the energies thatbeome degenerate at V0 = 0, and urve 2 (the dashedline) is the energy of the auxiliary ontrol state ji.The arrows indiate the values of the potential V0 or-responding to the operational points of the bit-�ip andHadamard gatesThe eigenstates of H0 +H1 versus v at � = �0=2are presented in Fig. 8. We assume that at t � 0, thepotential is V0 = 0, suh that the system at t = 0 is asuperposition of the angular momentum states A+mj0iwith ertain amplitudes Cm(0). At later time and at aonstant value of V0, Cn(t) evolves asCn(t) =Xm exp(�i(H0 +H1)t)mnCm(0): (13)For a step funtion V (t) = V0�(t), this gives the depen-dene [14℄Cn(t) =Xm;k S�1kn (V0) exp(�iEkt)Smk(V0)Cm(0); (14)where "k(V0) are eigenenergies of the HamiltonianH0 + H1(V0) and Snm(V0) are the unitary matriestransforming from the noninterating eigenbasis (theone orresponding to H0) to the eigenbasis of the fullHamiltonian H0+H1. It is implied in Eq. (14) that ata �xed value of V0, the time evolution is performed asthe interplay between the three di�erent eigenenergies.This is su�ient evidene that if the eigenenergies areappropriately adjusted, the population of the auxiliarystate (in the angular-momentum basis) an vanish forertain initial onditions. At these time instants, thethree-state system instantaneously ollapses into the

qubit subspae without loss of any information if theauxiliary state ji was unoupied initially. A nees-sary ondition for the instantaneous ollapse into thequbit subspae (i.e., the degenerate-level subspae) isa ommensuration ondition between the eigenenergies"k(V0), k = 1; 2; 3, suh that the exponential fators inEq. (14) destrutively interfere at �xed time instantsto destroy the nondiagonal orrelations. The requiredommensuration an be expressed by the ondition"3 � "1 = �("2 � "3) (15)for integer �. Equation (15) guarantees periodi ol-lapses of the wavefuntion onto the desired basis, andthe next step is to �nd whether the desired qugate op-erations an be realized simultaneously in this basis.For the orresponding values of the potential respet-ing Eq. (15), we �ndV0(�) = � 23� h�2+�+1+(��1)p�2+4�+1 i : (16)In partiular, we note that for � = 1, we haveV (1)0 = �2 and at � = 3, we haveV (3)0 = �29 �13 + 2p22� = �4:9735;and we sueeded in �nding two qugates in our �rstfew attempts. As shown below, these two asesyield the bit-�ip and Hadamard transformations of thequbit [17℄.The � = 1 ase an be expliitly proved by verifyingthe identityexp8><>:�it0B� �1 �1 �1�1 2 �1�1 �1 �1 1CA9>=>; == 12 0B� 1 + + s s �1 + + ss 2(� s) s�1 + + s s 1 + + s 1CA ; (17)where  = os�tp6� ; s = ir23 sin�tp6� :At s = 0 (i.e.,  = �1), the transformation matrix ofqubit states blok-diagonalizes in the subspae of states1, 3 (i.e., the qubit states j0i, j1i) and the upper state2 (i.e., the auxiliary �ontrol� state ji). In partiular,for  = �1, the bit-�ip is performed between the qubitstates.In Fig. 9, the populations pn(t) = jCn(t)j2 of thestates are plotted for the mentioned ases � = 1 and1150
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tFig. 9. Evolution diagrams of the quantum gate G1 (a)and G3 (b). Solid and dashed lines are the time depen-denes of the population of the states j0i and j1i. Thedotted line shows the time dependene of the auxiliary-state population. The arrow indiates the �opera-tional point� of the qugate, i.e., the evolution timeorresponding to the return to the invariant qubit sub-spae� = 3. The instantaneous ollapse to the qubit sub-spae is obtained at t = t1 for � = 1 and at t = t3 for� = 3 if the auxiliary level is unoupied at t = 0. Wefound these ritial times as (in units of ~=�)t1 = �p6 = 1:2825;t3 = �2[E2(V0)�E3(V0)℄�=3 = 0:7043; (18)where the eigenenergies are

E1;3(V0) = 1 + V0=22 � 32r1� V02 + V 204 ;E2(V0) = �1� V02 (19)for V0 � 0. We note that the on�guration (t1; � = 1)performs the bit-�ip j0i $ j1i, whereas (t3; � = 3)reates the equally populated Hadamard-like superpo-sitions of j0i and j1i. These operations are representedin the qubit subspae by the matries (overall phasesare not shown)G1 =  0 11 0 ! and G3 = 1p2  1 �i�i 1 ! : (20)The dotted lines show the time dependene of the aux-iliary population. The arrows indiate the �operationalpoint� of the qugate, the time of evolution orrespond-ing to the return to the invariant qubit. The G1 trans-formation manifests the bit-�ip (NOT gate) and G3 issimilar to the Hadamard gate [17℄ exept for the phaseshift �=2.4. QUANTUM BISTABILITY ANDSPONTANEOUS CURRENTS IN ACOUPLED ELECTRON�PHONON SYSTEMIn the tight-binding approximation, the Hamilto-nian of the loop in the seondary-quantized form isgiven byH = NXj=1(�ja+j�aj+1;�ei�j +H..) + U NXj=1 nj"nj# ++ V NXj=1;�;�0 nj�nj+1;�0 ++ 12W NXj=1(�j � �0j )2 + 12K NXj=1(�j � �j+1)2; (21)where �j is the hopping amplitude between two adja-ent on�gurational sites, j and j + 1,�j = �0 + g(�j � �j+1); ni� = a+i�ai� ; (22)and �j = 2�fN + (�j � �j+1)f (23)is the Aharonov �Bohm phase (a Peierls substitutionfor the phase of hopping amplitude). Next, a+j� is thereation (and aj� is the annihilation) operator of theeletron at site j with spin �, �j , j = 1; 2; : : : ; N , are1151



I. O. Kulik ÆÝÒÔ, òîì 128, âûï. 6 (12), 2005the angles of distortion of site loations from their equi-librium positions �0j = 2�j=N , satisfying the require-ment NXj=1 �j = 0;and g is the eletron�phonon oupling onstant. Theinteration in (22) re�ets the property that the hop-ping amplitude depends on the distane between the lo-alization positions and assumes that the displaement�j��j+1 is small in omparison to 2�=N . U and V areHubbard parameters of the on-site and intra-site inter-ations. W is the binding energy of the loop to exter-nal environment (a substrate) suh that the loop passesinto the azimuthally symmetri on�guration �i = �0ias W !1.The parameters are assumed suh that the systemis not superondutive (e.g., U > 0; anyway, the super-ondutivity is not allowed for a 1D-system and it isforbidden for a small system). The last term in Hamil-tonian (21) is the elasti energy and K is the sti�nessparameter of the lattie.In the smallest loop, the one with three sites(N = 3), only two free parameters of the lattie dis-plaement, X1 and X2, remain,�1 = X1+X2; �2 = �X1+X2; �3 = �2X2; (24)whih are deomposed with respet to seondary-quan-tized Bose operators b1 and b2 asX1 = �3K! �1=4 (b1 + b+1 );X2 = 3�K3!�1=4 (b2 + b+2 ): (25)System (21) is solved numerially with the ABC om-piler [41℄, whih inludes the reation�annihilation op-erators as its parameter types. These are generated asompiler maros with sparse matriesAn = C(N1)n 
 1(N2); fermioni setor,Bn = 1(N1) 
 C(N2)n ; bosoni setor, (26)where 1(N) is the unit matrix of size 2N and C(N)n ,n = 1; : : : ; N , are Fermi/Bose operators in a spae ofthe same dimension,C(N)n = (u
)N�na(
v)n�1; (27)

a; u, and v are the 2 � 2 matries (with 
 being thesymbol of the Kroneker matrix produt):a =  0 01 0 ! ;u =  1 00 1 ! ; v =  1 00 � ! ; (28)and � = ( �1; fermioni setor,1; bosoni setor. (29)The bosons are onsidered �hard-ore bosons� suhthat there are only two disrete states for eah mode ofdisplaement. We alulate the ground state of Hamil-tonian (21) as a funtion of the magneti �ux f (a las-sial variable). In appliation to real atomi (maro-moleular) systems, we an onsider X1 and X2 las-sial variables beause quantum unertainties in theoordinates (�X1;2 � (~=M!)1=2) are typially muhsmaller than the interatomi distanes (M is the massof an atom and ! � 1013 s�1 is the harateristi vibra-tion frequeny). The energy of the loop is alulatedas a funtion of X1 and X2 and further minimized withrespet to X1 and X2 for eah value of f . The nonzerovalues of X1 and X2 signify a �lattie� (the ioni oreof the maromoleule) instability against the struturaltransformation, analogous to the Peierls transition.In the noninterating system (U; V;W; g = 0), theenergy versus the �ux f shows a kink with a maximumat f = 0 (Fig. 10) in the half-�lling ase, i.e., at thenumber of eletrons n equal to the number of sites N ,as well as in a broader range of values of n at largerN . Atually, as is lear from Fig. 4, suh a dependeneis typial of any N � 3 system for a number of (�xed)values of n.The 3-site loop's E(f) dependene is shown inFig. 10 together with the dependene of the urrenton f . The latter shows a disontinuity at f = 0 ofthe same order of magnitude as the standard value ofthe persistent urrent. The urrent at f = 0 is para-magneti beause the energy vs �ux has a maximumrather than a minimum at f = 0. The on-site inter-ation redues the persistent urrent amplitude nearzero �ux (Fig. 11) but does not remove its disontinu-ity at f = 0. Therefore, the strongest opponent of theAharonov �Bohm e�et, the eletron�eletron intera-tion, leaves the urrent qualitatively unhanged.On the other hand, the eletron�phonon inter-ation (onsidered here lassially, in regard to lat-tie vibration) �attens the E(f) dependene near the1152
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Fig. 10. Lower urve: urrent versus magneti �ux ina 3-site loop with 3 noninterating eletrons. Upperurve: energy versus �ux in the loop. The hoppingparameter is �0 = �1. The energy is resaled andarbitrarily shifted up for larity
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Fig. 11. Spontaneous persistent urrent versus �ux for�0 = �1 and various values of the Hubbard parameterU : U = 0 (1 ), �2 (2 ), 2 (3 ), �5 (4 ), 5 (5 ), �10 (6 ),10 (7 )peak value, see Fig. 12a. At large sti�nesses K, this�attening remains important only for small magneti�uxes, muh smaller than the �ux quantization period�� = �0. We note that the persistent urrent peakredues in its amplitude only slightly near � = 0. Asis seen from Fig. 12b, the eletron�phonon interation
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Fig. 12. Energy (a) and urrent (b) versus �ux in aloop of noninterating eletrons oupled to the lattiewith the oupling parameter value g = 1 and variousvalues of the sti�ness parameter K: K = 2 (1 ), 3 (2 ),5 (3 ), 10 (4 ), 20 (5 )splits the singularity at � = 0 to two singularities at� = ��sing . Outside the interval��sing < � < �sing ,the strutural transformation is bloked by the Aharo-nov �Bohm �ux. The range of magneti �uxes between��sing and �sing determines the domain of the devel-oping lattie transformation, whih signi�es itself withnonzero values of lattie deformationsX1 andX2. Thisproperty allows us to suggest that the spontaneous per-sistent urrent state (a peak of dissipationless hargetransport at or near the zero �ux) remains at a nonzero� when the eletron�phonon oupling is not too strongor when the lattie sti�ness is larger than a ertainritial value.3 ÆÝÒÔ, âûï. 6 (12) 1153



I. O. Kulik ÆÝÒÔ, òîì 128, âûï. 6 (12), 20055. DISCUSSIONIn onlusion, we onsidered the Aharonov �Bohme�et in an angular-periodi maromoleular struturelike, e.g., an aromati yli moleule, and establishedthe existene of a persistent urrent and also a spon-taneous urrent when the Aharonov �Bohm �ux is notapplied to the ring. Strong oupling of eletron hoppingto the ion ore of the moleule removes the spontaneousurrent, whih is nevertheless restored at a (small) mag-neti �eld, or when the loop has large sti�ness or isstrongly bound to an external azimuthal-periodi envi-ronment (a substrate). Degenerate states of the loopat � = �0=2 and at � = 0 may serve as omponents ofa qubit that are operated by stati voltages applied inthe plane of the loop perpendiular to the diretion ofthe Aharonov �Bohm �ux.We draw attention to the papers of Gatteshi etal. [18; 19℄, in whih an azimuthal-periodi moleularstruture (a �ferri wheel� [Fe(OMe)2(O2CCH2Cl)℄10)exhibited periodi variation of its magnetization asa funtion of the magneti �ux, and assume that theperiodiity with a large period an be attributed to per-sistent urrents. The above maromoleular strutureis more omplex than the one we onsidered beauseit ontains magneti ions with strong exhange inter-ations suh that the atual magneti �eld in the ringmay be larger than the externally applied �eld. Ifthis suggestion proves orret, it will open a possibil-ity of engineering maromoleular strutures (qubitsand qugates) based on the Aharonov �Bohm e�et, forpurposes of quantum omputation. Apart from this,the very existene of a nonzero nondeaying urrent ina nonsuperondutive system deserves, to our opinion,a basi physial interest.I express my deep gratitude to Prof. D. Averin forhelpful disussions and advie, and to Prof. K. Likha-rev for omments on quantum omputational aspetsof nanosale physis.REFERENCES1. F. Bloh, Phys. Rev. B 2, 109 (1970).2. I. O. Kulik, Pis'ma Zh. Eksp. Teor. Fiz. 11, 407 (1970).3. M. Buttiker, Y. Imry, and R. Landauer, Phys. Lett.A 96, 365 (1983).4. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485(1959).
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