АНАЛИТИЧЕСКАЯ РЕАЛИЗАЦИЯ КОНЕЧНО-РАЗМЕРНОГО СКЕЙЛИНГА ДЛЯ ЛОКАЛИЗАЦИИ АНДЕРСОНА. ЕСТЬ ЛИ ПЕРЕХОД В ДВУМЕРНОМ СЛУЧАЕ?

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 117334, Москва, Россия

Поступила в редакцию 18 мая 2005 г.

Примерно половина численных исследований перехода Андерсона основана на рассмотрении вспомогательных квазиодномерных систем и постулировании однопараметрического скейлинга для минимального показателя Ляпунова. Буквальное использование этого алгоритма приводит к однозначному предсказанию фазового перехода в двумерном случае. Этот переход относится к типу Костерлица – Таулеса и происходит между фазами с экспоненциальной и степенной локализацией (Пичард и Сарма, 1981). Этот вывод не противоречит численным результатам, если он сопоставляется с первичными данными численных экспериментов. Интерпретация же этих данных в терминах однопараметрического скейлинга является недопустимой: минимальный показатель Ляпунова не удовлетворяет скейлинговому соотношению. Скейлинг справедлив не для минимального, а для некоторого эффективного показателя Ляпунова, зависимость которого от параметров определяется условием существования скейлинга. При использовании эффективного показателя Ляпунова существование перехода в двумерном случае перестает быть однозначным, но остается все же вероятным. Дается интерпретация полученных результатов в терминах уравнения Гелл-Манна – Лоу.

PACS: 03.65.-w, 05.50.+q, 11.10.Hi, 71.23.An

1. ВВЕДЕНИЕ

Гипотеза однопараметрического скейлинга [1] приводит к выводу об отсутствии перехода Андерсона в двумерном (2D) случае. С этого утверждения начался расцвет физики неупорядоченных систем: оно привело к развитию представлений о слабой локализации с многочисленными экспериментальными проявлениями [2]. Недавнее открытие перехода металл – диэлектрик в 2*D*-системах [3–6] угрожает подорвать основы теории. В настоящее время неясно, возможен ли такой переход в случае чисто потенциального рассеяния или его существование следует приписать наличию осложняющих факторов взаимодействия, спин-орбиты и т. д. Ниже показано, что первая возможность является вполне вероятной и не противоречит существующим скейлинговым представлениям [1].

Непосредственной мотивацией работы явилось

стремление разобраться в методических аспектах конечно-размерного скейлинга [7], который лежит в основе всех современных численных исследований перехода Андерсона [8–23]. Проблема состоит в том, что численные результаты имеют тенденцию противоречить всей прочей информации о критическом поведении [24]. Практически все теоретические и экспериментальные исследования согласуются с результатом, следующим из самосогласованной теории Волхардта и Вольфле [25, 26]

$$\nu = \begin{cases} 1/(d-2), & 2 < d < 4 \\ 1/2, & d > 4 \end{cases}, \quad s = 1, \quad 2 < d < \infty, \quad (1) \end{cases}$$

где s и ν — критические индексы проводимости и корреляционного радиуса, d — размерность пространства. Действительно, результат (1):

а) выделяет значения $d_{c1} = 2$ и $d_{c2} = 4$ как нижнюю и верхнюю критические размерности, которые

^{*}E-mail: suslov@kapitza.ras.ru

известны из независимых соображений¹⁾;

б) согласуется с результатом²⁾ для $d = 2 + \epsilon$ [33]:

$$\nu = \frac{1}{\epsilon} + 0 \cdot \epsilon^0 + 0 \cdot \epsilon^1 + O(\epsilon^2); \qquad (2)$$

в) согласуется с результатами $\nu = 1/2$ [35, 36] и s = 1 [37] для $d = \infty$;

г) удовлетворяет скейлинговому соотношению $s = (d-2)\nu$ [1] для $d < d_{c2}$;

д) дает не зависящие от d критические индексы для $d > d_{c2}$, как это характерно для теории среднего поля;

е) согласуется с экспериментальными результатами для d = 3, $s \approx 1$, $\nu \approx 1$, следующими из измерений проводимости и диэлектрической проницаемости [38, 39]³⁾.

Что касается численных результатов, то они могут быть суммированы эмпирической формулой $\nu \approx 0.8/(d-2) + 0.5$ [17], содержащей очевидные фундаментальные дефекты [24].

Конечно-размерный скейлинг основан на философии, что любая безразмерная величина A, относящаяся к системе, пространственно ограниченной на масштабе L, является функцией отношения L/ξ

$$A = F\left(L/\xi\right),\tag{3}$$

где ξ — корреляционный радиус. Мотивация соотношения (3) состоит в следующем. Представим зависимость величины A от параметров как ее зависимость от характерных масштабов размерности длины L, ξ , $l_1, l_2 \ldots$. Приняв ξ за единицу измерения, можно записать

$$A = F(L/\xi, l_1/\xi, l_2/\xi, \dots).$$
 (4)

Вблизи критической точки корреляционный радиус ξ велик по сравнению с микроскопическими масштабами l_1, l_2, \ldots и подстановка $l_1/\xi = l_2/\xi = \ldots = 0$ сводит (4) к (3). Существенное предположение, использованное при этом выводе, состоит в том, что предельный переход $l_i/\xi \to 0$ не является сингулярным, так что правая часть равенства (4) не обращается в нуль или бесконечность. К сожалению, не существует простых критериев, позволяющих установить, когда такое предположение правильно⁴⁾. Если уравнение (3) справедливо, его достаточно для исследования зависимости ξ от параметров. Если же с соотношением (3) что-то не так, то оно становится источником ложной информации.

Ниже предлагается аналитическая реализация одного из общепринятых вариантов конечно-размерного скейлинга, основанного на использовании минимального показателя Ляпунова. Используемый подход основан на исследовании вторых моментов решения задачи Коши для квазиодномерного уравнения Шредингера (разд. 3), и в этом отношении он близок к подходу недавних работ [42, 43]. Однако обоснование метода (разд. 2) и интерпретация результатов (разд. 3) существенно отличаются от приведенных в работах [42, 43] и фактически мы не согласны с большинством утверждений этих работ.

Основные результаты настоящей работы состоят в следующем. Если концепция минимальной ляпуновской экспоненты используется в общепринятом варианте, то она приводит к однозначному утверждению о существовании фазового перехода в 2D-случае (разд. 3). Этот переход не является обычным переходом Андерсона и относится скорее к типу Костерлица – Таулеса: он происходит между фазами с экспоненциальной и степенной локализацией [7]. Этот вывод не противоречит численным результатам [8–13] (разд. 4), если он сопоставляется с первичными данными численных экспериментов. Интерпретация же последних в терминах од-

¹⁾ Первое следует из теории однопараметрического скейлинга [1], второе — из многочисленных аргументов [27, 28], главным из которых является перенормируемость. Теория неупорядоченных систем математически точно сводится к полевой теории φ^4 с «неправильным» знаком константы взаимодействия [29–31]. Последняя перенормируема при $d \leq 4$ и неперенормируема при d > 4 [32]. Для $d \leq 4$ вся физика определяется большими расстояниями или малыми импульсами в соответствии с ожидаемой масштабной инвариантностью. Для d > 4 атомный масштаб не может быть исключен из результатов и масштабная инвариантность невозможна.

²⁾ Согласно Вегнеру [34], член порядка ϵ^2 в формуле (2) конечен и имеет большую отрицательную величину. Однако этот результат получен для нулькомпонентной σ -модели, соответствие которой с исходной неупорядоченной системой является приближенным и справедливым лишь при малых ϵ ; поэтому различие может возникать в некотором порядке по ϵ .

³⁾ Эти замечательные свойства результата (1) вызывают подозрения, что он точный [40]. Фактически он может быть выведен без модельных приближений на основе симметрийного анализа [41].

⁴⁾ Регулярная процедура для исследования таких вопросов существует в теоретико-полевой формулировке проблемы. Когда максимальный микроскопический масштаб l_1 устремляется к нулю, теория становится расходящейся. В неперенормируемых теориях такие расходимости неустранимы и соотношение (3) заведомо неверно. Если теория перенормируема, то все расходимости поглощаются конечным числом параметров (таких как масса, заряд и пр.), так что перенормированные функции Грина (и величины, которые через них выражаются) не зависят от l_i и обладают масштабной инвариантностью. Если величина A не имеет прозрачной теоретико-полевой интерпретации, то практически невозможно установить ее независимость от «затравочной массы», «затравочного заряда» и пр. Последние величины зависят от l_i и являются наблюдаемыми в физике конденсированного состояния.

нопараметрического скейлинга является недопустимой: минимальный показатель Ляпунова не удовлетворяет скейлинговому соотношению (3). Справедливости этого соотношения следует ожидать не для минимального, а для некоторого эффективного показателя Ляпунова, зависимость которого от параметров определяется условием существования скейлинга (разд. 5). Если конечно-размерный скейлинг основан на использовании эффективного показателя Ляпунова, то существование фазового перехода в 2*D*-случае перестает быть однозначным, но является все же вероятным (разд. 6). Его интерпретация в терминах уравнения Гелл-Манна — Лоу обсуждается в разд. 7.

2. ОСНОВНЫЕ ПОНЯТИЯ

1. Рассматриваемый вариант конечно-размерного скейлинга заимствован из теории фазовых переходов [44–46], и его удобно обсудить на примере ферромагнетика. Вместо бесконечной 3*D*-системы рассмотрим систему с размерами $L \times L \times L_z$, где $L_z \to \infty$. Такая система топологически одномерна и потому не обладает дальним порядком: существует конечный корреляционный радиус ξ_{1D} , определяющий характерный масштаб, на котором усредненный по поперечному сечению магнитный момент меняет свое направление на противоположное. Обсудим связь ξ_{1D} с ферромагнитным переходом в 3*D*-системе. При $T > T_c$ (парамагнитная фаза) ξ_{1D} совпадает с корреляционным радиусом ξ трехмерной системы, если размер *L* достаточно велик:

$$\xi_{1D} \to \xi$$
 для $L \to \infty$. (5)

При $T < T_c$ (ферромагнитная фаза) справедливо утверждение

$$\frac{\xi_{1D}}{L} \to \infty$$
 для $L \to \infty$, (6)

которое доказывается от противного. Пусть отношение $c = \xi_{1D}/L$ конечно при всех L. Выберем $n \gg c$ и рассмотрим систему с размерами $L \times L \times nL$. Ввиду условия $nL \gg \xi_{1D}$, корреляции вдоль длинного направления имеют парамагнитный характер и средний (по поперечному сечению) магнитный момент много раз меняет знак. Такая ситуация имеет место при всех L и сохраняется при $L \to \infty$; но такой термодинамический предел топологически трехмерен, и система должна быть ферромагнитной. Полученное противоречие доказывает формулу (6). При $T = T_c$ (точка перехода) возможно любое поведение типа

$$\xi_{1D} \propto L^{\alpha} \quad (0 < \alpha \le 1) \quad$$
для $L \to \infty.$ (7)

Действительно, отношение $c = \xi_{1D}/L$ конечно или стремится к нулю, и рассмотренная выше система размером $L \times L \times nL$ обладает парамагнитными корреляциями. Но это не настоящий парамагнетик, так как его корреляционный радиус $\xi \sim \xi_{1D}$ расходится, как и положено в точке перехода.

Обычно соотношение (7) предполагается с $\alpha = 1$, так как это единственная возможность, совместимая с масштабной инвариантностью. Действительно, если величины ξ_{1D} , ξ и L связаны соотношением, не содержащим микроскопических масштабов, то оно записывается в виде $F(\xi_{1D}/L, \xi/L) = 0$, если выбрать L в качестве единицы измерения. Разрешая это соотношение относительно ξ_{1D}/L , получим

$$\frac{\xi_{1D}}{L} = F\left(\frac{L}{\xi}\right),\tag{8}$$

что в критической точке дает $\xi_{1D} = F(0)L$ в соответствии с формулой (7) при $\alpha = 1$.

Безразмерное отношение

$$g(L) = \frac{\xi_{1D}}{L} \tag{9}$$

может быть принято в качестве скейлинговой переменной, типичное поведение которой показано на рис. 1*a*: она постоянна в точке перехода, а при отклонении от нее стремится к нулю или бесконечности. Подчеркнем, однако, что величина ξ_{1D} чувствительна к фазовому переходу в 3*D*-системе независимо от существования масштабной инвариантности; последняя отсутствует в случае ферромагнетика для размерности пространства d > 4.

2. Применение этого подхода к теории локализации основано на оценке корреляционного радиуса ξ_{1D} как величины, обратной минимальному показателю Ляпунова γ_{min} ,

$$\xi_{1D} \sim \frac{1}{\gamma_{min}}.\tag{10}$$

Показатели Ляпунова возникают при решении задачи Коши для уравнения Шредингера, описывающего введенную выше квазиодномерную систему, с начальными условиями, заданными на левом конце. Для примера рассмотрим одномерную модель Андерсона, описываемую дискретным уравнением Шредингера

$$\psi_{n+1} + \psi_{n-1} + V_n \psi_n = E \psi_n, \tag{11}$$

Рис.1. а) Типичные зависимости g(L) в случае однопараметрического скейлинга. б) Зависимости g(L), определяемые уравнением (51)

которое можно переписать в рекуррентной форме

$$\begin{vmatrix} \psi_{n+1} \\ \psi_n \end{vmatrix} = \begin{vmatrix} E - V_n & -1 \\ 1 & 0 \end{vmatrix} \begin{vmatrix} \psi_n \\ \psi_{n-1} \end{vmatrix} \equiv = T_n \begin{vmatrix} \psi_n \\ \psi_{n-1} \end{vmatrix}, \quad (12)$$

введя трансфер-матрицу T_n . Тогда формальное решение задачи Коши сводится к перемножению матриц

$$\begin{vmatrix} \psi_{n+1} \\ \psi_n \end{vmatrix} = T_n T_{n-1} \dots T_2 T_1 \begin{vmatrix} \psi_1 \\ \psi_0 \end{vmatrix}.$$
(13)

Аналогичное соотношение справедливо для произвольной квазиодномерной системы, если функцию $\psi_n(r_{\perp})$, зависящую от поперечных координат r_{\perp} , понимать как вектор ψ_n .

Попытаемся представить произведение матриц P_n в формуле (13) как *n*-ю степень постоянной матрицы *T*. Это оказывается возможным, но лишь для «эрмитовой части» P_n . Матрица P_n , как и любая матрица, допускает представление в виде произведения унитарной матрицы U_n и эрмитовой матрицы H_n

$$P_n = T_n T_{n-1} \dots T_2 T_1 \equiv U_n H_n, \quad H_n^2 = P_n^+ P_n.$$
(14)

Эрмитова матрица H_n имеет действительные собственные значения и описывает систематический рост или убывание ψ_n , тогда как унитарная матрица U_n имеет собственные значения, по модулю равные единице, и отвечает за осциллирующее поведение. Представление $H_n = T^n$ конструктивно, ввиду того что среднее геометрическое матриц

$$T = (P_n^+ P_n)^{1/2n} =$$

= $(T_1^+ T_2^+ \dots T_n^+ T_n \dots T_2 T_1)^{1/2n}$ (15)

стремится к детерминированному пределу при $n \to \infty$ в силу теоремы Оселедеца [47]. Раскладывая вектор начальных условий в формуле (13) по собственным векторам матрицы T и записывая ее собственные значения λ_s как ехр γ_s , получим следующее разбиение для $\psi_n(r_{\perp})$:

$$\psi_n(r_{\perp}) = A_1 h_n^{(1)}(r_{\perp}) e^{\gamma_1 n} + A_2 h_n^{(2)}(r_{\perp}) e^{\gamma_2 n} + \dots + A_m h_n^{(m)}(r_{\perp}) e^{\gamma_m n}.$$
 (16)

Величины $h_n^{(s)}(r_{\perp})$ не имеют систематического роста по n, а показатели Ляпунова γ_s стремятся при $n \to \infty$ к постоянным значениям. Мы сохраняем в (16) лишь члены с положительными показателями, считая их перенумерованными в порядке убывания γ_s .

Согласно Мотту [48], собственные функции квазиодномерной системы могут быть получены путем сшивки двух решений типа (16), нарастающих с двух противоположных концов системы. Тогда убывание собственных функций на больших расстояниях определяется минимальным показателем Ляпунова $\gamma_{min} \equiv \gamma_m$, что и является основанием для соотношения (10).

3. Разбиение (16) справедливо для неусредненной функции $\psi_n(r_{\perp})$, и его смысл состоит в выделении самоусредняющихся величин γ_s . Ниже показано (разд. 3), что среднее значение $\psi_n(r_{\perp})$ не имеет систематического роста,

$$\langle \psi_n(r_\perp) \rangle \sim 1,$$
 (17)

тогда как для вторых моментов справедливо разбиение типа (16)

$$\langle \psi_n^2(r_{\perp}) \rangle = B_1(r_{\perp}) e^{\beta_1 n} + B_2(r_{\perp}) e^{\beta_2 n} + \dots + B_m(r_{\perp}) e^{\beta_m n}$$
 (18)

 7^{*}

с тем же числом положительных показателей β_s . Возведение формулы (16) в квадрат дает m^2 членов, растущих как $\exp(\gamma_i n + \gamma_j n)$, и единственная возможность согласования с (18) состоит в предположении, что члены с $i \neq j$ при усреднении обращаются в нуль, так что остаются лишь средние от mположительных величин, заведомо не исчезающих при усреднении:

$$\left\langle \psi_n^2(r_{\perp}) \right\rangle = \left\langle \left[A_1 h_n^{(1)}(r_{\perp}) \right]^2 e^{2\gamma_1 n} \right\rangle + \left\langle \left[A_2 h_n^{(2)}(r_{\perp}) \right]^2 e^{2\gamma_2 n} \right\rangle + \dots + \left\langle \left[A_m h_n^{(m)}(r_{\perp}) \right]^2 e^{2\gamma_m n} \right\rangle.$$
(19)

Члены в правых частях (18) и (19) находятся во взаимно однозначном соответствии, и соотношение показателей γ_s и β_s можно обсудить для чисто одномерного случая, когда правые части (16) и (18) содержат лишь по одному члену:

$$\psi_n \sim e^{\gamma n}, \quad \langle \psi_n \rangle \sim 1, \quad \langle \psi_n^2 \rangle \sim e^{\beta n}.$$
(20)

На фоне экспоненциального роста конечность $\langle \psi_n \rangle$ несущественна и можно считать, что $\langle \psi_n \rangle = 0$. Фактически речь идет об общем соотношении между случайной величиной x и ее среднеквадратичным значением, которое сводится к следующему. Если $\langle x \rangle = 0$ и $\langle x^2 \rangle = \sigma^2$, то типичное значение x не обязательно оказывается порядка σ : можно утверждать лишь, что $|x| \leq \sigma$. Действительно, согласно неравенству Чебышева [49], вероятность того, что |x| больше x_0 , не превышает σ^2/x_0^2 . Следовательно, значения x, существенно превышающие σ , маловероятны, и σ дает грубую оценку ширины распределения сверху. Нижней же оценки не существует ни в каком варианте: так, если распределение P(x) меняется на масштабе единицы и имеет хвост $|x|^{-\alpha}$ с $1 < \alpha < 3$, то типичное значение $x \sim 1$, тогда как $\langle x^2 \rangle = \sigma^2 = \infty$. Из сказанного ясно, что для показателей β и γ в формуле (20) справедливо соотношение

$$\beta \ge 2\gamma,\tag{21}$$

в котором нет оснований для точного равенства.

Фактически вопрос о связи β и γ можно обсудить более конструктивно, если учесть, что для ψ_n справедливо логарифмически-нормальное распределение [50], т. е. величина $\tau = \ln |\psi_n|$ распределена по закону Гаусса

$$P(\tau) \sim \exp\left\{-\frac{(\tau - an)^2}{2bn}\right\}$$
(22)

Рис.2. Решение задачи Коши (a) и построенная по Мотту собственная функция 1D-системы (b) в ситуации a = 0, b > 0

с линейно растущими по *n* первым и вторым моментами. Легко показать, что

$$\psi_n \sim e^{an}, \quad \langle \psi_n^2 \rangle \sim e^{(2a+2b)n}$$
 (23)

и дисперсия величины ψ_n растет быстрее, чем квадрат ее типичного значения, в соответствии с неравенством (21). Для одномерной модели Андерсона (11) при E = 0 имеем

$$a = b = \frac{1}{8} \langle V^2 \rangle, \quad \beta = \frac{1}{2} \langle V^2 \rangle \tag{24}$$

в области слабого беспорядка и

¢

$$\gamma = a = \langle \ln |V| \rangle, \quad \beta = \ln \langle V^2 \rangle \tag{25}$$

в случае сильного беспорядка. Для распределений P(V), характеризуемых одним параметром (например, прямоугольного или гауссова) результат (25) означает, что $b \ll a$. Аналогичные результаты справедливы для многих моделей и соотношение $b \leq a$ следует считать типичным. В этом случае $\beta \sim \gamma$ и $1/\beta$ дает правильную оценку корреляционного радиуса ξ_{1D} одномерной системы.

Ситуацию $b \gg a$ проиллюстрируем в ее экстремальном варианте, когда a = 0, b > 0. Тогда решение задачи Коши ψ_n не имеет систематического роста, но имеет редкие выбросы с возрастающей амплитудой (рис. 2*a*). При этом построенная по Мотту собственная функция представляет собой типичное гибридное состояние, являющееся суперпозицией локализованной и делокализованной функций (рис. 2*b*). Протяженность локализованной компоненты, очевидно, порядка $1/\beta$, так что показатель β дает существенную информацию, не содержащуюся в среднем значении γ . Эта информация может иметь наблюдаемые проявления: параметр b определяет рост всех низших четных моментов ψ_n $(\langle \psi_n^{2m} \rangle \sim \exp(2ma + 2m^2b)n)$, тогда как четвертые моменты входят в формулу Кубо-Гринвуда для средней проводимости.

Согласно численным исследованиям (см., например, [11]), нормальное распределение справедливо для всех показателей Ляпунова γ_s , а следовательно, произвольный (s-й) член в уравнении (16) имеет распределение типа (22) с параметрами a_s и b_s . Поэтому соотношения $\gamma_s = a_s, \beta_s = 2a_s + 2b_s$ справедливы для произвольного s. Мы видим, что исследование вторых моментов $\psi_n(r_{\perp})$ позволяет получить существенную информацию: a) показатели β_s дают строгую верхнюю оценку для $\gamma_s, \beta_s \ge 2\gamma_s;$ б) в типичном случа
е $a_s\gtrsim b_s$ справедлива порядковая оценка $\beta_s \sim \gamma_s;$ в) в случае $a_s \ll b_s$ показатели β_s связаны с флуктуациями γ_s . Что касается эвристической связи с переходом Андерсона, то использование минимальных показателей γ_{min} и β_{min} является практически равноценным. Так, скейлинговые соотношения

$$\frac{1}{\gamma_{min}L} = F\left(\frac{L}{\xi}\right) \quad \text{i} \quad \frac{1}{\beta_{min}L} = F\left(\frac{L}{\xi}\right) \tag{26}$$

могут быть постулированы на одном и том же уровне строгости. В недавней работе [11] утверждается существование эмпирического скейлинга как для величины $\gamma_{min}L$, так и для отношения b/a. Если к этому утверждению относиться серьезно, то оно обосновывает соотношение (26) для $\beta_{min}L$; в действительности же скейлинг отсутствует для всех указанных величин (разд. 3–5).

3. ВТОРЫЕ МОМЕНТЫ РЕШЕНИЯ ЗАДАЧИ КОШИ

Идея используемого ниже подхода может быть найдена в старом обзоре Таулеса [51]. Перепишем уравнение Шредингера (11) для одномерной модели Андерсона в виде рекуррентного соотношения, выражающего ψ_{n+1} через ψ_n , ψ_{n-1} , и рассмотрим задачу Коши с фиксированными начальными условиями для ψ_1 и ψ_0 . Легко видеть, что ψ_2 является функцией лишь V_1 , ψ_3 — функцией V_2 , V_1 и т.д. Следовательно, ψ_n и V_n статистически независимы и могут усредняться по отдельности:

$$\langle \psi_{n+1} \rangle = E \langle \psi_n \rangle - \langle \psi_{n-1} \rangle, \qquad (27)$$

$$\langle \psi_{n+1}^2 \rangle = (W^2 + E^2) \langle \psi_n^2 \rangle - - 2E \langle \psi_n \psi_{n-1} \rangle + \langle \psi_{n-1}^2 \rangle \quad \text{и т. д.}$$
 (28)

Мы считаем, что величин
ы V_n статистически независимы и

$$\langle V_n \rangle = 0, \quad \langle V_n V_{n'} \rangle = W^2 \delta_{nn'}.$$
 (29)

Уравнение (27) имеет вид (11) с $V_n \equiv 0$, и его решения внутри разрешенной зоны имеют вид

$$\langle \psi_n \rangle \sim \exp(ipn)$$
 (30)

с $2\cos p = E$; очевидно, они не имеют систематического роста и $\langle \psi_n \rangle \sim 1$. Уравнение (28) при E = 0 является разностным уравнением для величины $x_n = \langle \psi_n^2 \rangle$,

$$x_{n+1} = W^2 x_n + x_{n-1}, (31)$$

и имеет решение

$$x_n = \langle \psi_n^2 \rangle \sim e^{\beta n}, \quad 2 \operatorname{sh} \beta = W^2,$$
 (32)

экспоненциально растущее с
 n. При $E\neq 0$ уравнение (28) незамкнуто и его нужно дополнить соот
ношением

$$\langle \psi_{n+1}\psi_n \rangle = E \langle \psi_n^2 \rangle - \langle \psi_n \psi_{n-1} \rangle, \qquad (33)$$

что приводит к системе разностных уравнений для $x_n = \langle \psi_n^2 \rangle$ и $y_n = \langle \psi_n \psi_{n-1} \rangle$:

$$x_{n+1} = (W^2 + E^2)x_n + x_{n-1} - 2Ey_n,$$

$$y_{n+1} = Ex_n - y_n,$$
 (34)

решение которой также экспоненциально по *n*.

Этот подход легко обобщается на произвольные квазиодномерные системы. Проиллюстрируем его на примере двумерной модели Андерсона:

$$\psi_{n+1,m} + \psi_{n-1,m} + \psi_{n,m+1} + \psi_{n,m-1} + V_{n,m}\psi_{n,m} = E\psi_{n,m}.$$
 (35)

Интерпретируя уравнение (35) как рекуррентное соотношение по n, разрешим его относительно величины $\psi_{n+1,m}$ и, усредняя ее квадрат, выразим его через парные корреляторы $\psi_{n,m}$, содержащие меньшие значения n. Составляя аналогичные уравнения для парных корреляторов, приходим к замкнутой системе разностных уравнений для величин

$$\begin{aligned} x_{m,m'}(n) &\equiv \langle \psi_{n,m}\psi_{n,m'} \rangle, \\ y_{m,m'}(n) &\equiv \langle \psi_{n,m}\psi_{n-1,m'} \rangle, \\ z_{m,m'}(n) &\equiv \langle \psi_{n-1,m}\psi_{n,m'} \rangle, \end{aligned}$$
(36)

которая при E = 0 имеет вид

$$x_{m,m'}(n+1) = W^{2} \delta_{m,m'} x_{m,m'}(n) + x_{m+1,m'+1}(n) + x_{m-1,m'+1}(n) + x_{m+1,m'-1}(n) + x_{m-1,m'-1}(n) + x_{m,m'}(n-1) + y_{m+1,m'}(n) + y_{m-1,m'}(n) + z_{m,m'+1}(n) + z_{m,m'-1}(n), \quad (37)$$

$$y_{m,m'}(n+1) = -x_{m+1,m'}(n) - x_{m-1,m'}(n) - z_{m,m'}(n),$$

$$z_{m,m'}(n+1) = -x_{m,m'+1}(n) - x_{m,m'-1}(n) - y_{m,m'}(n).$$

Ввиду независимости коэффициентов от n решение ищется в экспоненциальной по n форме [52]:

$$x_{m,m'}(n) = x_{m,m'}e^{\beta n}, \quad y_{m,m'}(n) = y_{m,m'}e^{\beta n}, \\ z_{m,m'}(n) = z_{m,m'}e^{\beta n}.$$
(38)

Кроме того, сделаем формальную замену переменных

$$x_{m,m'} \equiv \tilde{x}_{m,m'-m} \equiv \tilde{x}_{m,l}$$
 и т. д., (39)

где l = m' - m. Тогда получим, опуская тильды,

$$(e^{\beta} - e^{-\beta}) x_{m,l} = W^{2} \delta_{l,0} x_{m,l} + x_{m+1,l} + + x_{m-1,l} + x_{m+1,l-2} + x_{m-1,l+2} + + y_{m+1,l-1} + y_{m-1,l+1} + z_{m,l+1} + z_{m,l-1}, \quad (40)$$
$$e^{\beta} y_{m,l} = -x_{m+1,l-1} - x_{m-1,l+1} - z_{m,l}, e^{\beta} z_{m,l} = -x_{m,l+1} - x_{m,l-1} - y_{m,l}.$$

Коэффициенты не зависят от m, и зависимость решения от m является экспоненциальной:

$$x_{m,l} = x_l e^{i pm}$$
 и т. д., (41)

где разрешенные значения $p, p_s = 2\pi s/L, s = 0, 1, \ldots, L-1$, определяются периодическими граничными условиями в поперечном направлении:

$$\psi_{n,m+L} = \psi_{n,m} \,. \tag{42}$$

Исключая $y_{m,l}$ и $z_{m,l}$ из первого уравнения (40), приходим к задаче о точечном дефекте в периодической цепочке:

$$x_{l+2} e^{-ip} + x_{l-2} e^{ip} + V \delta_{l,0} x_l = \epsilon x_l, \quad x_{l+L} = x_l, \quad (43)$$
$$\epsilon = 2 \operatorname{ch} \beta, \quad V = \frac{W^2 \operatorname{sh} \beta}{\operatorname{ch} \beta - \cos p}.$$

Для $L \to \infty$ е
е решение имеет вид $x_l \sim \exp(ipl/2 - \beta|l|/2)$, так что исходный коррелятор

$$\langle \psi_{n,m}\psi_{n,m'}\rangle \sim \sim \exp\left\{ip\frac{m+m'}{2} - \beta\frac{|m-m'|}{2} + \beta n\right\}$$
 (44)

оказывается локализованным в поперечном направлении на том же масштабе $1/\beta$, на котором он изменяется как функция n. В результате радиус локализации ξ_{loc} для 2D-системы совпадает с ξ_{1D} .

Положительные показатели β_s для нечетных L определяются уравнением

$$2(ch \beta_s - cos p_s) = W^2 cth(\beta_s L/2), p_s = 2\pi s/L, \quad s = 0, 1, \dots, L-1.$$
(45)

Их число равно L и совпадает с числом положительных показателей Ляпунова γ_s для той же задачи⁵⁾. При больших L разрешенные значения p_s и β_s сгущаются и величины β и p можно считать непрерывными:

$$2(\operatorname{ch}\beta - \cos p) = W^2 \operatorname{cth}(\beta L/2).$$
(46)

Минимальное значение β реализуется при $p = \pi$ и легко находится в пределе $L \to \infty$:

$$\beta_{min} = \begin{cases} \operatorname{arch} \left(W^2/2 - 1 \right), & W^2 > 4, \\ \frac{2}{L} \operatorname{arth} \left(W^2/4 \right), & W^2 < 4, \\ \frac{2 \ln L - 2 \ln \ln L + \dots}{L}, & W^2 = 4. \end{cases}$$
(47)

Характер решения качественно изменяется при критическом значении $W_c = 2$. При $W > W_c$ уравнение (46) решается в предположении $\beta \sim 1$, $\beta L \to \infty$ и параметр β_{min} стремится к постоянному пределу в пределе больших L. При $W < W_c$ уравнение (46) имеет решение при $\beta L = \text{const}, \beta \to 0$, обеспечивая поведение⁶⁾ $\beta_{min} \propto 1/L$ для $L \to \infty$. При $W = W_c$ решение ищется при условиях $\beta L \gg 1, \beta \ll 1$, когда уравнение (46) сводится к $\beta^2 = 8 \exp(-\beta L)$ и может быть решено итерациями.

Оценивая корреляционный радиус ξ_{1D} как $1/\beta_{min}$ и сопоставляя это с соображениями разд. 2, приходим к выводу, что состояние с дальним порядком (в данном случае — металлическая фаза) не возникает. При $W > W_c$ конечность ξ_{1D} означает существование экспоненциальной локализации, тогда как во всей области $W < W_c$ реализуется критическое поведение $\xi_{1D} \sim L$, характерное для точки перехода. Последняя ситуация соответствует локализации $\xi_{loc} \sim L$ и, по-видимому, должна

⁵⁾ Матрица *T* в формуле (15) имеет размерность $2L \times 2L$, но ее собственные значения появляются парами e^{γ_s} и $e^{-\gamma_s}$, так что число положительных показателей γ_s равно *L*. В случае четных *L* число решений с положительными β_s отлично от *L* и возникают трудности в сопоставлении формул (16) и (18).

 $^{^{6)}}$ Исчезновение
 β_{min} для $L=\infty$ было получено в недавней работе [42].

Рис. 3. Характерные масштабы ξ и ξ_{loc} , полученные в предположении $\xi_{1D} \sim 1/\beta_{min}$

интерпретироваться как степенная локализация. Таким образом, переход в точке $W = W_c$ не является обычным переходом Андерсона и скорее относится к типу Костерлица – Таулеса.

Вычисляя первые поправки к формуле (47), связанные с конечностью L, получим для $W > W_c$

$$\beta_{min} = \beta_{\infty} + \frac{W^2}{\mathrm{sh}\,\beta_{\infty}} e^{\beta_{\infty}L},$$

$$\beta_{\infty} = \operatorname{arch}\left(\frac{W^2 - 2}{2}\right)$$
(48)

и для $W < W_c$

$$g = \frac{1}{\beta_{min}L} = g_{\infty} + \frac{2(\sinh 1/2g_{\infty})^2}{W^2 L^2},$$

$$g_{\infty} = \frac{1}{2\operatorname{arth}(W^2/4)}.$$
(49)

Определяя корреляционный радиус ξ как масштаб, на котором зависимости (48), (49) выходят на свои асимптотики (т. е. когда поправочные члены сравниваются с главными), имеем (рис. 3)

$$\xi \sim \begin{cases} 1/\ln W^2, & W^2 \to \infty, \\ \frac{\ln(1/\tau)}{\sqrt{\tau}}, & \tau = |W - W_c| \to 0, \\ W^2, & W^2 \to 0. \end{cases}$$
(50)

При $W > W_c$ корреляционный радиус ξ совпадает с радиусом локализации $\xi_{loc} \sim \xi_{1D}$ с точностью до логарифмических поправок. При $W < W_c$ масштабы ξ и ξ_{loc} существенно различны, как это характерно для металлической фазы (рис. 3). Поведение скейлингового параметра $g = 1/\beta_{min}L$ как функции L определяется уравнением

$$2 \operatorname{ch} \frac{1}{gL} - 2 \cos p = W^2 \operatorname{cth} \frac{1}{2g}$$
 (51)

с $p = \pi$ и показано на рис. 1*б.* Нетрудно видеть существенное отличие от типичной скейлинговой ситуации, представленной на рис. 1*а.* Отсутствие скейлинга на рис. 1*б* ясно уже из того, что параметр *g* не является постоянным при $W = W_c$, как это должно быть согласно формулам (8), (9). Это еще более очевидно в области $W < W_c$, когда различные кривые выходят при $L \to \infty$ на различные постоянные пределы и заведомо не могут быть совмещены друг с другом масштабным преобразованием.

Выше мы оценивали ξ_{1D} как $1/\beta_{min}$, что может вызвать сомнения, так как при отсутствии скейлинга величины β_{min} и γ_{min} могут существенно различаться. Фактически замена β_{min} на γ_{min} не изменит качественных выводов. Действительно, β_{min} обеспечивает строгую верхнюю оценку для γ_{min} и из формулы (47) следует, что

$$\gamma_{min} \to 0$$
 при $L \to \infty$ для $W < W_c$. (52)

Этого достаточно для утверждения о существовании фазового перехода, поскольку в области больпих W наличие экспоненциальной локализации не вызывает сомнений, а конечность γ_{min} надежно устанавливается численным расчетом [8–11]. Конечно, верхняя оценка для величины γ_{min} не запрещает ей убывать быстрее, чем 1/L, как это должно быть в случае настоящего металлического состояния; однако такая возможность надежно исключается численными результатами (разд. 4). Тем не менее замена β_{min} на γ_{min} может изменить положение точки перехода и характер критического поведения. Поэтому представленные количественные результаты носят скорее иллюстративный характер.

Влияние фазового перехода на проводимость системы можно понять из следующих соображений. Кондактанс G квазиодномерной системы длиной l оценивается как $\exp\{-2\gamma_{min}l\}$ (см. [11] и ссылки там), и экстраполяция к $l \sim L$ дает зависимость $G \sim \exp\{-\text{const }L\}$ для $W > W_c$, тогда как при $W < W_c$ экспонента сводится к константе и зависимость G(L) определяется предэкспоненциальным множителем.

Рис. 4. Численные результаты для ξ_{1D} [7], $g = 1/\gamma_{min}L$ [10] и параметра $\gamma(L)$, связанного со статистикой энергетических уровней [13]

4. СОПОСТАВЛЕНИЕ С ЧИСЛЕННЫМИ РЕЗУЛЬТАТАМИ

Идея степенной локализации высказывалась Ластом и Таулесом [53] и затем обсуждалась в ряде работ [54]. Утверждения, буквально соответствующие результатам разд. 3, сделаны Пичардом и Сармой в 1981 году [7] на основе численного исследования двумерной модели Андерсона. Полученные ими зависимости ξ_{1D} от L показаны на рис. 4a. Указанные значения беспорядка соответствуют величине

$$\tilde{W} = W\sqrt{12} \tag{53}$$

(так что $\tilde{W}_c = \sqrt{48} = 6.928...$), поскольку для V_n использовалось прямоугольное распределение ширины \tilde{W} , для которого $\langle V^2 \rangle = \tilde{W}^2/12 \equiv W^2$. При $\tilde{W} < 6$ зависимости явно линейные, тогда как при $\tilde{W} > 6$ возникает тенденция к выходу на константу, отчетливо выраженная при больших \tilde{W} .

Результаты [7] считаются устаревшими [8–11], поэтому полезно проанализировать первичные данные работы [10], которые в рамках метода трансфер-матрицы считаются наилучшими (рис. 4б). Скейлинговый параметр $g = 1/\gamma_{min}L$ убедительно убывает с ростом L только при больших \tilde{W} . В области промежуточного беспорядка ($\tilde{W} = 4-7$) довольно трудно сказать, имеется ли тенденция к неограниченному убыванию или выходу на константу. Для слабого беспорядка ($\tilde{W} < 4$) результаты отсутствуют вообще.

Из сказанного ясно, что представленные на рис. 46 «сырые» данные отнюдь не указывают на отсутствие фазового перехода в 2*D*-случае, как это утверждают их авторы [10]. Последний вывод основан на интерпретации этих данных в рамках однопараметрического скейлинга, которая заведомо несправедлива. Отсутствие скейлинга для β_{min} указывает на отсутствие скейлинга для γ_{min} , что подтверждается схожестью зависимостей на рис. 1
 ℓ и рис. 46. Использование β_{min} как верхней оценки для γ_{min} приводит к выводу, что зависимости для W < W_c на рис. 4б не могут убывать до нуля и должны выходить на конечные пределы. Скейлинговое соотношение (8) может быть формально выполнено лишь в случае, если эти конечные пределы одинаковы для всех кривых с $W < W_c$. Такая возможность выглядит маловероятной на рис. 4
 ℓ и фактически может считаться исключенной: нижняя оценка, определяемая величиной $1/\beta_{min}L$, в области слабого беспорядка лежит выше всех кривых на рис. 4б.

В работах [8–11] признается, что скейлинговое соотношение (26) для γ_{min} не является доказанным, но утверждается, что оно хорошо подтверждается эмпирически: это иллюстрируется впечатляющими по качеству скейлинговыми кривыми $g = F(L/\xi)$,

Рис.5. Построение скейлинговых кривых при отсутствии скейлинга

приведенными в работе [10]. Однако к эмпирическим доказательствам скейлинга нужно относиться с большой осторожностью. Нетрудно предложить алгоритм, который позволяет «доказать» эмпирический скейлинг практически в любой ситуации.

Рассмотрим подробнее процедуру построения скейлинговых кривых. Как уже отмечалось, первичные данные представляют собой зависимости g(L) для фиксированных значений беспорядка W_0, W_1, W_2, \ldots (рис. 5*a*). Их нужно представить на рис. 56 как функции L/ξ , выбирая значение ξ для каждой кривой так, чтобы все кривые по возможности совпали. Если масштаб вдоль оси L выбран логарифмическим, то такая процедура сводится к простой трансляции. Пусть кривая для W_0 выбрана в качестве реперной и соответствующее ей значение ξ_0 принято за единицу; тогда эта кривая переносится на рис. 56 без изменений. Кривая для *W*₁ транслируется до наилучшего совпадения с кривой для W_0 , чем определяется значение ξ_1 , и т. д. В логарифмических координатах зависимости g(L) имеют простую форму (см. рис. 46) и могут быть аппроксимированы чем-нибудь вроде парабол. Тогда для близких значений W₀ и W₁ соответствующие кривые являются параболами со слегка различными коэффициентами и при подходящей трансляции они почти совпадут в их значительной части. Выберем допустимую погрешность є и наложим кривые крест-накрест, как показано на рис. 56. Если какая-то часть кривой для W_1 не укладывается в допустимую погрешность (штрихи), то соответствующие точки можно отбросить на разумном основании: скейлинг есть свойство больших масштабов и первичные данные для малых L менее надежны. Аналогичным образом укладывается кривая для W_2 и т. д. При наличии некоторого разброса точек такое построение будет выглядеть

естественным. Если же разброс точек мал, то шаг по W нужно выбрать более мелким: тогда многочисленные кривые плотно заполнят полоску шириной ϵ и результирующая скейлинговая кривая будет выглядеть аккуратно.

Из сказанного ясно, что эмпирически довольно трудно отличить ситуацию с отсутствием скейлинга от ситуации, когда скейлинг имеет место, но имеются существенные поправки к нему. В рассматриваемом случае соотношение (26) тривиально выполняется при $L \gtrsim \xi$ в локализованной фазе, когда $\beta_{min} \approx 1/\xi$ и $g \approx \xi/L$ в соответствии с формулой (26) при $F(x) \approx 1/x$; поэтому в некотором смысле ситуация близка к скейлингу.

Несколько слов о варианте конечно-размерного скейлинга, основанном на статистике уровней [12]. В этом случае используются довольно большие системы, с размерами до 1024^2 [13], и существование локализации всех состояний в 2D-системах выглядит убедительно уже на уровне первичных данных (рис. 4e), без апелляции к однопараметрическому скейлингу. Однако в этом подходе обсуждается лишь переход от металлического режима при малых L к локализованному режиму при больших L и не делается попытки провести различие между экспоненциальной и степенной локализацией.

5. ВОЗМОЖЕН ЛИ ОДНОПАРАМЕТРИЧЕСКИЙ СКЕЙЛИНГ?

В разд. 3 мы показали нарушение однопараметрического скейлинга для величины β_{min} . Если $\beta_{min} \sim \gamma_{min}$, то, очевидно, скейлинга нет и для γ_{min} . Если же β_{min} и γ_{min} существенно различны, то собственные функции квазиодномерной системы имеют структуру, характеризуемую двумя масштабами, $1/\beta_{min}$ и $1/\gamma_{min}$ (см. рис. 2), и скейлинг невозможен по физическим причинам. Эти соображения подтверждаются анализом первичных численных данных (разд. 4). Полученный результат допускает две интерпретации:

I) гипотеза однопараметрического скейлинга [1]
 в принципе ошибочна;

II) минимальный показатель Ляпунова не является правильной скейлинговой переменной.

Возможность I) не так абсурдна, как может казаться. Обоснования скейлинга в формализме σ -моделей [33] фактически провалились из-за катастрофы высших градиентов [55, 56], а отсутствие скейлинга на уровне функций распределения [57] делает нетривиальным вопрос о выборе скейлинговых переменных. Что касается эксперимента, то он подтверждает скорее «теорию квантовых поправок», чем «теорию слабой локализации». Тем не менее гипотеза однопараметрического скейлинга представляется физически убедительной. В ее пользу свидетельствуют а) аналитический скейлинг в квазислучайных системах [58–60]; б) справедливость скейлингового соотношения $s = \nu(d-2)$ в теориях типа Волхардта и Вольфле [25, 26, 41]; в) перенормируемость при d < 4 в точной теоретико-полевой формулировке проблемы [29–31] (см. примечание 1).

Перейдем к обсуждению возможности II). Как ясно из разд. 2, существование скейлинга для величины ξ_{1D} выглядит достаточно убедительным и подтверждается опытом теории фазовых переходов [44–46]. Соотношение же (10) между ξ_{1D} и γ_{min} не столь очевидно, как может казаться: так, в квазислучайных системах известны ситуации, когда $\gamma_{min} > 0$, но $\xi_{1D} = \infty$ [58, 59, 61]⁷) (см. также обсуждение в работе [50] математических аспектов вопроса). Основанием для формулы (10) является конструирование по Мотту собственных функций квазиодномерной системы путем сшивки двух решений типа (16), нарастающих с противоположных концов системы. Для точной сшивки требуется наличие всех членов в разложении (16), что означает конечность коэффициента A_m и присутствие 1/ γ_{min} в качестве максимального масштаба длины. Эти соображения правильны при небольшом числе членов в разложении (16). Однако в пределе больших L спектр ляпуновских экспонент γ_s становится квазинепрерывным, а число слагаемых в разложении (16) стремится к бесконечности. В такой ситуации никакой конкретный член в разложении (16) не имеет значения, а существен лишь интегральный эффект, соответствующий некоторому участку спектpa γ_s .

Рассмотрим коэффициенты A_s в формуле (16), определяемые построением Мотта, в зависимости от γ_s (рис. 6). При этом возможны две качественно различные ситуации. В первой из них (рис. 6*a*) все A_s оказываются одного порядка; тогда окрестность γ_{min} дает существенный вклад и масштаб $1/\gamma_{min}$ действительно соответствует длине локализации ξ_{1D} . В другой ситуации (рис. 6*б*) вклад окрестности γ_{min} сильно подавлен и масштаб $1/\gamma_{min}$ не

Рис. 6. Коэффициенты A_s , возникающие при конструировании собственной функции квазиодномерной системы путем сшивки двух разложений типа (13), в зависимости от γ_s

имеет физического значения. Длина локализации ξ_{1D} определяется некоторым эффективным показателем γ_{eff} , который обеспечивает подходящее обрезание⁸⁾ в области малых γ_s (рис. 66)

$$\xi_{1D} \sim \frac{1}{\gamma_{eff}}.$$
 (54)

Согласно формуле (8), скейлинговое соотношение (26) нужно постулировать не для γ_{min} , а для $\gamma_{eff}^{(9)}$. После этого зависимость γ_{eff} от параметров может быть установлена из условия существования скейлинга.

Поясним последнее в рамках обсуждавшегося выше численного алгоритма. Вернемся к рис. 5, но будем считать, что кривые для W_0 , $W_1,...$ относятся не к $g = 1/\gamma_{min}L$, а к $g = 1/\gamma_{n_0}L$, где γ_{n_0} — показатель Ляпунова с фиксированным номером n_0 . Попытка совместить кривые для W_0 и W_1 масштабным преобразованием в общем случае оказывается неудачной. Поэтому при пере-

⁷⁾ В одномерной модели (11) с $V_n = V \cos(2\pi\beta n)$ и иррациональным β переход Андерсона происходит при V = 2[58, 59, 61]. Показатель Ляпунова γ положителен при всех иррациональных β в области V > 2 [61]. Тем не менее радиус локализации расходится для некоторых значений β , аномально близких к рациональным числам [59].

⁸⁾ Из уравнения (44) ясно, что *s*-й член в разбиении (18) локализован в поперечном направлении на том же масштабе $1/\beta_s$, что и масштаб, на котором он изменяется в продольном направлении. Аналогичное свойство ожидается для уравнения (16), что обеспечивает равенство продольной и поперечной длин локализации. Последнее фундаментальное свойство не нарушается при замене нижней границы спектра γ_{min} на эффективное обрезание γ_{eff} .

⁹⁾ Квазиодномерная собственная функция содержит много характерных масштабов $1/\gamma_1, 1/\gamma_2, \ldots, 1/\gamma_m$ и все они существенны вблизи ее центра. Малые масштабы последовательно «вымирают» по мере смещения от максимума собственной функции к ее хвостам, пока не остается единственный масштаб $1/\gamma_m$. Однако в ситуации рис. 66 это происходит на таких расстояниях, где собственную функцию можно считать нулем для всех практических целей. Выбором единственного параметра ξ_{1D} нельзя в полной мере охарактеризовать весь набор масштабов $1/\gamma_s$: в лучшем случае это возможно для наиболее существенных из них, которые определяют общую форму собственной функции и соответствуют эффективному обрезанию γ_{eff} .

ходе от W_0 к W_1 заменим γ_{n_0} на γ_{n_1} , т. е. изменим номер ляпуновской экспоненты. Тогда кривая для W_1 изменит свою форму и подбором $\Delta n = n_1 - n_0$ можно добиться ее наилучшего совпадения с кривой для W_0 после трансляции. Аналогично, для W_2 подберем γ_{n_2} с номером n_2 и т. д. В результате скейлинговое построение определит не только зависимость $\xi(W)$, но и зависимость n(W). Разумеется, такое построение будет содержать несколько больший произвол, чем в исходном варианте алгоритма [7–11]: не только общий масштаб для ξ , но и начальный номер n_0 остается произвольным.

Таким образом, мы пришли к конструктивной модификации общепринятого численного алгоритма. Эта модификация позволяет улучшить качество скейлинга и возможно приведет к устранению противоречий, отмеченных в разд. 1.

6. АНАЛИТИЧЕСКИЙ СКЕЙЛИНГ

Предложенный алгоритм может быть реализован аналитически, если первичные данные для скейлингового построения заданы в виде зависимости $g = 1/\gamma_p L$ от p, W, L:

$$g = Q(p, W, \tau), \quad \tau = \ln L, \tag{55}$$

где *р* — непрерывный номер ляпуновской экспоненты, аналогичный использованному в уравнении (51). Линеаризуем (55) вблизи некоторого значения τ_0 ,

$$g = Q(p, W, \tau_0) + Q'_{\tau}(p, W, \tau_0)(\tau - \tau_0) \equiv \equiv g_0 + A(\tau - \tau_0).$$
(56)

Аналогичная линеаризация для $W = W_1$ вблизи значения τ_1 , выбранного из условия $Q(p, W_1, \tau_1) = Q(p, W, \tau_0)$,

$$g = Q(p, W_1, \tau_1) + Q'_{\tau}(p, W_1, \tau_1)(\tau - \tau_1) \equiv \equiv g_0 + B(\tau - \tau_1)$$
(57)

дает другой наклон линейной зависимости, в результате чего линейные участки (56), (57) не могут быть совмещены масштабным преобразованием. Проведем в формуле (57) изменение p таким образом, чтобы обеспечить равенство A = B:

$$g = Q(p_1, W_1, \tau_1) + Q'_{\tau}(p_1, W_1, \tau_1)(\tau - \tau_1) \equiv \equiv g_0 + A(\tau - \tau_1).$$
(58)

Считая p_1, W_1, τ_1 близкими к p, W, τ_0 , получим из соответствия (56) и (58)

$$Q'_{p}(p, W, \tau_{0})\Delta p + Q'_{W}(p, W, \tau_{0})\Delta W + + Q'_{\tau}(p, W, \tau_{0})\Delta \tau = 0, Q''_{\tau p}(p, W, \tau_{0})\Delta p + Q''_{\tau W}(p, W, \tau_{0})\Delta W + + Q''_{\tau \tau}(p, W, \tau_{0})\Delta \tau = 0$$
(59)

или, разрешая относительно Δp и $\Delta \tau$,

$$\Delta p = \frac{Q'_{\tau}Q''_{\tau W} - Q'_{W}Q''_{\tau \tau}}{Q'_{p}Q''_{\tau \tau} - Q'_{\tau}Q''_{\tau p}} \Delta W,$$

$$\Delta \tau = \frac{Q'_{W}Q''_{\tau p} - Q'_{p}Q''_{\tau W}}{Q'_{p}Q''_{\tau \tau} - Q'_{\tau}Q''_{\tau p}} \Delta W.$$
(60)

Интерпретируя изменение au как изменение $\ln \xi$,

$$\Delta \tau = \Delta \ln \xi, \tag{61}$$

перепишем (58) в виде

$$\Delta g = Q'_{\tau}(p, W, \tau_0) \,\Delta \ln(L/\xi). \tag{62}$$

Переходя в формулах (60)–(62) к бесконечно малым приращениям, получим систему уравнений

$$\frac{dp}{dW} = -\frac{Q'_W(p, W, \tau_0)Q''_{\tau\tau}(p, W, \tau_0) - Q'_{\tau}(p, W, \tau_0)Q''_{\tau W}(p, W, \tau_0)}{Q'_p(p, W, \tau_0)Q''_{\tau\tau}(p, W, \tau_0) - Q'_{\tau}(p, W, \tau_0)Q''_{\tau p}(p, W, \tau_0)},$$

$$\frac{d\ln\xi}{dW} = -\frac{Q'_p(p, W, \tau_0)Q''_{\tau W}(p, W, \tau_0) - Q'_W(p, W, \tau_0)Q''_{\tau p}(p, W, \tau_0)}{Q'_p(p, W, \tau_0)Q''_{\tau\tau}(p, W, \tau_0) - Q'_{\tau}(p, W, \tau_0)Q''_{\tau p}(p, W, \tau_0)},$$

$$\frac{dg}{d\ln(L/\xi)} = Q'_{\tau}(p, W, \tau_0),$$
(63)

последовательно определяющих зависимости p(W), $\xi(W)$ и $g = F(L/\xi)$. Уравнения (63) соответствуют обычному скейлинговому построению (разд. 4, 5) для максимального размера системы $L_0 = \exp \tau_0$, при котором зависимости $g(\ln L)$ линеаризуются вблизи $\ln L_0$ и только их линейные участки (отмечены на рис. 4δ) совмещаются при масштабных преобразованиях. Для самосогласованности подхода зависимость от τ_0 должна исчезать в пределе $\tau_0 \to \infty$. Если зависимость (55) задана в неявной форме:

$$G(g, p, W, \tau) = 0, \tag{64}$$

то уравнения (63) принимают вид

$$\frac{dp}{dW} = -\frac{G'_W(G''_{g\tau}G'_{\tau} - G''_{\tau\tau}G'_g) - G'_{\tau}(G''_{gW}G'_{\tau} - G''_{\tau W}G'_g)}{G'_p(G''_{g\tau}G'_{\tau} - G''_{\tau\tau}G'_g) - G'_{\tau}(G''_{gp}G'_{\tau} - G''_{\tau p}G'_g)},$$

$$\frac{d\ln\xi}{dW} = -\frac{G'_p(G''_{gW}G'_{\tau} - G''_{\tau W}G'_g) - G'_W(G''_{gp}G'_{\tau} - G''_{\tau p}G'_g)}{G'_p(G''_{g\tau}G'_{\tau} - G''_{\tau\tau}G'_g) - G'_{\tau}(G''_{gp}G'_{\tau} - G''_{\tau p}G'_g)},$$

$$\frac{dg}{d\ln(L/\xi)} = -\frac{G'_{\tau}}{G'_{g}}.$$
(65)

Все функции в правой части зависят от g_0 , p, W, τ_0 , где τ_0 — фиксированный параметр, а g_0 определяется как функция p, W из уравнения связи $G(g_0, p, W, \tau_0) = 0$.

К сожалению, зависимость (64) для стандартных ляпуновских показателей γ_s неизвестна; поэтому ниже представлены иллюстративные вычисления для показателей β_s , когда уравнение (64) имеет вид (51). Последнее уравнение можно упростить путем разложения ch(1/gL) без существенных физических последствий¹⁰:

$$G(g, p, W, \tau) = \frac{\exp(-2\tau_0)}{g^2} + \varphi(p) - W^2 f(g) = 0, \quad (66)$$

где

$$\varphi(p) = 2 (1 - \cos p), \quad f(g) = \operatorname{cth}(1/2g).$$

Тогда уравнения (65) приводятся к виду

$$\frac{d\varphi(p)}{dW^2} = -\frac{g_0^2 f(g_0) W^2 - \exp(-2\tau_0)}{g_0^2 W^2} = \frac{\varphi(p)}{W^2}, \quad (67)$$

$$\frac{d\ln\xi}{d\ln W} = -1,\tag{68}$$

$$\frac{dg}{d\ln\xi} = \frac{2g_0 \exp(-2\tau_0)}{2 \exp(-2\tau_0) + W^2 g_0^3 f'(g_0)}, \qquad (69)$$

где g_0 является функцией p, W, определяемой уравнением $G(g_0, p, W, \tau_0) = 0$, что учтено во втором равенстве (67). Решая уравнения (67), (68)

$$\varphi(p) = 2 (1 - \cos p) = c_0 W^2, \quad \xi = \frac{c_1}{W}$$
(70)

и используя равенство (66), получим соотношения

$$W^{2} = \frac{\exp(-2\tau_{0})}{g_{0}^{2} \left[f(g_{0}) - c_{0}\right]}, \qquad \frac{dg}{dg_{0}} = 1, \qquad (71)$$

с помощью которых функция $g = F(L/\xi)$ находится в неявной форме:

$$c_1^2 g^2 [f(g) - c_0] = (\xi/L)^2.$$
 (72)

 $^{10)}$ Это дает лишь ограничение со стороны малых L в области $g\ll 1.$

Здесь c_0 и c_1 — произвольные постоянные. Ввиду ограниченности величины $\varphi(p), 0 \leq \varphi(p) \leq 4$, однопараметрический скейлинг оказывается возможным лишь при условии

$$W^2 < \frac{4}{c_0} \equiv W_{c1}^2. \tag{73}$$

Для $W > W_{c1}$ следует полагать $p = \pi$, что возвращает нас к концепции минимальной ляпуновской экспоненты и отсутствию скейлинга — при этом сохраняются все результаты разд. 3.

Ситуация оказывается качественно различной для $c_0 < 1$ и $c_0 > 1$, когда соответственно $W_{c1} > W_c$ и $W_{c1} < W_c$. Скейлинговая функция $g = F(\xi/L)$, определяемая уравнением (72), показана на рис. 7*a*: для $c_0 < 1$ она близка к эмпирически найденной в работе [10], тогда как в случае $c_0 > 1$ возникает конечный предел $g^* = 1/2 \operatorname{arth}(1/c_0)$ при $\xi/L \to 0$. Зависимости g(L) для $W < W_{c1}$ получаются из формулы (66) после подстановки $\varphi(p)$ из формулы (70), тогда как при $W > W_{c1}$ они остаются такими же, как в разд. 3 (рис. 7*b*,*e*). Поведение характерных масштабов для $c_0 > 1$ и $c_0 < 1$ показано соответственно на рис. 8*a* и рис. 8*b*.

Как видно на рис. 7, 8, при $c_0 < 1$ имеет место экспоненциальная локализация всех состояний в соответствии с общепринятыми представлениями; при $c_0 > 1$ сохраняется фаза со степенной локализацией, но поведение характерных масштабов изменяется по сравнению с результатами разд. 3. Сингулярность в точке W_{c1} в действительности фиктивна и связана с тем, что при $W < W_{c1}$ мы постулировали точный скейлинг. В действительности же скейлинг является приближенным, так как корреляционный радиус ξ конечен вблизи W_{c1} и поправки к скейлингу, связанные с l_i/ξ (см. (4)), не могут считаться пренебрежимо малыми. С учетом последних качественное различие между областью $W < W_{c1}$ и областью W > W_{c1} исчезает: имеется хороший скейлинг при $W \lesssim W_{c1}$ и его отсутствие при $W \gtrsim W_{c1}$, но разрушение скейлинга происходит постепенно, путем нарастания поправок к нему.

Остановимся на физическом смысле параметра со. Формально он возникает из-за того, что условие скейлинга определяет лишь форму дифференциальных уравнений (63), но не начальные условия к ним. В конкретной модели Андерсона значение с₀ фиксировано и никаким произволом но обладает. Однако выше мы не фиксировали функцию распределения P(V) и использовали лишь ее первый и второй моменты (см. (27)). Поэтому исходное уравнение связи (66) описывает не одну, а целое множество моделей Андерсона, в которых значения константы со различны. Естественно ожидать, что путем изменения модели значение со можно менять в достаточно широких пределах, чтобы перекрыть области как $c_0 < 1$, так и $c_0 > 1$. Тогда все двумерные системы распадаются на два класса, в одном из которых имеется фазовый переход, в другом — экспоненциальная локализация всех состояний¹¹⁾. В экспериментальном аспекте такое утверждение высказывалось Заварицкой в середине 1980-х годов (см. работу [62] и ссылки в ней).

Подчеркнем, что проведенное рассмотрение носит иллюстративный характер. Для стандартных ляпуновских показателей γ_s исходное уравнение (66) имеет другой вид, что может привести к существенному изменению полученных зависимостей. В частности, для корреляционного радиуса ξ вместо формулы (70) ожидается экспоненциальная зависимость $\xi \sim \exp(\text{const}/W^2)$, следующая из однопараметрического скейлинга [1] или теории Волхардта – Вольфле [25].

7. СВЯЗЬ С УРАВНЕНИЕМ ГЕЛЛ-МАННА — ЛОУ

В теории однопараметрического скейлинга [1] в качестве скейлинговой переменной g(L) используется полная проводимость (кондактанс) G_L конечного блока размером L^d в единицах e^2/h . Для нее справедливо уравнение Гелл-Манна — Лоу

$$\frac{d\ln g}{d\ln L} = \beta(g),\tag{74}$$

где функция $\beta(g)$ имеет асимптотики

$$\beta(g) = \begin{cases} (d-2) + \frac{A}{g} + \dots & (A < 0), \quad g \gg 1, \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

Нулевой член первой асимптотики связан с существованием конечной удельной проводимости σ в металлическом состоянии (так что $G_L \sim \sigma L^{d-2}$), а поправочный член A/g определяется суммированием «веерных» диаграмм [63]. Вторая асимптотика связана с предположением об экспоненциальной локализации, благодаря которой $G_L \sim \exp(-\text{const } L)$.

Последнее предположение в общем случае неверно: так, для степенной локализации $G_L \sim L^{-\alpha}$ и

$$\beta(g) = -\alpha, \quad g \ll 1. \tag{76}$$

Из изложенного выше ясно, что в 2D-системах β-функция не является универсальной в области малых g и может иметь различное поведение в разных случаях (рис. 9). Этот вывод является совершенно естественным с точки зрения общей теории фазовых переходов [29]. Скейлинг является свойством больших масштабов, и уравнение (74) имеет реальный смысл лишь при $|\beta(g)| \ll 1$ (т.е. в узкой полоске вблизи горизонтальной оси на рис. 9), когда g(L)медленно меняется. В противном случае g(L) изменяется на атомном масштабе, где нет никаких оснований ни для масштабной инвариантности, ни для универсальности. С общей точки зрения существование универсальных асимптотик (75) выглядит достаточно случайным, а предположение об универсальности $\beta(g)$ для всех g [1] является очевидной идеализацией (экспериментальные аспекты этого см. в работе [62]).

При d > 2 уравнение (74) имеет неподвижную точку g^* , с которой и связан переход Андерсона. При $d = 2 + \epsilon$ неподвижная точка находится в области больших g и исчезает в пределе $\epsilon \to 0$. Этот вывод об отсутствии перехода Андерсона в 2D-системах остается неизменным, так как металлическая фаза действительно отсутствует (разд. 3). Обсуждавшийся выше переход происходит в глубине локализованной фазы и соответствует «переключению» с одной β -функции на другую при изменении внешних параметров. Следовательно, никакой существенной ревизии в области слабой локализации не требуется.

¹¹⁾ Конечно, могут существовать принципиальные ограничения, которые делают невозможной реализацию случая $c_0 > 1$, но в настоящее время для этого не видно оснований.

Рис.7. a) Скейлинговая функция $g = F(\xi/L)$, определяемая уравнением (72). б, e) Зависимости g(L) для $c_0 > 1$ и $c_0 < 1$

Рис.8. Поведение характерных масштабов при $c_0 > 1$ (*a*) и $c_0 < 1$ (б)

8. ЗАКЛЮЧЕНИЕ

Мы показали, что общепринятый численный алгоритм, основанный на методе трансфер-матрицы, является дефектным, так как минимальный показатель Ляпунова не удовлетворяет однопараметрическому скейлингу. Для восстановления скейлинга

Рис. 9. Функция Гелл-Манна — Лоу $\beta(g)$ не является универсальной в области малых g

требуется модификация алгоритма, конструктивно сводящаяся к изменению номера ляпуновской экспоненты в процессе скейлинговых построений. Эта модификация не связана с большим увеличением вычислительной работы, так как высшие показатели Ляпунова все равно определяются в процессе нахождения γ_{min} [22]. Фактически авторы работ [8–11] могут использовать уже имеющиеся первичные данные и дать им другую интерпретацию. Возможно, это приведет к разрешению противоречий, отмеченных в разд. 1.

Уже на настоящем этапе можно понять странный дрейф результатов для d = 3 по мере увеличения размеров системы: $\nu = 0.66$ [7], $\nu = 1.2 \pm 0.3$ [8], $\nu = 1.35 \pm 0.15$ [15], $\nu = 1.54 \pm 0.08$ [16], $\nu = 1.58 \pm 0.02$ [21]. Для малых L число членов в уравнении (16) сравнительно невелико и максималь-

ный масштаб $1/\gamma_{min}$ действительно соответствует корреляционному радиусу ξ_{1D} ; описание перехода Андерсона получается очень грубым, но результаты являются правильными в пределах своей грубости. Для больших L различие между минимальным и эффективным показателями Ляпунова становится существенным и результаты, формально уточняясь, в действительности становятся неверными.

Буквальное использование концепции минимальной ляпуновской экспоненты приводит к однозначному выводу о существовании в 2*D*-системах фазового перехода типа Костерлица – Таулеса между экспоненциальной и степенной локализацией. В результате указанной модификации алгоритма возникает представление о двух классах 2*D*-систем, в одном из которых имеется фазовый переход, в другом — экспоненциальная локализация всех состояний.

Работа выполнена при финансовой поддержке РФФИ (грант № 03-02-17519).

ЛИТЕРАТУРА

- E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).
- B. L. Al'tshuler, A. G. Aronov, D. E. Khmel'nitskii, and A. I. Larkin, in *Quantum Theory of Solids*, ed. by I. M. Lifshitz, Mir Publishers, Moscow, 1982.
- S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D. Iorio, Phys. Rev. B 50, 8039 (1994).
- 4. S. V. Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux, V. M. Pudalov, and M. D. Iorio, Phys. Rev. B 51, 7038 (1995).
- S. V. Kravchenko, D. Simonian, M. P. Sarachik et al., Phys. Rev. Lett. 77, 4938 (1996).
- E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).
- J. L. Pichard and G. Sarma, J. Phys. C: Sol. St. Phys. 14, L127 (1981); 14, L617 (1981).
- A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).
- 9. A. MacKinnon and B. Kramer, Z. Phys. 53, 1 (1983).
- M. Schreiber and M. Ottomeier, J. Phys.: Condens. Matter 4, 1959 (1992).

- K. Slevin, Y. Asada, and L. I. Deych, E-print archives, cond-mat/0404530.
- B. I. Shklovskii, B. Shapiro, B. R. Sears et al., Phys. Rev. B 47, 11487 (1993).
- 13. I. Kh. Zharekeshev and B. Kramer, Phys. Rev. B 51, 17239 (1995).
- 14. B. Kramer, K. Broderix, A. MacKinnon, and M. Schreiber, Physica A 167, 163 (1990).
- 15. E. Hofstetter and M. Schreiber, Europhys. Lett. 21, 933 (1993).
- 16. A. MacKinnon, J. Phys.: Condens. Matter 6, 2511 (1994).
- 17. M. Schreiber and H. Grussbach, Phys. Rev. Lett. 76, 1687 (1996).
- 18. I. Kh. Zharekeshev and B. Kramer, Phys. Rev. B 51, 17239 (1995).
- I. Kh. Zharekeshev and B. Kramer, Phys. Rev. Lett. 79, 717 (1997).
- 20. I. Kh. Zharekeshev and B. Kramer, Ann. Phys. (Leipzig) 7, 442 (1998).
- 21. K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).
- 22. P. Markos, J. Phys. A: Math Gen 33, L393 (2000).
- P. Markos and M. Heneke, J. Phys.: Condens. Matter 6, L765 (1994).
- 24. I. M. Suslov, E-print archives, cond-mat/0105325, cond-mat/0106357.
- 25. D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982); D. Vollhardt and P. Wölfle, in *Modern Problems in Condensed Matter Sciences*, ed. by V. M. Agranovich and A. A. Maradudin, v. 32, North-Holland, Amsterdam (1992).
- 26. А. Kawabata, Sol. St. Comm. 38, 823 (1981);
 В. Shapiro, Phys. Rev. В 25, 4266 (1982); А. В. Мясников, М. В. Садовский, ФТТ 34, 3569 (1982).
- **27**. И. М. Суслов, ЖЭТФ **102**, 1951 (1992).
- **28**. И. М. Суслов, УФН **168**, 503 (1998).
- 29. Ш. Ма, Современная теория критических явлений, Мир, Москва (1980).
- 30. A. Nitzan, K. F. Freed, and M. N. Cohen, Phys. Rev. B 15, 4476 (1977).
- **31**. М. В. Садовский, УФН **133**, 223 (1981).

- **32**. Н. Н. Боголюбов, Д. В. Ширков, Введение в теорию квантованных полей, Наука, Москва (1976).
- 33. F. Wegner, Z. Phys. B 35, 207 (1979); L. Schäfer and F. Wegner, Z. Phys. B 38, 113 (1980); S. Hikami, Phys. Rev. B 24, 2671 (1981); К. Б. Ефетов, А. И. Ларкин, Д. Е. Хмельницкий, ЖЭТФ 79, 1120 (1980); K. B. Efetov, Adv. Phys. 32, 53 (1983).
- 34. F. Wegner, Nucl. Phys. B 316, 663 (1989).
- 35. H. Kunz, R. Souillard, J. de Phys. Lett. 44, L411 (1983).
- **36**. К. Б. Ефетов, ЖЭТФ **93**, 1125 (1987); **94**, 357 (1988).
- 37. B. Shapiro, Phys. Rev. Lett. 50, 747 (1983).
- D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).
- **39**. Н. Г. Жданова, М. С. Каган, Е. Г. Ландсберг, ЖЭТФ **117**, 761 (2000).
- 40. H. Kunz and R. Souillard, J. de Phys. Lett. 44, L506 (1983).
- **41**. И. М. Суслов, ЖЭТФ **108**, 1686 (1995).
- 42. V. N. Kuzovkov et al., J. Phys.: Condens. Matter 14, 13777 (2002).
- 43. V. N. Kuzovkov and W. von Niessen, Eur. Phys. J. B 42, 529 (2004).
- 44. M. P. Nightingale, Physica A 83, 561 (1976).
- 45. B. Derrida and J. Vannimenus, J. de Phys. Lett. 41, L473 (1980).
- 46. B. Derrida, J. Phys. A: Math Gen 14, L5 (1981).

- **47**. В. И. Оселедец, Труды Моск. мат. общества, **19**, 197 (1968).
- 48. Н. Мотт, Ф. Дэвис, Электронные процессы в некристаллических веществах, Мир, Москва (1982).
- 49. Г. А. Корн, Т. М. Корн, Справочник по математике, Наука, Москва (1977).
- 50. И. М. Лифшиц, С. А. Гредескул, Л. А. Пастур, Введение в теорию неупорядоченных систем, Наука, Москва (1982).
- 51. D. J. Thouless, Phys. Rep. 13, 92 (1974).
- 52. А. О. Гельфонд, Исчисление конечных разностей, Наука, Москва (1967).
- 53. B. J. Last and D. J. Thouless, J. Phys. C: Sol. St. Phys.
 7, 699 (1974).
- 54. R. Haydock, Phil. Mag. B 43, 203 (1981); N. F. Mott and M. Kaveh, Adv. Phys. 34, 329 (1985).
- 55. В. Е. Кравцов, И. В. Лернер, В. И. Юдсон, ЖЭТФ
 94, 255 (1988).
- 56. F. Wegner, Z. Phys. B 78, 33 (1990).
- 57. Б. Л. Альтшулер, В. Е. Кравцов, И. В. Лернер, ЖЭТФ 91, 2276 (1986).
- 58. И. М. Суслов, ЖЭТФ 83, 1079 (1982).
- 59. И. М. Суслов, ЖЭТФ 84, 1792 (1983).
- **60**. И. М. Суслов, ЖЭТФ **92**, 1433 (1987).
- 61. S. Aubry and G. Andre, Ann. Israel. Phys. Soc. 3, 133 (1980).
- **62**. Э. И. Заварицкая, ЖЭТФ **93**, 952 (1987).
- 63. Л. П. Горьков, А. И. Ларкин, Д. Е. Хмельницкий, Письма в ЖЭТФ 30, 248 (1979).